Adeles	
Unit 13	

Gil Cohen

December 17, 2024

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Let K be a field, and R a ring (commutative with unit, as usual). If R is also a K-vector space we say that R is a K-algebra.

The definition of an algebra is in fact more general but the above works for us.

A typical example is the ring of polynomials $K[x_1, \ldots, x_n]$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

Definition 1 (Adeles)

An adele of a function field F/K is a map $\alpha : \mathbb{P} \to \mathsf{F}$ satisfying $v_{\mathfrak{p}}(\alpha(\mathfrak{p})) \geq 0$ almost always.

This somewhat weird-looking definition turns out to encode a proper balance of the "global" and "local" properties of the function field.

Remarks.

- We will write $\alpha_{\mathfrak{p}}$ for $\alpha(\mathfrak{p})$.
- The set $\mathbb{A}=\mathbb{A}_{F/K}$ of adeles of F/K is a ring with point-wise addition and multiplication.

$$(\alpha\beta)(\mathfrak{p}) = \alpha(\mathfrak{p})\beta(\mathfrak{p}),$$

 $(\alpha + \beta)(\mathfrak{p}) = \alpha(\mathfrak{p}) + \beta(\mathfrak{p}).$

イロト イポト イヨト ・ヨー

Remarks.

• We identify F as a subfield of A via

$$x\mapsto [x]$$
 s.t. $[x]_{\mathfrak{p}}=x$ $\forall \mathfrak{p}\in \mathbb{P}.$

• $A_{F/K}$ is an F-algebra: For $x \in F$

$$x\alpha = [x]\alpha.$$

More explicitly,

$$(x\alpha)_{\mathfrak{p}}=x\cdot\alpha_{\mathfrak{p}}.$$

• We extend the valuation $v_{\mathfrak{p}}$ from F to A by

$$\upsilon_{\mathfrak{p}}(\alpha) = \upsilon_{\mathfrak{p}}(\alpha_{\mathfrak{p}}).$$

イロン イ団 と イヨン イヨン

2

Recall that for $\mathfrak{a}\in\mathcal{D}$ we defined the Riemann-Roch space

$$\mathcal{L}(\mathfrak{a}) = \{ x \in \mathsf{F} \ | \ v_{\mathfrak{p}}(x) + v_{\mathfrak{p}}(\mathfrak{a}) \geq 0 \text{ for all } \mathfrak{p} \in \mathbb{P} \}.$$

Definition 2

For a divisor ${\mathfrak a}$ let

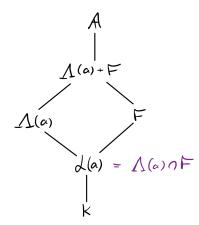
$$\Lambda(\mathfrak{a}) = \{ \alpha \in \mathbb{A} \ | \ v_{\mathfrak{p}}(\alpha) + v_{\mathfrak{p}}(\mathfrak{a}) \ge 0 \text{ for all } \mathfrak{p} \in \mathbb{P} \}.$$

Proving the following claim is left as an exercise.

Claim 3

- $\Lambda(\mathfrak{a})$ is a K-vector space, a subspace of \mathbb{A} .
- $\mathcal{L}(\mathfrak{a}) = \Lambda(\mathfrak{a}) \cap \mathsf{F}.$

イロト 不得 トイヨト イヨト 二日



イロン イロン イヨン イヨン

æ.,

Claim 4

For divisors $\mathfrak{a}, \mathfrak{b}$ and $x \in F$

- $\mathfrak{a} \leq \mathfrak{b} \implies \Lambda(\mathfrak{a}) \subseteq \Lambda(\mathfrak{b}).$
- $\Lambda(\mathfrak{a}) \cap \Lambda(\mathfrak{b}) = \Lambda(\min(\mathfrak{a}, \mathfrak{b})).$
- $\Lambda(\mathfrak{a}) + \Lambda(\mathfrak{b}) = \Lambda(\max(\mathfrak{a}, \mathfrak{b})).$
- $x\Lambda(\mathfrak{a}) = \Lambda(\mathfrak{a} (x)).$

The proof is similar to that for Riemann-Roch spaces and is left as an exercise.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Recall that for divisors $\mathfrak{a} \leq \mathfrak{b}$,

$${\rm dim}_{K}\left(\mathcal{L}(\mathfrak{b}) \Big/ \mathcal{L}(\mathfrak{a})\right) \leq {\rm deg}\, \mathfrak{b} - {\rm deg}\, \mathfrak{a}.$$

Moreover, if $S \subset \mathbb{P}$ is the prime divisors appearing in at least one of $\mathfrak{a}, \mathfrak{b}$, then

$$\dim_{\mathsf{K}} \left(\mathcal{L}(\mathfrak{b}, S) \middle/ \mathcal{L}(\mathfrak{a}, S) \right) = \deg \mathfrak{b} - \deg \mathfrak{a}.$$

Lemma 5

For divisors $\mathfrak{a} \leq \mathfrak{b}$,

$$\dim_{\mathsf{K}}\left(\Lambda(\mathfrak{b}) \middle/ \Lambda(\mathfrak{a})\right) = \deg \mathfrak{b} - \deg \mathfrak{a}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

Let $S \subset \mathbb{P}$ be the prime divisors appearing in at least one of $\mathfrak{a}, \mathfrak{b}.$ We proved that

$$\dim_{\mathsf{K}} \left(\mathcal{L}(\mathfrak{b}, S) \middle/ \mathcal{L}(\mathfrak{a}, S) \right) = \deg \mathfrak{b} - \deg \mathfrak{a}.$$

So it suffices to establish the isomorphism (as K-vector spaces)

$$\Lambda(\mathfrak{b})/\Lambda(\mathfrak{a})\cong \mathcal{L}(\mathfrak{b},S)/\mathcal{L}(\mathfrak{a},S).$$

Let $T : \mathsf{F} \to \mathbb{A}$ be the map $x \mapsto T(x)$ that is given by

$$T(x)_{\mathfrak{p}} = egin{cases} x & ext{if } \mathfrak{p} \in S; \ 0 & ext{otherwise}. \end{cases}$$

イロト 不得 トイヨト イヨト

э

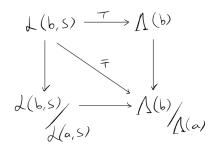
$$\Gamma(x)_{\mathfrak{p}} = egin{cases} x & ext{if } \mathfrak{p} \in S; \ 0 & ext{otherwise}. \end{cases}$$

T is a K-linear map that maps $\mathcal{L}(\mathfrak{a}, S)$ into $\Lambda(\mathfrak{a})$ and $\mathcal{L}(\mathfrak{b}, S)$ into $\Lambda(\mathfrak{b})$. Indeed,

$$\begin{array}{ll} x \in \mathcal{L}(\mathfrak{a}, S) & \Longrightarrow & \forall \mathfrak{p} \in S \quad \upsilon_{\mathfrak{p}}(x) + \upsilon_{\mathfrak{p}}(\mathfrak{a}) \geq 0 \\ & \Longrightarrow & \forall \mathfrak{p} \in \mathbb{P} \quad \upsilon_{\mathfrak{p}}(\mathcal{T}(x)) + \upsilon_{\mathfrak{p}}(\mathfrak{a}) \geq 0 \\ & \Longrightarrow & \mathcal{T}(x) \in \Lambda(\mathfrak{a}). \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

 \mathcal{T} composed with the projection map $\Lambda(\mathfrak{b}) o \Lambda(\mathfrak{a}) / \Lambda(\mathfrak{a})$ gives rise to a map \overline{T} .



同下 イヨト イヨト

2

We first prove that ker $\overline{T} = \mathcal{L}(\mathfrak{a}, S)$. Indeed,

$$\begin{split} & \ker \bar{\mathcal{T}} = \{ x \in \mathcal{L}(\mathfrak{b}, S) \ | \ \mathcal{T}(x) \in \Lambda(\mathfrak{a}) \} \\ & = \{ x \in \mathcal{L}(\mathfrak{b}, S) \ | \ \forall \mathfrak{p} \in \mathbb{P} \quad v_{\mathfrak{p}}(\mathcal{T}(x)) + v_{\mathfrak{p}}(\mathfrak{a}) \geq 0 \} \end{split}$$

For $\mathfrak{p} \in \mathbb{P} \setminus S$, $v_{\mathfrak{p}}(T(x)) = v_{\mathfrak{p}}(0) = \infty$ and $v_{\mathfrak{p}}(\mathfrak{a}) = 0$, and so

$$\begin{split} & \ker \bar{\mathcal{T}} = \{ x \in \mathcal{L}(\mathfrak{b}, \mathcal{S}) \mid \forall \mathfrak{p} \in \mathcal{S} \quad \upsilon_{\mathfrak{p}}(x) + \upsilon_{\mathfrak{p}}(\mathfrak{a}) \geq 0 \} \\ & = \mathcal{L}(\mathfrak{a}, \mathcal{S}). \end{split}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Proof.

Next, we show that \overline{T} is onto. Take $\beta \in \Lambda(\mathfrak{b})$. By WAT $\exists x \in F$ s.t. $\forall \mathfrak{p} \in S \quad \upsilon_{\mathfrak{p}}(T(x) - \beta_{\mathfrak{p}}) = \upsilon_{\mathfrak{p}}(x - \beta_{\mathfrak{p}}) \geq -\upsilon_{\mathfrak{p}}(\mathfrak{a}),$ As for $\mathfrak{p} \in \mathbb{P} \setminus S$. $v_{\mathbf{n}}(T(\mathbf{x}) - \beta_{\mathbf{n}}) = v_{\mathbf{n}}(\beta_{\mathbf{n}}) > -v_{\mathbf{n}}(\mathbf{b}) = \mathbf{0} = -v_{\mathbf{n}}(\mathbf{a}).$ So, $T(x) - \beta \in \Lambda(\mathfrak{a})$. Hence, $\overline{T}(x) = \beta + \Lambda(\mathfrak{a})$. We just need to now that $x \in \mathcal{L}(\mathfrak{b}, S)$. Indeed, for $\mathfrak{p} \in S$, $v_{\mathfrak{p}}(x) \geq \min(v_{\mathfrak{p}}(x - \beta_{\mathfrak{p}}), v_{\mathfrak{p}}(\beta_{\mathfrak{p}})) \geq \min(-v_{\mathfrak{p}}(\mathfrak{a}), -v_{\mathfrak{p}}(\mathfrak{b})) = -v_{\mathfrak{p}}(\mathfrak{b}).$

The proof then follows by the first isomorphism theorem for vector spaces.

Recap. For divisors $\mathfrak{a} \leq \mathfrak{b}$ we just proved that

$$\dim_{\mathsf{K}}\left(\Lambda(\mathfrak{b}) \Big/ \Lambda(\mathfrak{a})\right) = \deg \mathfrak{b} - \deg \mathfrak{a}.$$

Lemma 6

For divisors $\mathfrak{a} \leq \mathfrak{b}$,

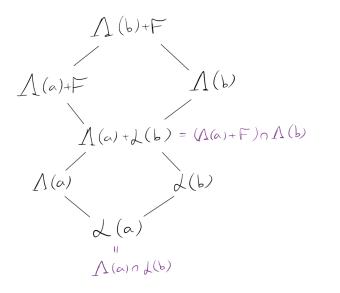
$$\dim_{\mathsf{K}} \left(\Lambda(\mathfrak{b}) + \mathsf{F} \Big/ \Lambda(\mathfrak{a}) + \mathsf{F} \right) = (\deg \mathfrak{b} - \dim \mathfrak{b}) - (\deg \mathfrak{a} - \dim \mathfrak{a}).$$

For the proof of Lemma 6 we recall the third isomorphism theorem for vector spaces.

Let $U \subseteq V \subseteq W$ be K-vector spaces. Then, V/U is a subspace of W/U, and

$$(W/U)/(V/U) \cong W/V.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので



A B M A B M

э

By Claim 3,

$$\mathcal{L}(\mathfrak{a}) = \Lambda(\mathfrak{a}) \cap \mathsf{F}.$$

But since $\mathcal{L}(\mathfrak{a}) \subseteq \mathcal{L}(\mathfrak{b})$,

$$egin{aligned} \mathcal{L}(\mathfrak{a}) &= \mathcal{L}(\mathfrak{a}) \cap \mathcal{L}(\mathfrak{b}) \ &= (\Lambda(\mathfrak{a}) \cap \mathsf{F}) \cap \mathcal{L}(\mathfrak{b}) \ &= \Lambda(\mathfrak{a}) \cap (\mathsf{F} \cap \mathcal{L}(\mathfrak{b})) \ &= \Lambda(\mathfrak{a}) \cap \mathcal{L}(\mathfrak{b}). \end{aligned}$$

We turn to prove that

$$(\Lambda(\mathfrak{a}) + \mathsf{F}) \cap \Lambda(\mathfrak{b}) = \Lambda(\mathfrak{a}) + \mathcal{L}(\mathfrak{b}).$$

The \supseteq direction is easy.

Now, take an element in the LHS and write it as $\alpha + x$ with $\alpha \in \Lambda(\mathfrak{a})$ and $x \in F$. But $\Lambda(\mathfrak{a}) \subseteq \Lambda(\mathfrak{b})$ and so

$$\alpha + x \in \Lambda(\mathfrak{b}) \implies x \in \Lambda(\mathfrak{b}).$$

But $x \in F$ and so

$$x \in \Lambda(\mathfrak{b}) \cap F = \mathcal{L}(\mathfrak{b}).$$

Thus,

$$\alpha + x \in \Lambda(\mathfrak{a}) + \mathcal{L}(\mathfrak{b}).$$

イロト 不得 トイヨト イヨト

э

By the diagram and by the second isomorphism theorem,

$$(\Lambda(\mathfrak{b}) + F) / (\Lambda(\mathfrak{a}) + F) \cong \Lambda(\mathfrak{b}) / (\Lambda(\mathfrak{a}) + \mathcal{L}(\mathfrak{b})),$$

and by the third and second isomorphism theorems,

$$egin{aligned} & \Lambda(\mathfrak{b}) \Big/ (\Lambda(\mathfrak{a}) + \mathcal{L}(\mathfrak{b})) &\cong \Lambda(\mathfrak{b}) \Big/ \Lambda(\mathfrak{a}) \Big/ (\Lambda(\mathfrak{a}) + \mathcal{L}(\mathfrak{b})) \Big/ \Lambda(\mathfrak{a}) \ &\cong \Lambda(\mathfrak{b}) \Big/ \Lambda(\mathfrak{a}) \Big/ \mathcal{L}(\mathfrak{b}) \Big/ \mathcal{L}(\mathfrak{a}) \end{aligned}$$

<ロ> <四> <四> <四> <三</p>

So,

$$\begin{split} \dim_{\mathsf{K}} \left(\Lambda(\mathfrak{b}) + \mathsf{F} \Big/ \Lambda(\mathfrak{a}) + \mathsf{F} \right) &= \dim_{\mathsf{K}} \Lambda(\mathfrak{b}) \Big/ \Lambda(\mathfrak{a}) - \dim_{\mathsf{K}} \mathcal{L}(\mathfrak{b}) \Big/ \mathcal{L}(\mathfrak{a}) \\ &= \deg \mathfrak{b} - \deg \mathfrak{a} - (\dim \mathfrak{b} - \dim \mathfrak{a}) \\ &= (\deg \mathfrak{b} - \dim \mathfrak{b}) - (\deg \mathfrak{a} - \dim \mathfrak{a}). \end{split}$$

▲□ > ▲圖 > ▲ 臣 > ▲臣 > □ 臣 = の Q @

Corollary 7

$$\deg \mathfrak{a} - \dim \mathfrak{a} = g - 1 \implies \Lambda(\mathfrak{a}) + \mathsf{F} = \mathbb{A}.$$

Proof.

Take any divisor $\mathfrak{b} \geq \mathfrak{a}.$ By monotonicity,

$$g-1 \geq \deg \mathfrak{b} - \dim \mathfrak{b} \geq \deg \mathfrak{a} - \dim \mathfrak{a} = g-1.$$

Lemma 6 then implies that

$$\Lambda(\mathfrak{b}) + \mathsf{F} = \Lambda(\mathfrak{a}) + \mathsf{F}.$$

Now, take $\alpha \in \mathbb{A}$ and choose $\mathfrak{b} \ge \mathfrak{a}$ s.t.

$$\forall \mathfrak{p} \in \mathbb{P} \quad v_{\mathfrak{p}}(\mathfrak{b}) + v_{\mathfrak{p}}(\alpha) \geq 0.$$

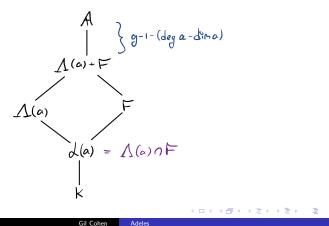
Thus,

$$\alpha \in \Lambda(\mathfrak{b}) \subseteq \Lambda(\mathfrak{a}) + \mathsf{F}.$$

Corollary 8

For every divisor a,

$$\dim_{\mathsf{K}} \mathbb{A} \Big/ (\Lambda(\mathfrak{a}) + \mathsf{F}) = g - 1 - (\deg \mathfrak{a} - \dim \mathfrak{a}).$$



Take any divisor $\mathfrak{b} \geq \mathfrak{a}$ with

$$\mathsf{deg}\,\mathfrak{b}-\mathsf{dim}\,\mathfrak{b}=g-1.$$

By Corollary 7,

$$\Lambda(\mathfrak{b}) + \mathsf{F} = \mathbb{A}.$$

Lemma 6 then yields

$$\dim_{\mathsf{K}} \mathbb{A} / (\Lambda(\mathfrak{a}) + \mathsf{F}) = \dim_{\mathsf{K}} \left(\Lambda(\mathfrak{b}) + \mathsf{F} / \Lambda(\mathfrak{a}) + \mathsf{F} \right)$$

= (deg \mathfrak{b} - dim \mathfrak{b}) - (deg \mathfrak{a} - dim \mathfrak{a})
= $g - 1 - (\deg \mathfrak{a} - \dim \mathfrak{a}).$

イロト イヨト イヨト イヨト

= 990