Free Probability and Ramanujan Graphs - HW #2

Published: 2024-06-18

Submission: 2024-07-02

Exercises with * will be graded. Submission in singles or pairs. Contact Gal for questions and clarifications.

1. * In this question we consider the *-probability space $(\mathbb{C}G, \tau_G)$ and the element

$$\Delta = g + h + g^{-1} + h^{-1},$$

where $g, h \in G$ are distinct elements of infinite order, and none of them generates G by itself.

- (a) Consider the (infinite) Cayley graph whose vertices are the elements of G, and the set of generators are $\{g, h, g^{-1}, h^{-1}\}$. Prove that for any $n \ge 1$, the moment $\tau_G(\Delta^n)$ equals the number of closed walks of length n in the graph, originating at an arbitrary vertex (and in particular the identity element e_G).
- (b) For the additive group $G = \mathbb{Z}^2$ let g = (1, 0) and h = (0, 1). Prove that

$$\tau_G(\Delta^n) = \begin{cases} \binom{2p}{p}^2, & n = 2p, \\ 0, & n \text{ is odd} \end{cases}$$

(**Hint**: consider the set UR of steps going either up or right, and the set DR of steps going either down on right. Notice that a walk of length n ending at (a, b) satisfies a + b = |UR| - (n - |UR|)).

- (c) Let G be the free group on two generators, with g and h being the generators. Calculate $\tau_G(\Delta^n)$ for $n = \{0, 1, 2, 3, 4\}$.
- (d) Provide lower and upper bounds for $\tau_G(\Delta^3)$ and $\tau_G(\Delta^4)$ for any group G under the given assumptions.
- 2. In this question we will prove that $C_n = \frac{1}{n+1} {\binom{2n}{n}}$.
 - (a) Prove that the number of NE-SE paths which end at a given point $(a, b) \in \mathbb{Z}^2$ is $\binom{m}{\frac{m+n}{2}}$, where $m \ge |n| \ge 0$ and m+n is even (and 0 otherwise). Observe that in particular, $\binom{2p}{p}$ such paths are ending at (2p, 0).
 - (b) Prove that there is a bijection between *bad* paths, ending at (2p, 0) but are not Dyck paths, and paths of length 2p ending at (2p, -2). (**Hint**: Let γ be a bad path, and let j be the first step in which γ went below height 0. Define the bijection to be the reflection of the path to the right of step j across the line -1).
 - (c) Conclude that $C_n = \binom{2n}{n} \binom{2n}{n-1}$.

- 3. * Express the following counting problems using the Fuss-Catalan numbers $C_k^{(p)}$, and explain your answer.
 - (a) How many non-crossing pairings are there for the numbers $[2n] = \{1, 2, ..., 2n\}$? (A pairing is a partition $V_1, V_2, ..., V_n$ such that $\bigcup_{i=1}^n V_i = [2n]$ and $|V_i| = 2$ for every *i*. A partition is said to be *crossing* if there exist $V_i = (a, b)$ and $V_j = (c, d)$ such that a < c < b < d).
 - (b) How many ways are there to partition the numbers [2n] to non-crossing subsets of even size?
 - (c) Knights and ladies of the Round Table. There are k = ab ladies, each one accompanied by her knight. How many ways are there to sit them together such that the ladies and knights are in groups of size a (that is, there are a ladies sitting together, next to them a knights, next to them a ladies, and so on) and each lady can converse with her knight with no two conversations crossing.