Algebraic-Geometric Codes

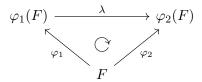
Fall 2024/5

Problem Set 2

Gil Cohen, Tomer Manket

Due: December 27, 2024 (all day long)

Problem 1. Let φ_1, φ_2 be places of a field F. Show that φ_1 and φ_2 are equivalent if and only if there is a bijection $\lambda: \varphi_1(F) \to \varphi_2(F)$ such that $\varphi_2 = \lambda \circ \varphi_1, \lambda(\infty) = \infty$ and the restriction $\lambda: \varphi_1(F) \setminus \{\infty\} \to \varphi_2(F) \setminus \{\infty\}$ is a field isomorphism.



Problem 2. Let \mathfrak{p} be a prime divisor and $\mathcal{O}_{\mathfrak{p}}$ be a valuation ring with local parameter t (i.e. $\nu_{\mathfrak{p}}(t) = 1$). Prove that if $0 \neq J \leq \mathcal{O}_{\mathfrak{p}}$ is an ideal, then $J = t^k \mathcal{O}_{\mathfrak{p}}$ for some $k \in \mathbb{N}$. In particular, $\mathcal{O}_{\mathfrak{p}}$ is a PID.

Problem 3. Show that the rational function field K(x)/K is indeed a function field.

Problem 4. Let $K = \mathbb{F}_3$ and K(x) the rational function field over K.

(a) Show that the polynomial $f(T) = T^2 + x^4 - x^2 + 1$ is irreducible over K(x).

(b) Consider the quadratic extension of K(x) given by F = K(x)[y]/⟨f(y)⟩. Show that the field of constants K' of F/K has 9 elements, and F = K'(x).
Hint 1. Search for a root of p(T) = T² + 1 ∈ K[T] in F.
Hint 2. You may use the fact that [K(z) : K] = [K(x)(z) : K(x)] for every z ∈ K'.
Hint 3. If z ∈ F satisfies z² + bz + c = 0 for b, c ∈ K, then by completing the square we get (z + b/2)² = b²/4 - c (note that K = F₃ so charK ≠ 2).

Problem 5. Let F/K be a function field. Prove that if $f, g \in F^{\times}$ satisfy (f) = (g) then f = cg for some $c \in K^{\times}$ (namely, if $f, g \in F^{\times}$ have the same zeros and poles, including multiplicities, then they differ by a constant factor).

Problem 6. Let \mathfrak{a} be a divisor.

- (a) Assume deg $\mathfrak{a} = 0$. Prove that the following are equivalent:
 - (i). a is principal.
 - (*ii*). dim $\mathfrak{a} \geq 1$.
 - (*iii*). dim $\mathfrak{a} = 1$.
- (b) Conclude that if $\deg \mathfrak{a} = 0$ and \mathfrak{a} is not principal, then $\dim \mathfrak{a} = 0$, and that if \mathfrak{a} is principal then $\dim \mathfrak{a} = 1$ and $\deg \mathfrak{a} = 0$.

Problem 7. Let $\mathfrak{a} \in \mathcal{D}$.

- (a) Show that if $\deg \mathfrak{a} \geq 0$ then $\dim \mathfrak{a} \leq \deg \mathfrak{a} + 1$.
- (b) Prove that if $\mathfrak{a} \geq 0$ and $k \in \mathbb{N}^+$, then

 $\dim((k-1)\mathfrak{a}) \le \dim(k\mathfrak{a}) \le \dim((k-1)\mathfrak{a}) + \deg \mathfrak{a}.$

Problem 8. Let K be an infinite field and let F/K be a function field.

(a) Let $\mathfrak{a}, \mathfrak{b} \geq 0$. Show that dim \mathfrak{a} + dim $\mathfrak{b} \leq 1$ + dim($\mathfrak{a} + \mathfrak{b}$).

Hint 1: Show that the general case can be reduced to the case in which

 $\dim(\mathfrak{a}-\mathfrak{p})<\dim\mathfrak{a} \text{ for all } \mathfrak{p}\in\mathbb{P}_F.$

Hint 2: For the reduced case, show that there exists $0 \neq z \in \mathcal{L}(\mathfrak{a}) \setminus \bigcup_{\mathfrak{p} \in \operatorname{supp}(\mathfrak{b})} \mathcal{L}(\mathfrak{a} - \mathfrak{p})$. Consider the map $\varphi \colon \mathcal{L}(\mathfrak{b}) \to \mathcal{L}(\mathfrak{a} + \mathfrak{b}) / \mathcal{L}(\mathfrak{a})$ given by

$$\varphi(x) = [z \cdot x] \mod \mathcal{L}(\mathfrak{a}).$$

What can you say about its kernel?

(b) Conclude that the same holds for all $\mathfrak{a}, \mathfrak{b}$ with dim $\mathfrak{a}, \dim \mathfrak{b} > 0$.