Algebraic-Geometric Codes

Fall 2024/5

Problem Set 1

Gil Cohen, Tomer Manket Due: December 8, 2024 (all day long)

Problem 1. Let k be an algebraically closed field. Find all the valuations $\nu \colon k \to \mathbb{Z} \cup \{\infty\}$.

Problem 2. For i = 1, 2, let \mathcal{O}_i be a valuation ring with fraction field F and corresponding non-trivial valuation $\nu_i \colon F \to \mathbb{Z} \cup \{\infty\}$ (such a ring is called a discrete valuation ring).

(a) Prove that $\mathcal{O}_1 \subseteq \mathcal{O}_2$ if and only if for every $a \in F$,

$$\nu_2(a) > 0 \implies \nu_1(a) > 0.$$

(b) Prove that

$$\mathcal{O}_1 \subseteq \mathcal{O}_2 \implies \mathcal{O}_1 = \mathcal{O}_2.$$

Hint: If $a, b \in F^{\times}$ satisfy $\nu_2(a) \ge 0$ and $\nu_2(b) > 0$, what can you say about $\nu_1(a^m b)$ and $\nu_2(a^m b)$, for $m \in \mathbb{N}^+$?

Problem 3. Consider the polynomial $f(x, y) = y^2 + 4x^2 + 1 \in \mathbb{F}_5[x, y]$.

- (a) Show that $\langle f \rangle \in \operatorname{Spec}(\mathbb{F}_5[x, y])$.
- (b) Let $C_f := \mathbb{F}_5[x, y]/\langle f \rangle$. Then C_f is an integral domain. Denote its fraction field by $K_f := \operatorname{Frac}(C_f)$. Explain why every element $g \in K_f$ can be written as

$$g = A(x) + B(x)y \tag{1}$$

where $A(t), B(t) \in \mathbb{F}_5(t)$ (with the usual abuse of notation of x, y denoting the cosets of x and y in C_f).

- (c) The point $\mathfrak{p} = (1,0) \in \mathbb{F}_5^2$ is on the curve Z_f (as f(1,0) = 0). Provided that there is a corresponding valuation $\nu_{\mathfrak{p}} \colon K_f \to \mathbb{Z} \cup \{\infty\}$ with $\nu_{\mathfrak{p}}(x-1) = 2$, compute the values
 - $\nu_{\mathfrak{p}}(y)$

• $\nu_{\mathfrak{p}}(p(x))$ for a non-zero polynomial $p(x) = \sum_{i=0}^{d} a_i (x-1)^i \in \mathbb{F}_5[x]$

(d) Conclude that if $g \in K_f$ admits the representation (1), then

$$\nu_{\mathfrak{p}}(g) = \min\left(\nu_{\mathfrak{p}}(A(x)), 1 + \nu_{\mathfrak{p}}(B(x))\right).$$

- (e) What is the corresponding valuation ring $\mathcal{O}_{\mathfrak{p}}$? Justify your answer.
- (f) What is its maximal ideal $\mathfrak{m}_{\mathfrak{p}}$ and a corresponding place $\psi_{\mathfrak{p}}$? no justification is needed.

Problem 4. Let L/K be field extension, $S \subseteq L$ algebraically independent over K and $a \in L$. Prove that

a is algebraic over $K(S)\implies S\cup\{a\}$ is algebraically dependent over K

(in the recitation we will prove the converse).