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Adjoining algebraic elements

Let F/K be a field extension, and a ∈ F algebraic over K with minimal
polynomial f (T ) ∈ K[T ]. Then,

K(a) ∼= K[T ]
/
〈f (T )〉.

Indeed, consider the ring homomorphism

ϕ : K[T ]→ K[a] = K(a)

T 7→ a

which fixes all elements of K.

Then, kerϕ consists of all polynomials over K that vanish at a. This ideal
is generated by f (T ). The assertion then follows by the first isomorphism
theorem.
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Finite extensions are algebraic extensions

Let F/K be a field extension. Recall that

F/K is finite =⇒ F/K is algebraic.

Indeed, if [F : K] = n then ∀b ∈ F, we have that 1, b, b2, . . . , bn are
linearly dependent over K. The (nontrivial) linear relation

a0 + a1b + · · ·+ anb
n = 0

gives rise to a (nonzero) polynomial over K with b as a root.

The converse does not hold in general.
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Algebraic extensions that are finitely generated are finite

Another “finiteness condition” is saying that F is finitely generated over
K, namely, F = K(a1, . . . , an) for some a1, . . . , an ∈ F.

If F/K is a finite extension then F is finitely generated over K.

So, an algebraic extension is a weaker property than finite extension, and
same holds for the finitely generated property. However, both together
implies finiteness.

Claim 1

If F/K is algebraic and finitely generated then it is finite.
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Algebraic extensions that are finitely generated are finite

We sketch the proof of Claim 1.

Consider first a simple extension, namely, F = K(b) for some b ∈ F.

As F/K is algebraic, b is algebraic, and so if its minimal polynomial is of
degree d then 1, b, b2, . . . , bd span F over K. Thus, [F : K] ≤ d . In fact,
[F : K] = d as 1, b, b2, . . . , bd−1 are linearly independent over K.

Consider now the case in which F = K(b1, b2) is an algebraic extension.

Then, K(b1)/K is simple and algebraic and so it is finite. Moreover,

K(b1, b2)/K(b1) ∼= K(b1)(b2)/K(b1)

is also algebraic and simple and so it is finite. Thus,

[K(b1, b2) : K] = [K(b1, b2) : K(b1)] · [K(b1) : K] <∞.

The general case follows by induction.
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Transcendence degree

Definition 2 (Algebraic independence)

Let F/K be a field extension. A set T ⊆ F is said to be algebraically
independent over K if for all distinct t1, . . . , tn ∈ T and every
f ∈ K[T1, . . . ,Tn] \ {0} it holds that

f (T1, . . . ,Tn) 6= 0.

An algebraically independent set T is called a maximal algebraically
independent set if for every S ) T , S is not algebraically independent.

Lemma 3

T is a maximal algebraically independent set ⇐⇒ F/K(T ) is algebraic.
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Transcendence degree

Definition 4

Let F/K be a field extension. A maximal algebraically independent set
T ⊆ F is called a transcendence basis of F over K.

You proved in the recitation that every two transcendence bases have the
same cardinality, and so the following definition is sensible.

Definition 5

Let F/K be a field extension and let T ⊆ F be a maximal algebraically
independent set of F/K. The size of T is called the transcendence degree
of F/K and is denoted by tr.degKF.
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Transcendence degree

Recall our running example

f (x , y) = y2 − x3 + x ∈ K[x , y ].

We defined the ring

Cf = K[x , y ]
/
〈f (x , y)〉,

and its fraction field

Kf = FracCf
∼= K(x)[y ]

/
〈f (x , y)〉.

Exercise. What is tr.degK Kf ? Give a transcendence basis for Kf /K.
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Algebraic function fields

Definition 6 (Field of constants)

Let F/K be a field extension. The field

K′ = {α ∈ F | α is algebraic over K}

is called the field of constants of F/K.

Note that K ⊆ K′ ⊆ F.

Exercise. Prove that the field of constants of K(x)/K is K.
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Algebraic function fields

We turn to define the most basic object in the course.

Definition 7 (Algebraic function fields)

A field extension F/K is an algebraic function field if

1 F/K is finitely generated.

2 The field of constants K′ of F/K is equal to K.

3 F 6= K.

Note that tr.degKF <∞. If tr.degKF = r we say that F is an algebraic
function field in r variables over K.

Exercise. Prove that K(x)/K is an algebraic function field in one variable
over K.

In this course we focus on algebraic function fields in one variable. For
these we have an alternative, seemingly stronger, characterization.
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Algebraic function fields

Claim 8

A field extension F/K is an algebraic function field in one variable iff the
following holds:

1 ∃x ∈ F s.t. [F : K(x)] <∞.

2 The field of constants K′ of F/K is equal to K.

3 F 6= K.

Proof.

Since a finite extension is always finitely generated, condition (1) above
implies that F is finitely generated over K(x). Since K(x) is finitely
generated over K, condition (1) of the definition follows.
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Algebraic function fields

Proof.

For the other direction, by condition (3) of the definition, there is
x ∈ F \ K. By (2), x is transcendental over K.

Since F/K is an algebraic function field in one variable, tr.degKF = 1 and
so x constitutes a transcendence basis of F/K. Lemma 3 then implies
that F/K(x) is algebraic.

Now, F/K is finitely generated by condition (1), and therefore so is
F/K(x). Claim 1 then implies that [F : K(x)] <∞.
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Function fields

From this point on, we abbreviate and say a function field instead of an
“algebraic function field in one variable”.
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Why condition (2)?

Condition (1) essentially says we are dealing with one-dimensional
objects. condition (3) avoid trivialities.

If K is algebraically closed then condition (2) is vacuously true.

Consider the rational function field F2(x). If it wasn’t for condition (2)
then F/F2 where

F = F2(x)[y ]
/
〈y2 + y + 1〉

would have been a function field. Indeed,

It is a field as y2 + y + 1 is irreducible over F2(x).

F is generated by y over F2(x).

F 6= F2.

However, convince yourself that

F = F2(x)[y ]
/
〈y2 + y + 1〉 ∼=

(
F2[y ]

/
〈y2 + y + 1〉

)
(x) ∼= F4(x).

Thus, we only added new “constants” to F2(x).
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Function fields and curves

If F/K is a function field, by Claim 8, ∃x ∈ F s.t. [F : K(x)] <∞. Thus,
F/K(x) is algebraic.

Take y ∈ F \ K(x) if such exists. Let ϕ(T ) ∈ K(x)[T ] be its minimal
polynomial over K(x). Then,

K(x , y) ∼= K(x)[T ]
/
〈ϕ(T )〉.

If y happens to satisfy F = K(x , y) then we get that

F ∼= K(x)[T ]
/
〈ϕ(T )〉.

This is a converse to the way we constructed our example:

Kf = FracCf
∼= K(x)[y ]

/
〈y2 − x3 + x〉.

As a side remark, in characteristic 0 we can always find y as above, and
more generally, whenever F/K(x) is a finite separable extension.
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Function fields and curves

Observe that
K(x , y) = K

(y
x
, x
)

and since y2 = x3 − x we get(y
x

)2
= x − 1

x
.

Thus, if we denote z = y
x then K(x , y) = K(x , z) and

z2 = x − 1

x
.

Equivalently,
xz2 = x2 − 1.

So, two different curves may share the same function field.
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Places of function fields

Definition 9

Let F/K be a function field. A place of F/K is a nontrivial place
ϕ : F→ L ∪ {∞} that is trivial on K.

Claim 10

Let F/K be a function field and ϕ : F→ L ∪ {∞} a place of F/K with
residue field F̄ = ϕ(F) \ {∞}. Then, [F̄ : ϕ(K)] <∞.
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Places of function fields

Proof.

As ϕ is nontrivial on F, we can pick t ∈ F with ϕ(t) =∞.

Since ϕ is trivial on K, we have that t 6∈ K. Thus, by condition (2), t is
transcendental over K.

Consider the subfield K(t) of F which, note, is isomorphic to the field of
rational functions over K. As F/K is a function field (namely, of one
variable), {t} is a transcendence basis of F over K. Hence, by Lemma 3,
F/K(t) is algebraic. Further, F/K(t) is finitely generated (as F/K is).
Thus, by Claim 1, [F : K(t)] <∞.
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Places of function fields

Proof.

In the recitations you will characterize the places of the rational function
field K(t)/K and prove that all such places have a residue field which is a
finite extension of K.

The restriction ϕ|K(t) is such a place. Thus, [K(t) : K] <∞. Moreover,
K ∼= ϕ(K), and so

[F̄ : ϕ(K )] = [F̄ : K(t)] · [K(t) : K].

In the recitations you will prove that for every field extension E/L, and a
place ψ of E,

[Ē : L̄] · (υψ(E×) : υψ(L×)) ≤ [E : L].

Taking E = F and L = K(t), we conclude that

[F̄ : K(t)] ≤ [F : K(t)]

which recall is finite.
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Places of function fields

Definition 11

Let F/K be a function field. Let ϕ : F→ L ∪ {∞} be a place of F/K.
Then, [F̄ : K] is called the degree of ϕ, and is denoted by degϕ (note
that we identify ϕ(K ) with K.)

Claim 12

If ϕ,ϕ′ are equivalent places of F/K then degϕ = degϕ′.

Proof.

We saw that the residue field of a valuation ϕ is given by

F̄ϕ = Oϕ
/
mϕ,

and we proved that for ϕ,ϕ′ equivalent it holds that

Oϕ = Oϕ′ (and so mϕ = mϕ′).
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Places of function fields

Definition 13

Let F/K be a function field. A valuation υ on F that corresponds to a
place ϕ of F/K is said to be a valuation of F/K.

Note that a valuation on F is a valuation of F/K iff υ(K×) = 0 and
υ(x) 6= 0 for some x ∈ F.

Definition 14

A place of a function field F/K is discrete if its corresponding valuation is
discrete.

Theorem 15

All places of a function field are discrete.
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Places of function fields

To prove Claim 15, recall a result we proved:

Claim 16

Let ∆ ≤ Γ be ordered groups. Assume that (Γ : ∆) <∞. Then,

∆ ∼= Z =⇒ Γ ∼= Z.

Proof.

Let ϕ be a place of F/K. Take t ∈ F \ K. Then, t is transcendental over
K and [F : K(t)] <∞ as follows by the proof of Claim 10. By the
theorem that you will see in the recitations,

(υϕ(F×) : υϕ(K(t)×)) ≤ [F : K(t)] <∞.

You will further prove that all valuations of K(t)/K are discrete. Thus,
by Claim 16, ϕ is discrete.
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Places of function fields

Here is another result you will prove in the recitations.

Claim 17

Let F/K be a function field and let x ∈ F \ K. Then, there are valuations
υ, υ′ of F/K with υ(x) > 0 and υ′(x) < 0.

This should be read as saying that every non-constant function has a
zero and a pole.
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