The Ramification and Residual Indices Unit 7

Gil Cohen

November 17, 2024

Gil Cohen The Ramification and Residual Indices

< 注入 < 注入 -

æ

A valuation $\upsilon:\mathsf{F}\to\mathsf{\Gamma}\cup\{\infty\}$ induces a valuation ring

$$\mathcal{O} = \{ a \in \mathsf{F} \mid \upsilon(a) \ge 0 \}$$

with a unique maximal ideal

$$\mathfrak{m} = \{ a \in \mathsf{F} \mid \upsilon(a) > 0 \},\$$

and a place

$$\varphi:\mathsf{F}\to\left(\mathcal{O}/\mathfrak{m}
ight)\cup\{\infty\}$$

that extends the projection map $\mathcal{O} \mapsto \mathcal{O}/\mathfrak{m}$.

▲ 臣 ▶ | ▲ 臣 ▶ | |

э.

3 Valuations in finite extensions of the rational function field

▲ 臣 ▶ | ▲ 臣 ▶ | |

э.

Let E be a subfield of F and $\upsilon:\mathsf{F}\to\mathsf{F}\cup\{\infty\}$ a valuation with corresponding $\mathcal{O},\mathfrak{m},\varphi.$ Observe that

 $v|_{\mathsf{E}}: \mathsf{E} \to \mathsf{\Gamma} \cup \{\infty\}$

is a valuation of E (additivity and triangle inequality still hold.) Further, the corresponding valuation ring is

$$\mathcal{O}_{\mathsf{E}}=\mathcal{O}\cap\mathsf{E}.$$

Indeed,

$$\mathcal{O}_{\mathsf{E}} = \{ \mathbf{a} \in \mathsf{E} \mid v|_{\mathsf{E}}(\mathbf{a}) \ge 0 \}$$
$$= \{ \mathbf{a} \in \mathsf{E} \mid v(\mathbf{a}) \ge 0 \}$$
$$= \mathcal{O} \cap \mathsf{E}.$$

The maximal ideal of \mathcal{O}_{E} is $\mathfrak{m}_{\mathsf{E}}=\mathfrak{m}\cap\mathsf{E}$ as

$$\mathfrak{m}_{\mathsf{E}} = \{ a \in \mathsf{E} \mid \upsilon|_{\mathsf{E}}(a) > 0 \}$$
$$= \{ a \in \mathsf{E} \mid \upsilon(a) > 0 \}$$
$$= \mathfrak{m} \cap \mathsf{E}.$$

The induced place is then given by

$$\varphi_{\mathsf{E}}: \mathsf{E} \to \left(\mathcal{O}_{\mathsf{E}} \middle/ \mathfrak{m}_{\mathsf{E}}\right) \cup \{\infty\}.$$

We observe that

$$\mathcal{O}_{\mathsf{E}} / \mathfrak{m}_{\mathsf{E}} \hookrightarrow \mathcal{O} / \mathfrak{m}$$

via the map $a + \mathfrak{m}_{\mathsf{E}} \mapsto a + \mathfrak{m}$.

Note that this map is well-defined. Indeed, if $a + \mathfrak{m}_{\mathsf{E}} = b + \mathfrak{m}_{\mathsf{E}}$ then $a - b \in \mathfrak{m}_{\mathsf{E}} \subseteq \mathfrak{m}$, and so $a + \mathfrak{m} = b + \mathfrak{m}$.

To see that this is an embedding, take $a + \mathfrak{m}_{\mathsf{E}}$ that is mapped to \mathfrak{m} . Then, $a \in \mathfrak{m}$. But we also have that $a \in \mathcal{O}_{\mathsf{E}} \subseteq \mathsf{E}$ and so

$$a \in \mathfrak{m} \cap \mathsf{E} = \mathfrak{m}_{\mathsf{E}}.$$

To summarize, the residue field of $v|_{E}$ is a subfield (up to isomorphism) of the residue field of v.

aluations in finite extensions of the rational function field

E > < E > ...

э

Definition 1 (Residual index)

Let $v : F \to \Gamma \cup \{\infty\}$ be a valuation, and E a subfield of F. The degree

$$\mathcal{O}/\mathfrak{m} : \mathcal{O}_{\mathsf{E}}/\mathfrak{m}_{\mathsf{E}}$$

is called the residual index of v over E.

Definition 2 (Ramification index)

Let $v : F \to \Gamma \cup \{\infty\}$ be a valuation, and E a subfield of F. Note that $v(E^{\times})$ is a subgroup of $v(F^{\times})$. The index

 $(v(\mathsf{F}^{\times}):v(\mathsf{E}^{\times}))$

is called the ramification index of v over E.

Proposition 3

Let $\upsilon:\mathsf{F}\to\mathsf{\Gamma}\cup\{\infty\}$ be a valuation, and E a subfield of F. Then,

$$\left[\mathcal{O}/\mathfrak{m} : \mathcal{O}_{\mathsf{E}}/\mathfrak{m}_{\mathsf{E}}\right] \cdot \left(\upsilon(\mathsf{F}^{\times}) : \upsilon(\mathsf{E}^{\times})\right) \leq [\mathsf{F} : \mathsf{E}].$$

In particular, in a finite extension F/E, both indices are finite.

Proof.

In the recitation.

□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● ○ ●

2 A tale of two indices

3 Valuations in finite extensions of the rational function field

< 注 → < 注 → …

э

A little group-theoretic claim

Claim 4

Let $\Delta \leq \Gamma$ be ordered groups with $(\Gamma:\Delta) < \infty.$ Then,

$$\begin{array}{lll} \Delta\cong\mathbb{Z} & \Longrightarrow & \Gamma\cong\mathbb{Z},\\ \Delta=0 & \Longrightarrow & \Gamma=0. \end{array}$$

Proof.

Let $(\Gamma : \Delta) = n$. We proved that $\varphi_n : \Gamma \to \Gamma$ that maps $\gamma \mapsto n\gamma$ is an order-preserving monomorphism. Take $\gamma \in \Gamma$. In Γ/Δ , $\gamma + \Delta$ has order dividing *n*, and so

$$n(\gamma + \Delta) = n\gamma + \Delta = \Delta \implies \varphi_n(\gamma) = n\gamma \in \Delta \implies \Gamma \cong \varphi_n(\Gamma) \le \Delta.$$

Thus, $\Delta = 0 \implies \Gamma = 0$.

Now, if $\Delta \cong \mathbb{Z}$ then either $\Gamma \cong \mathbb{Z}$ or $\Gamma = 0$. The latter case cannot hold as $\mathbb{Z} \cong \Delta \leq \Gamma$.

Valuations in finite extensions of the rational function field

Recall that a valuation $v : F \to \Gamma \cup \{\infty\}$ is trivial if $v(F^{\times}) = 0$.

Corollary 5

Let F be a finite extension of E = K(t). Then, every non-trivial valuation v of F that is trivial on K is discrete.

Proof.

By Proposition 3,

$$(v(\mathsf{F}^{\times}):v(\mathsf{E}^{\times})) \leq [\mathsf{F}:\mathsf{E}] < \infty.$$

By Claim 4 and since $v(F^{\times}) \neq 0$ we have $v(E^{\times}) \neq 0$.

In the recitations you will characterize all valuations of E = K(t), and in particular show that they are discrete. Thus, $v_{|E}$ is discrete, and so $v(E^{\times}) \cong \mathbb{Z}$.

Applying Claim 4 again implies that v is also discrete.