Free Probability and Ramanujan Graphs - HW \#2

Published: 2024-06-18
Submission: 2024-07-02

Exercises with * will be graded. Submission in singles or pairs. Contact Gal for questions and clarifications.

1. * In this question we consider the $*$-probability space $\left(\mathbb{C} G, \tau_{G}\right)$ and the element

$$
\Delta=g+h+g^{-1}+h^{-1}
$$

where $g, h \in G$ are distinct elements of infinite order, and none of them generates G by itself.
(a) Consider the (infinite) Cayley graph whose vertices are the elements of G, and the set of generators are $\left\{g, h, g^{-1}, h^{-1}\right\}$. Prove that for any $n \geq 1$, the moment $\tau_{G}\left(\Delta^{n}\right)$ equals the number of closed walks of length n in the graph, originating at an arbitrary vertex (and in particular the identity element e_{G}).
(b) For the additive group $G=\mathbb{Z}^{2}$ let $g=(1,0)$ and $h=(0,1)$. Prove that

$$
\tau_{G}\left(\Delta^{n}\right)= \begin{cases}\binom{2 p}{p}^{2}, & n=2 p \\ 0, & n \text { is odd }\end{cases}
$$

(Hint: consider the set $U R$ of steps going either up or right, and the set $D R$ of steps going either down on right. Notice that a walk of length n ending at (a, b) satisfies $a+b=|U R|-(n-|U R|))$.
(c) Let G be the free group on two generators, with g and h being the generators. Calculate $\tau_{G}\left(\Delta^{n}\right)$ for $n=\{0,1,2,3,4\}$.
(d) Provide lower and upper bounds for $\tau_{G}\left(\Delta^{3}\right)$ and $\tau_{G}\left(\Delta^{4}\right)$ for any group G under the given assumptions.
2. In this question we will prove that $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$.
(a) Prove that the number of NE-SE paths which end at a given point $(a, b) \in \mathbb{Z}^{2}$ is $\binom{m}{\frac{m+n}{2}}$, where $m \geq|n| \geq 0$ and $m+n$ is even (and 0 otherwise). Observe that in particular, $\binom{2 p}{p}$ such paths are ending at $(2 p, 0)$.
(b) Prove that there is a bijection between bad paths, ending at $(2 p, 0)$ but are not Dyck paths, and paths of length $2 p$ ending at $(2 p,-2)$. (Hint: Let γ be a bad path, and let j be the first step in which γ went below height 0 . Define the bijection to be the reflection of the path to the right of step j across the line -1).
(c) Conclude that $C_{n}=\binom{2 n}{n}-\binom{2 n}{n-1}$.
3. * Express the following counting problems using the Fuss-Catalan numbers $C_{k}^{(p)}$, and explain your answer.
(a) How many non-crossing pairings are there for the numbers $[2 n]=\{1,2, \ldots, 2 n\}$? (A pairing is a partition $V_{1}, V_{2}, \ldots, V_{n}$ such that $\bigcup_{i=1}^{n} V_{i}=[2 n]$ and $\left|V_{i}\right|=2$ for every i. A partition is said to be crossing if there exist $V_{i}=(a, b)$ and $V_{j}=(c, d)$ such that $a<c<b<d$).
(b) How many ways are there to partition the numbers [2n] to non-crossing subsets of even size?
(c) Knights and ladies of the Round Table. There are $k=a b$ ladies, each one accompanied by her knight. How many ways are there to sit them together such that the ladies and knights are in groups of size a (that is, there are a ladies sitting together, next to them a knights, next to them a ladies, and so on) and each lady can converse with her knight with no two conversations crossing.

