Constant Field Extensions Unit 19

Gil Cohen

May 8, 2022

Gil Cohen Constant Field Extensions

・ロト ・回ト ・ヨト ・ヨト

= 990

Definition 1 (Constant field extensions)

Let E/K be a function field, and L a field extension of K. Denote

F = LE.

Assuming F/L is a function field we say that F/L is a constant field extension of E/K.

It is not generally true that F/L as defined above is a function field, even assuming L/K is finite. But, as we will show, this is the case if L/K is separable.

Recall that if K is a finite field and L/K is finite, then L/K is separable. Indeed, finite fields are perfect.

(日) (四) (日) (日) (日) (日)

1 An extension of the primitive element theorem

2 Separable constant field extensions

3 Residue fields under constant field extensions

- A Riemann-Roch spaces in finite separable constant field extensions
- 5 The genus in finite separable constant field extensions
- 6 Characterization of constant field invariance

通 と く ヨ と く ヨ と

Definition 2

Let M/K be a field extension, and fix an algebraic closure \bar{K} of K containing M. The normal closure \widehat{M} of M/K is the smallest subfield of \bar{K} containing M that is normal over K.

Assuming M/K is finite we can write

$$\mathsf{M}=\mathsf{K}(\alpha_1,\ldots,\alpha_n)$$

for some $\alpha_1, \ldots, \alpha_n \in M$.

Let $\sigma_1, \ldots, \sigma_k$ be the embeddings of M in \bar{K} . Then,

$$\widehat{\mathsf{M}} = \mathsf{K}\left(\{\sigma_i(\alpha_j) \mid i \in [k], j \in [n]\}\right).$$

In particular, when M/K is finite so is \widehat{M}/K .

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\widehat{\mathsf{M}} = \mathsf{K}\left(\{\sigma_i(\alpha_j) \mid i \in [k], j \in [n]\}\right).$$

Note further that if M/K is separable then \widehat{M}/K is Galois. Indeed,

$$M/K$$
 is separable $\implies \widehat{M}/K$ is separable

as we only adjoined K-conjugates of elements that are separable over K. We conclude that \widehat{M}/K is Galois as it is also normal. In this case we call \widehat{M} the Galois closure of M/K.

向下 イヨト イヨト

Compositum of purely inseparable extensions

Lemma 3

Let M/K be a field extension and

$$\mathsf{K}\subseteq\mathsf{E}_1,\mathsf{E}_2\subseteq\mathsf{M},$$

where E_1, E_2 are purely inseparable over K. Then, E_1E_2 is purely inseparable over K.

Proof.

The set of purely inseparable elements in a field extension is an intermediate field. Indeed, recall that *a* is purely inseparable over K iff $a^{p^{e_a}} \in K$ for some integer $e_a \ge 0$. So, if *a*, *b* are purely inseparable over K then, for $e = \max(e_a, e_b)$,

$$(a+b)^{p^e}=a^{p^e}+b^{p^e}\in\mathsf{F}.$$

Same for multiplication and inverse.

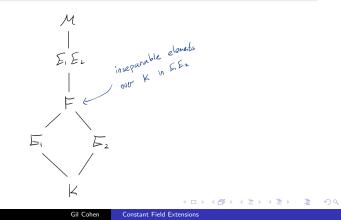
メ くぼ メ くま メ くま メー

Compositum of purely inseparable extensions

Proof.

Let F be the field of inseparable elements in E_1E_2 over K. Clearly, $E_1\subseteq F$ and $E_2\subseteq F.$

But, E_1E_2 is the smallest field containing E_1, E_2 and so $E_1E_2 = F$. Namely, all elements in E_1E_2 are purely inseparable over K.



Recall

Theorem 4 (The primitive element theorem)

Every finite separable extension is simple.

Steinitz established the following generalization (note that finite fields are handled differently.)

Theorem 5

Assume K is an infinite field. A finite field extension M/K is simple iff there are finitely many intermediate fields $K \subseteq E \subseteq M$.

The latter implies the former as follows: Let M/K be a finite separable extension, and consider the normal closure \widehat{M} of M/K. Then, \widehat{M}/K is a finite Galois extension. By Galois Theory, there is a finite number of intermediate fields in $\widehat{M}/K.$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Lemma 6

Let M/K be a finite field extension, and denote p = char K. Then,

 $[M:K]_i = p \implies M/K \text{ is simple.}$

Note that the primitive element theorem concludes the same under the assumption $[M : K]_i = 1$.

Proof.

The assertion is trivial for a finite field K.

Using Steinitz' Theorem (Theorem 5), it suffices to prove that ${\sf M}/{\sf K}$ has finitely many intermediate fields.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ○ ○

A variant of the primitive element theorem

Proof.

We first show that K has at most one purely inseparable extension

 $\mathsf{K}\subsetneq\mathsf{E}\subseteq\mathsf{M}.$

Indeed, assume two such extensions E_1, E_2 exist. Then,

$$[\mathsf{E}_1:\mathsf{K}]=[\mathsf{E}_1:\mathsf{K}]_i\geq p$$

(as it is a power of p and $E_1 \neq K$). Thus, since $E_2 \neq E_1$,

 $[\mathsf{E}_1\mathsf{E}_2:\mathsf{K}] > p.$

But by Lemma 3, E_1E_2 is a purely inseparable extension of K, and so

$$p = [M : K]_i \ge [E_1 E_2 : K]_i = [E_1 E_2 : K] > p,$$

which is a contradiction.

(本間) (本語) (本語) (二語)

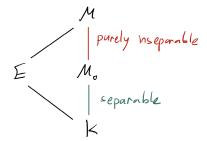
A variant of the primitive element theorem

Proof.

Let M_0 be the separable closure of K in M.

Consider now an intermediate field $\mathsf{K}\subseteq\mathsf{E}\subseteq\mathsf{M}.$

Further consider the separable closure of K in E.



通 ト イ ヨ ト イ ヨ ト

A variant of the primitive element theorem

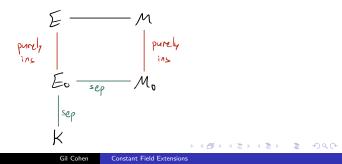
Proof.

We have that

$$[\mathsf{M}:\mathsf{E}_0]_i = \frac{[\mathsf{M}:\mathsf{K}]_i}{[\mathsf{E}_0:\mathsf{K}]_i} = \frac{p}{1} = p.$$

Thus, E_0 has at most one purely inseparable extension in M (other than E_0), and so we can identify E with E_0 .

But M_0/K is finite and separable, and so it has only finitely many intermediate fields E_0 , which completes the proof.



An extension of the primitive element theorem

2 Separable constant field extensions

3 Residue fields under constant field extensions

4 Riemann-Roch spaces in finite separable constant field extensions

5 The genus in finite separable constant field extensions

6 Characterization of constant field invariance

Theorem 7

Let E/K be a function field and L/K finite and separable. Then, $\mathsf{L}\mathsf{E}/\mathsf{L}$ is a function field.

Proof.

It suffices to prove that for every non-trivial finite extension M/L (namely, $M\neq L)$ it holds that $M \not\subseteq LE.$

Indeed, if $\alpha \in \mathsf{LE} \setminus \mathsf{L}$ is algebraic over L then we can take

 $\mathsf{M}=\mathsf{L}(\alpha).$

M/L is finite and $M \neq L$. But, of course, $M \subseteq LE$, in contradiction.

Moreover, we can assume that M/L has no intermediate fields as otherwise we can descend to one.

In particular, M/L is either separable or purely inseparable.

・ロン ・四 と ・ ヨ と ・ ヨ と

э

Proof.

In the second case, we may assume that

$$[\mathsf{M}:\mathsf{L}]_i=p.$$

Indeed,

$$[\mathsf{M}:\mathsf{L}]=[\mathsf{M}:\mathsf{L}]_i=p^e$$

for some $e \ge 1$. Take $\alpha \in M$. If $[L(\alpha) : L] < p^e$ we can descend to $L(\alpha)$. Otherwise, the minimal polynomial of α is

$$(T-\alpha)^{p^e} = T^{p^e} - \alpha^{p^e} \in L[T].$$

Consider $\beta = \alpha^{p}$. Note that $(T - \beta)^{p^{e-1}} \in L[T]$ vanishes at β and so

$$[\mathsf{L}(\beta):\mathsf{L}] \leq p^{e-1}.$$

Thus, we can take $L(\beta)$ instead of M and proceed this way until we get a degree p inseparable extension of L.

Proof.

In any case,

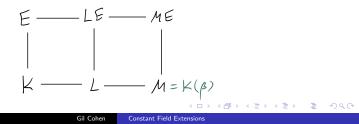
$$[\mathsf{M}:\mathsf{L}]_i\in\{1,p\},$$

and so, since L/K is separable,

$$[M : K]_i = [M : L]_i \cdot [L : K]_i \in \{1, p\}.$$

The primitive element theorem and its extension given by Lemma 6 imply that M/K is simple, namely, for some $\beta \in M$,

 $\mathsf{M}=\mathsf{K}(\beta).$



Recall a claim we proved when we talked about normal extensions.

Claim 8

Let E/K be a field extension s.t. K is algebraically closed in E. Then,

 $f \in K[x]$ is irreducible \implies f is irreducible in E[x].

With this we return to the proof of Theorem 7.

Proof. (Proof of Theorem 7)

Let $f(x) \in K[x]$ be the minimal polynomial of β over K. Then, by Claim 8, f(x) is also the minimal polynomial of β over E.

Proof.

Let $f(x) \in K[x]$ be the minimal polynomial of β over K. Then, f(x) is also the minimal polynomial of β over E. Thus,

$$\mathsf{ME} = \mathsf{EK}(\beta) = \mathsf{E}(\beta),$$

and

$$[\mathsf{ME}:\mathsf{E}] = \deg f = [\mathsf{M}:\mathsf{K}].$$

But, $M \neq L$ and so

$$[\mathsf{ME}:\mathsf{E}]=[\mathsf{M}:\mathsf{K}]>[\mathsf{L}:\mathsf{K}]\geq[\mathsf{LE}:\mathsf{E}].$$

Thus, $ME \neq LE$, and so $M \not\subseteq LE$, as desired.

From this point on up until the last part of this unit,

F/L = LE/L

refers to a constant field extension of E/K where L is a finite separable extension of K.

Lemma 9

Under the above.

$$[\mathsf{F}:\mathsf{E}]=[\mathsf{L}:\mathsf{K}].$$

Moreover, $\forall \mathfrak{a} \in \mathcal{D}(\mathsf{E}/\mathsf{K})$ it holds that

$$\deg_{\mathsf{F}} \mathfrak{a} = \deg_{\mathsf{E}} \mathfrak{a}.$$

Proof.

Since L/K is separable, $L = K(\alpha)$ for some $\alpha \in L$. Thus,

$$\mathsf{F} = \mathsf{L}\mathsf{E} = \mathsf{E}(\alpha).$$

Let $f(x) \in K[x]$ be the minimal polynomial of α over K. By Claim 8, f(x) is irreducible over E, and so

$$[\mathsf{F}:\mathsf{E}] = [\mathsf{E}(\alpha):\mathsf{E}] = \deg f = [\mathsf{K}(\alpha):\mathsf{K}] = [\mathsf{L}:\mathsf{K}]$$

・ コ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Proof.

Per our assumption that L/K is finite we have that F/E is finite.

We proved in the previous unit that for a finite extension F/E,

$$\mathsf{deg}_\mathsf{F}\,\mathfrak{a} = \frac{[\mathsf{F}:\mathsf{E}]}{[\mathsf{L}:\mathsf{K}]} \cdot \mathsf{deg}_\mathsf{E}\,\mathfrak{a}.$$

Thus, in our case,

 $\deg_{\mathsf{F}}\mathfrak{a}=\deg_{\mathsf{E}}\mathfrak{a}.$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

An extension of the primitive element theorem

2 Separable constant field extensions

3 Residue fields under constant field extensions

4 Riemann-Roch spaces in finite separable constant field extensions

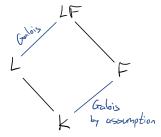
- 5 The genus in finite separable constant field extensions
- 6 Characterization of constant field invariance

向下 イヨト イヨト

A lemma from Galois Theory

Lemma 10

Let $K \subseteq L, F$ be fields s.t. F/K is Galois. Then LF/L is Galois.



Proof.

The separability of LF/L is clear. Indeed, every element of F is separable over K, let alone over L. Thus, every element of LF is separable over L.

We turn to prove normality.

Proof.

As for normality, recall the characterization of normal extensions as splitting fields.

As F/K is normal, F is the splitting field of

 ${f_j(x) \in \mathsf{K}[x]}_{j \in J}.$

Let $S_j \subseteq K$ be the roots of $f_j(x)$, and $S = \cup_j S_j$. Then, F = K(S). But then

$$\mathsf{LF} = \mathsf{LK}(S) = \mathsf{L}(S)$$

is the splitting field of

 ${f_j(x) \in \mathsf{L}[x]}_{j \in J}.$

Hence, LF/L is normal.

- (四) (日) (日) (日) (日)

Theorem 11

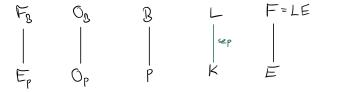
Let \mathfrak{P} be a prime divisor of F/L lying over \mathfrak{p} in $\mathsf{E}/\mathsf{K}.$ Then,

$$\mathsf{F}_\mathfrak{P} = (\mathsf{LE})_\mathfrak{P} = \mathsf{LE}_\mathfrak{p}.$$

Proof.

The \supseteq direction follows as both L, $E_{\mathfrak{p}} \subseteq F_{\mathfrak{P}}$.

Take $\bar{z} \in F_{\mathfrak{P}}$. We want to show $\bar{z} \in \mathsf{LE}_{\mathfrak{p}}$.

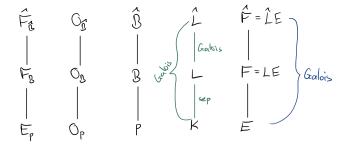


Proof.

Let \widehat{L} be the normal closure of L/K. Recall that \widehat{L}/K is not only normal but also separable since L/K is separable. So \widehat{L}/K is Galois.

By Lemma 10,

 $\widehat{\mathsf{L}}/\mathsf{K} \text{ is Galois } \quad \Longrightarrow \quad (\widehat{\mathsf{L}}\mathsf{E})/(\mathsf{K}\mathsf{E}) = \widehat{\mathsf{F}}/\mathsf{E} \text{ is Galois.}$



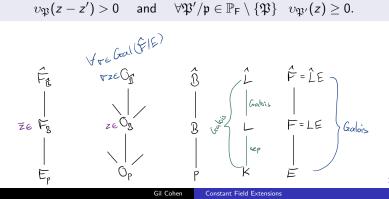
Proof.

Fix $\hat{\mathfrak{P}}/\mathfrak{P}$. We turn to prove that \overline{z} has a representative $z \in \mathcal{O}_{\mathfrak{P}}$ s.t.

$$orall \sigma \in \mathsf{Gal}(\widehat{\mathsf{F}}/\mathsf{E}) \quad \sigma z \in \mathcal{O}_{\widehat{\mathfrak{P}}}.$$

Let $z' \in \mathcal{O}_{\mathfrak{B}}$ that represents \overline{z} . By the WAT, $\exists z \in \mathsf{F}$ s.t.

 $\upsilon_{\mathfrak{P}}(z-z')>0 \quad \text{and} \quad orall \mathfrak{P}'/\mathfrak{p}\in \mathbb{P}_{\mathsf{F}}\setminus\{\mathfrak{P}\} \quad \upsilon_{\mathfrak{P}'}(z)\geq 0.$



Proof.

Let $z' \in \mathcal{O}_{\mathfrak{P}}$ that represents \overline{z} . By the WAT, $\exists z \in \mathsf{F}$ s.t.

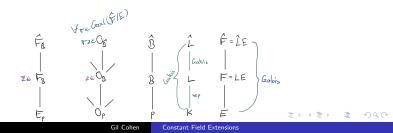
 $\upsilon_{\mathfrak{P}}(z-z')>0 \quad \text{ and } \quad \forall \mathfrak{P}'/\mathfrak{p}\in \mathbb{P}_{\mathsf{F}}\setminus\{\mathfrak{P}\} \quad \upsilon_{\mathfrak{P}'}(z)\geq 0.$

Thus, z is also a representative of \bar{z} . Moreover,

$$orall \widehat{\mathfrak{P}}'/\mathfrak{p}\in \mathbb{P}_{\widehat{\mathsf{F}}}$$
 $v_{\widehat{\mathfrak{P}}'}(z)\geq \mathsf{0},$

and so

$$\forall \sigma \in \mathsf{Gal}(\widehat{\mathsf{F}}/\mathsf{E}) \quad v_{\widehat{\mathfrak{P}}}(\sigma z) = v_{\sigma^{-1}\widehat{\mathfrak{P}}}(z) \geq \mathsf{0} \quad \Longrightarrow \quad \sigma z \in \mathcal{O}_{\widehat{\mathfrak{P}}}.$$



Proof.

Denote n = [L : K] and let α be a primitive element of L/K. Then,

$$1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$$

is a basis for L/K.

By Lemma 9,

$$[\mathsf{F}:\mathsf{E}]_s=[\mathsf{F}:\mathsf{E}]=[\mathsf{L}:\mathsf{K}]=n,$$

so there are precisely *n* distinct embeddings of $F \hookrightarrow \widehat{F}$ over E which we denote by $\sigma_0, \ldots, \sigma_{n-1}$.

We have that

$$\mathsf{F} = \mathsf{L}\mathsf{E} = \mathsf{E}(\alpha)$$

and so $1, \alpha, \ldots, \alpha^{n-1}$ is also a basis for F/E. Thus,

$$z = \sum_{j=0}^{n-1} x_j \alpha^j \qquad x_0, \dots, x_{n-1} \in \mathsf{E}.$$

Proof.

$$z = \sum_{j=0}^{n-1} x_j \alpha^j \qquad x_0, \dots, x_{n-1} \in \mathsf{E}.$$

Thus, for i = 0, 1, ..., n - 1,

$$\sigma_i z = \sum_{j=0}^{n-1} x_j (\sigma_i \alpha)^j.$$

Thus we are looking at a linear system of *n* equations in *n* unknowns x_0, \ldots, x_{n-1} . The corresponding matrix *A* satisfies

$$A_{i,j}=(\sigma_i\alpha)^j.$$

Observe that A is a matrix over \widehat{L} . Indeed, $\alpha \in L$, $(\sigma_i)|_{\mathsf{K}} = \mathsf{id}_{\mathsf{K}}$ and so $(\sigma_i)|_{\mathsf{L}} : \mathsf{L} \to \widehat{\mathsf{L}}$. Thus, $\sigma_i \alpha \in \widehat{\mathsf{L}}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Proof.

$$A_{i,j} = (\sigma_i \alpha)^j \in \widehat{\mathsf{L}}.$$

Note that A is a Vandermonde matrix and so

$$\det A = \prod_{j < \ell} (\sigma_\ell lpha - \sigma_j lpha).$$

Since L/K is separable, $\sigma_{\ell} \alpha \neq \sigma_j \alpha$ for $j \neq \ell$. Indeed, otherwise σ_{ℓ} and σ_j will be equal on K(α) = L.

Thus, det $A \neq 0$ and so A has an inverse B over \widehat{L} . So,

$$\forall 0 \leq j < n$$
 $x_j = \sum_{i=0}^{n-1} b_{ji}\sigma_i z \in \operatorname{Span}_{\widehat{L}}(\sigma_0 z, \dots, \sigma_{n-1} z).$

But, recall that $x_j \in E$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof.

$$\forall j \quad x_j \in \mathsf{E} \cap \mathsf{Span}_{\widehat{\mathsf{L}}}(\sigma_0 z, \dots, \sigma_{n-1} z).$$

Recap. recall that we took $\bar{z} \in F_{\mathfrak{P}}$ and we wish to prove that $\bar{z} \in LE_{\mathfrak{p}}$. We further took a representative $z \in \mathcal{O}_{\mathfrak{P}}$ s.t.

$$\sigma_0 z, \ldots, \sigma_{n-1} z \in \mathcal{O}_{\widehat{\mathfrak{P}}}.$$

But $\widehat{\mathsf{L}}\subseteq\mathcal{O}_{\widehat{\mathfrak{P}}}$ and so

$$x_0,\ldots,x_{n-1}\in\mathsf{E}\cap\mathcal{O}_{\widehat{\mathfrak{P}}}=\mathcal{O}_{\mathfrak{p}}.$$

Recall that $z = \sum_{j=0}^{n-1} x_j \alpha^j$ and so

$$ar{z} = \sum_{j=0}^{n-1} ar{x_j} lpha^j \in \mathsf{E}_{\mathfrak{p}}\mathsf{L}.$$

An extension of the primitive element theorem

2 Separable constant field extensions

3 Residue fields under constant field extensions

A Riemann-Roch spaces in finite separable constant field extensions

5 The genus in finite separable constant field extensions

6 Characterization of constant field invariance

向下 イヨト イヨト

Riemann-Roch spaces in separable constant field extensions

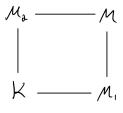
We recall the following basic fact from Galois Theory.

Claim 12

Let $\mathsf{M}_1,\mathsf{M}_2$ be two field extensions of a field K, and assume M extend both M_1 and $\mathsf{M}_2.$

Assume that every set $A_1 \subseteq M_1$ that is linearly independent over K is also linearly independent over M₂ (were we think of $A_1 \subseteq M$).

Then, every set $A_2 \subseteq M_2$ that is linearly independent over K is also linearly independent over M_1 (where we think of $A_2 \subseteq M$).



ト くぼ ト く ヨ ト く ヨ ト 二 ヨ

Proof.

Let $y_1, \ldots, y_n \in M_2$ be linearly independent over K. Take $\alpha_1, \ldots, \alpha_n \in M_1$ s.t.

$$\sum_{i=1}^{n} \alpha_i y_i = 0.$$

We wish to show that $\alpha_1 = \cdots = \alpha_n = 0$.

Let $x_1, \ldots, x_m \in M_1$ be a basis of

$$\mathsf{Span}_{\mathsf{K}}(\alpha_1,\ldots,\alpha_n)\subseteq\mathsf{M}_1.$$

Then, for every $i \in [n]$,

$$\alpha_i = \sum_{k=1}^m b_{ik} x_k,$$

with $\{b_{ik}\}_{i,k} \subseteq K$.

伺 ト イヨト イヨト

Riemann-Roch spaces in separable constant field extensions

Proof.

$$\sum_{i=1}^n \alpha_i y_i = 0 \qquad \qquad \alpha_i = \sum_{k=1}^m b_{ik} x_k.$$

So,

$$0 = \sum_{i=1}^{n} \left(\sum_{k=1}^{m} b_{ik} x_k \right) y_i = \sum_{k=1}^{m} \left(\sum_{i=1}^{n} b_{ik} y_i \right) x_k$$

Recall that Let $x_1, \ldots, x_m \in M_1$ are linearly independent over K. Thus, per our assumption they are also linearly independent over M_2 .

Recall that $\{b_{ik}\}_{i,k} \subseteq K$ and that $y_1, \ldots, y_n \subseteq M_2$. Thus, for every $k \in [m]$,

$$\sum_{i=1}^{n} b_{ik} y_i = 0.$$

But y_1, \ldots, y_n are linearly independent over K and so $b_{ik} = 0$, and so $\alpha_1 = \cdots = \alpha_n = 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

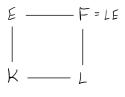
Corollary 13

Assume F/L is a constant field extension of E/K with L/K finite and separable.

If $A \subseteq E$ is linearly independent over K then (viewed as a subset of F) A is linearly independent over L.

Proof.

By Claim 12, it suffices to prove that if $A \subseteq L$ is linearly independent over K then A is also linearly independent over E.



・ ロ ト ・ 何 ト ・ 三 ト ・ 三 ト - -

Since L/K is separable and finite, $L = K(\alpha)$ for some $\alpha \in L$.

Denote n = [L : K]. Then $1, \alpha, \dots, \alpha^{n-1}$ is a basis for L/K. Now,

 $\mathsf{F} = \mathsf{E}\mathsf{L} = \mathsf{E}(\alpha)$

and, as we proved, the minimal polynomial f of α over K is also its minimal polynomial over E, and so

$$[\mathsf{F}:\mathsf{E}] = \deg f = [\mathsf{L}:\mathsf{K}] = n.$$

Thus, $1, \alpha, \ldots, \alpha^{n-1}$ is also a basis for F/E.

- 小田 ト イヨト 一日

Now take $\beta_1, \ldots, \beta_m \in L$ that are linearly independent over K.

Complete this to a basis β_1, \ldots, β_n of L/K.

Then, there is an invertible matrix M over K that changes bases from β_1, \ldots, β_n to $1, \alpha, \ldots, \alpha^{n-1}$.

M is also invertible as a matrix over E and so, since $1, \alpha, \ldots, \alpha^{n-1}$ is a basis of F/E then β_1, \ldots, β_n is also a basis of F/E.

In particular, β_1, \ldots, β_m are linearly independent over E.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ○ ○

Recall that if $\mathfrak a$ is a divisor of E/K then Con(a) is the "respective" divisor in F/L. Indeed, for a prime divisor $\mathfrak p\in E/L$ we defined

$$\mathsf{Con}(\mathfrak{p}) = \sum_{\mathfrak{P}/\mathfrak{p}} e(\mathfrak{P}/\mathfrak{p})\mathfrak{P},$$

and Con(a) was extended by linearity.

To keep notation simple, we denote Con(a) by a and infer from context. In particular, for a divisor a of E/K, we use the convention

$$\mathcal{L}_{\mathsf{F}}(\mathfrak{a}) = \mathcal{L}_{\mathsf{F}}(\mathsf{Con}(\mathfrak{a})).$$

Theorem 14

Let \mathfrak{a} be a divisor of E/K. Then,

$$\mathcal{L}_{\mathsf{F}}(\mathfrak{a}) = \mathsf{L}\mathcal{L}_{\mathsf{E}}(\mathfrak{a}) = \mathsf{Span}_{\mathsf{L}}(\mathcal{L}_{\mathsf{E}}(\mathfrak{a})).$$

ヘロ ト ヘ 同 ト ヘ 三 ト ー

-

We have that

$$\begin{aligned} \mathcal{L}_{\mathsf{E}}(\mathfrak{a}) &= \{ x \in \mathsf{E} \ | \ (x) + \mathfrak{a} \geq 0 \} \\ &\subseteq \{ x \in \mathsf{F} \ | \ (x) + \mathfrak{a} \geq 0 \} = \mathcal{L}_{\mathsf{F}}(\mathfrak{a}). \end{aligned}$$

Note that the more elaborated way of writing this is as follows:

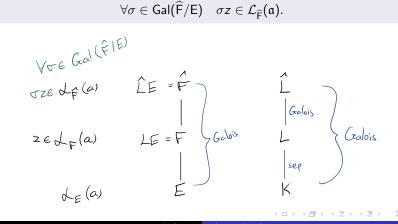
$$\begin{aligned} \mathcal{L}_{\mathsf{E}}(\mathfrak{a}) &= \{ x \in \mathsf{E} \mid (x) + \mathfrak{a} \geq 0 \} \\ &= \{ x \in \mathsf{E} \mid \mathsf{Con}((x) + \mathfrak{a}) \geq 0 \} \\ &= \{ x \in \mathsf{E} \mid \mathsf{Con}(x) + \mathsf{Con}\,\mathfrak{a} \geq 0 \} \\ &\subseteq \{ y \in \mathsf{F} \mid (y) + \mathsf{Con}\,\mathfrak{a} \geq 0 \} = \mathcal{L}_{\mathsf{F}}(\mathfrak{a}) \end{aligned}$$

Anyhow, $\mathcal{L}_E(\mathfrak{a}) \subseteq \mathcal{L}_F(\mathfrak{a})$. But $\mathcal{L}_F(\mathfrak{a})$ is an L-vector space, and so

$$L\mathcal{L}_{E}(\mathfrak{a}) \subseteq \mathcal{L}_{F}(\mathfrak{a}).$$

Proof.

We turn to prove the other direction, namely, $\mathcal{L}_{F}(\mathfrak{a}) \subseteq L\mathcal{L}_{E}(\mathfrak{a})$. To this end take $z \in \mathcal{L}_{F}(\mathfrak{a})$ and consider again the Galois closure \widehat{L} of L/K. We turn to prove that



Proof.

As $z \in \mathcal{L}_{\mathsf{F}}(\mathfrak{a})$,

$$(z) + \mathfrak{a} \geq 0$$

as divisors of $\widehat{F}/\widehat{L}.$ Namely,

$$orall \widehat{\mathfrak{P}} \in \mathbb{P}_{\widehat{\mathsf{F}}/\widehat{\mathsf{L}}} \quad v_{\widehat{\mathfrak{P}}}(z) + v_{\widehat{\mathfrak{P}}}(\mathfrak{a}) \geq \mathsf{0}.$$

In particular, for every such $\widehat{\mathfrak{P}}$,

$$v_{\sigma^{-1}\widehat{\mathfrak{P}}}(z) + v_{\sigma^{-1}\widehat{\mathfrak{P}}}(\mathfrak{a}) \geq 0.$$

But, $\widehat{\mathsf{F}}/\mathsf{E}$ is Galois, and so

$$egin{aligned} &v_{\widehat{\mathfrak{P}}}(\mathfrak{a})=e(\widehat{\mathfrak{P}}/\mathfrak{p})v_\mathfrak{p}(\mathfrak{a})\ &=e(\sigma^{-1}\widehat{\mathfrak{P}}/\mathfrak{p})v_\mathfrak{p}(\mathfrak{a})\ &=v_{\sigma^{-1}\widehat{\mathfrak{P}}}(\mathfrak{a}). \end{aligned}$$

Proof. So far. $\forall \widehat{\mathfrak{P}} \quad v_{\sigma^{-1}\widehat{\mathfrak{P}}}(z) + v_{\sigma^{-1}\widehat{\mathfrak{P}}}(\mathfrak{a}) \geq 0.$ and $v_{\widehat{\mathfrak{N}}}(\mathfrak{a}) = v_{\sigma^{-1}\widehat{\mathfrak{N}}}(\mathfrak{a}).$ Thus, $v_{\widehat{\mathfrak{B}}}(\sigma z) + v_{\widehat{\mathfrak{B}}}(\mathfrak{a}) = v_{\sigma^{-1}\widehat{\mathfrak{B}}}(z) + v_{\widehat{\mathfrak{B}}}(\mathfrak{a})$ $= v_{\sigma^{-1}\widehat{\mathfrak{B}}}(z) + v_{\sigma^{-1}\widehat{\mathfrak{B}}}(\mathfrak{a}) \geq 0.$ That is,

$$(\sigma z) + \mathfrak{a} \geq 0$$

as divisors of $\widehat{F}/\widehat{L},$ and so

$$\sigma z \in \mathcal{L}_{\widehat{\mathsf{F}}}(\mathfrak{a}).$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

By inspecting the proof of Theorem 11, we can write

$$z = \sum_{j=0}^{n-1} x_j \alpha^j$$

with

$$\begin{split} x_j \in \mathsf{E} \cap \mathsf{Span}_{\widehat{\mathsf{L}}} \left(\left\{ \sigma z \ | \ \sigma \in \mathsf{Gal}(\widehat{\mathsf{F}}/\mathsf{E}) \right\} \right) \\ & \subseteq \mathsf{E} \cap \mathcal{L}_{\widehat{\mathsf{F}}}(\mathfrak{a}) \\ & = \mathcal{L}_{\mathsf{E}}(\mathfrak{a}). \end{split}$$

Therefore, as $\alpha \in L$,

 $z \in L\mathcal{L}_{\mathsf{E}}(\mathfrak{a}).$

向下 イヨト イヨト

Corollary 15

With the above notations,

 $dim_F\,\mathfrak{a}=dim_E\,\mathfrak{a}.$

Proof.

By Theorem 14,

$$\mathcal{L}_{\mathsf{F}}(\mathfrak{a}) = \mathsf{L}\mathcal{L}_{\mathsf{E}}(\mathfrak{a}) = \mathsf{Span}_{\mathsf{L}}(\mathcal{L}_{\mathsf{E}}(\mathfrak{a})).$$

Now,

$$\begin{split} \dim_F \mathfrak{a} &= \dim_L \mathcal{L}_F(\mathfrak{a}) = \dim_L \text{Span}_L(\mathcal{L}_E(\mathfrak{a})), \\ \dim_E \mathfrak{a} &= \dim_K \mathcal{L}_E(\mathfrak{a}). \end{split}$$

Thus, we need to show that

 $\dim_{\mathsf{K}} \mathcal{L}_{\mathsf{E}}(\mathfrak{a}) = \dim_{\mathsf{L}} \operatorname{Span}_{\mathsf{L}}(\mathcal{L}_{\mathsf{E}}(\mathfrak{a})).$

Proof.

We need to show that

 $\dim_{\mathsf{K}} \mathcal{L}_{\mathsf{E}}(\mathfrak{a}) = \dim_{\mathsf{L}} \operatorname{Span}_{\mathsf{L}}(\mathcal{L}_{\mathsf{E}}(\mathfrak{a})).$

Corollary 13 states that if $A \subseteq E$ is linearly independent over K then (viewed as a subset of F) A is linearly independent over L. Taking A to be a basis of $\mathcal{L}_{E}(\mathfrak{a})$ (over K) yields the \leq direction.

The \geq direction readily follows since there is a basis for $\mathsf{Span}_L(\mathcal{L}_E(\mathfrak{a}))$ (over L) that is contained in $\mathcal{L}_E(\mathfrak{a})$. Such a basis certainly remains independent over K.

・ コ ト ・ 雪 ト ・ 目 ト ・ 日 ト

An extension of the primitive element theorem

2 Separable constant field extensions

3 Residue fields under constant field extensions

4 Riemann-Roch spaces in finite separable constant field extensions

5 The genus in finite separable constant field extensions

6 Characterization of constant field invariance

向下 イヨト イヨト

Theorem 16

If F/L is a finite separable constant field extension of E/K and the respective genera are g_F,g_E then

$$g_{\mathsf{F}} = g_{\mathsf{E}}.$$

Proof.

Take \mathfrak{p} a prime divisor of E/K and $k \in \mathbb{N}$ large enough so that

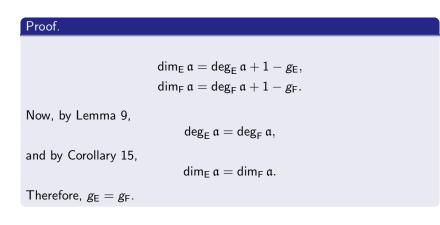
$$\min(\deg_{\mathsf{E}} \mathfrak{a}, \deg_{\mathsf{F}} \mathfrak{a}) \geq k \geq \max(2g_{\mathsf{E}} - 2, 2g_{\mathsf{F}} - 2),$$

where $\mathfrak{a} = k\mathfrak{p}$. By Riemann-Roch,

$$\begin{split} \dim_{\mathsf{E}} \mathfrak{a} &= \deg_{\mathsf{E}} \mathfrak{a} + 1 - g_{\mathsf{E}}, \\ \dim_{\mathsf{F}} \mathfrak{a} &= \deg_{\mathsf{F}} \mathfrak{a} + 1 - g_{\mathsf{F}}. \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3



An extension of the primitive element theorem

2 Separable constant field extensions

3 Residue fields under constant field extensions

4 Riemann-Roch spaces in finite separable constant field extensions

5 The genus in finite separable constant field extensions

6 Characterization of constant field invariance

向下 イヨト イヨト

Lemma 17

Let E/K a function field with K a perfect field. Let L/K be an algebraic extension (finite or infinite) and denote F = EL. Then,

- L is algebraically closed in F.
- **a** Any subset of E that is K-linearly independent remains so over L.
- **3** For every $x \in \mathsf{E} \setminus \mathsf{K}$,

$$[\mathsf{E}:\mathsf{K}(x)]=[\mathsf{F}:\mathsf{L}(x)].$$

Proof.

We start with Item 1. Take $\gamma \in F$ that is algebraic over L. We wish to show $\gamma \in L$. As F = EL,

$$\exists \alpha_1,\ldots,\alpha_r \in \mathsf{L} \qquad \gamma \in \mathsf{E}(\alpha_1,\ldots,\alpha_r).$$

Now $K(\alpha_1, \ldots, \alpha_r)/K$ is finite hence separable, and so $\exists \alpha \in L$ s.t $K(\alpha_1, \ldots, \alpha_r) = K(\alpha)$.

Recall that γ is algebraic over L and so it is algebraic over K. Indeed, consider the chain L(γ)/L/K. Thus, K(α,γ)/K is finite hence separable, and so

$$\exists \beta \in \mathsf{F} \qquad \mathsf{K}(\alpha, \gamma) = \mathsf{K}(\beta).$$

Adjoining E we get that

$$\mathsf{E}(\beta) = \mathsf{E}(\alpha, \gamma) = \mathsf{E}(\alpha),$$

where the last equality follows since $\gamma \in \mathsf{E}(\alpha_1 \dots, \alpha_r) = \mathsf{E}(\alpha)$. Hence,

$$[\mathsf{K}(\beta):\mathsf{K}] = \deg f_{\beta} = [\mathsf{E}(\beta):\mathsf{E}] = [\mathsf{E}(\alpha):\mathsf{E}] = \deg f_{\alpha} = [\mathsf{K}(\alpha):\mathsf{K}].$$

Thus, $K(\alpha) = K(\beta)$ and so

$$\gamma \in \mathsf{K}(\beta) = \mathsf{K}(\alpha) \subseteq \mathsf{L}.$$

- (同) (三) (三) (三) (三

Proof.

We turn to prove Item 2. Take $y_1, \ldots, y_r \in E$ that are linearly independent over K. Assume that

$$\sum_{i=1}^r \gamma_i y_i = 0 \qquad \gamma_1, \ldots, \gamma_r \in \mathsf{L}.$$

We want to show that $\gamma_1 = \cdots = \gamma_r = 0$. Since K is perfect and $K(\gamma_1, \ldots, \gamma_r)/K$ is finite hence separable,

$$\exists \alpha \in \mathsf{L} \qquad \mathsf{K}(\gamma_1, \ldots, \gamma_r) = \mathsf{K}(\alpha).$$

For each $i \in [r]$, write

$$\gamma_i = \sum_{j=0}^{n-1} c_{i,j} \alpha^j \qquad c_{i,j} \in \mathsf{K},$$

where $n = [K(\alpha) : K] = \deg f_{\alpha}$.

Proof.

$$\sum_{i=1}^{r} \gamma_i y_i = 0 \qquad \gamma_1, \dots, \gamma_r \in \mathsf{L}$$
$$\gamma_i = \sum_{j=0}^{n-1} c_{i,j} \alpha^j \qquad c_{i,j} \in \mathsf{K}.$$

So

$$0 = \sum_{i=1}^r \left(\sum_{j=0}^{n-1} c_{i,j} \alpha^j \right) y_i = \sum_{j=0}^{n-1} \left(\sum_{i=1}^r c_{i,j} y_i \right) \alpha^j.$$

Recall that $1, \alpha, \ldots, \alpha^{n-1}$ are linearly independent over E since K is algebraically closed in E.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Proof.

$$0 = \sum_{j=0}^{n-1} \left(\sum_{i=1}^r c_{i,j} y_i \right) \alpha^j.$$

 $1, \alpha, \ldots, \alpha^{n-1}$ are linearly independent over E. Thus, for every j,

$$\sum_{i=1}^r c_{i,j} y_i = 0.$$

But $c_{i,j} \in K$ and y_1, \ldots, y_r are linearly independent over K and so $c_{i,j} = 0$, and so are the γ_i -s.

→ 伺 → → ヨ → → ヨ → の Q (や

We turn to prove Item 3, namely,

$$\forall x \in \mathsf{E} \setminus \mathsf{K} \qquad [\mathsf{E} : \mathsf{K}(x)] = [\mathsf{F} : \mathsf{L}(x)].$$

The \geq direction follows as we adjoin L to $\mathsf{E}/\mathsf{K}(x)$ and so the degree can only decrease.

As for the other direction, take $z_1, \ldots, z_s \in E$ that are linearly independent over K(x). We wish to show these remain linearly independent over L(x). Otherwise,

$$\sum_{i=1}^s f_i(x)z_i = 0 \qquad f_i(x) \in \mathsf{L}[x],$$

where not all $f_i(x)$ zeros. Thus, $\{x^j z_i\}_{i,j}$ are linearly dependent over L, and so, by Item 2, also over K. Thus, z_1, \ldots, z_s are linearly dependent over K(x) - a contradiction.

(日本) (日本)

Theorem 18

Let F/L be a finite function field extension of E/K. Assume K is a perfect field. Let \bar{K} be an algebraic closure of K (containing L). Then,

 $[F:E]=[F\bar{K}:E\bar{K}]\cdot [L:K].$

Proof.

First,

$$[\mathsf{F}:\mathsf{E}]=[\mathsf{F}:\mathsf{EL}]\cdot[\mathsf{EL}:\mathsf{E}].$$

Write $L = K(\alpha)$ and recall that $EL = E(\alpha)$ and that

$$[\mathsf{EL}:\mathsf{E}] = \deg f_{\alpha} = [\mathsf{L}:\mathsf{K}],$$

where f_{α} is the minimal polynomial of α over K.

So it remains to prove that

 $[F:EL] = [F\bar{K}:E\bar{K}].$

Proof.

We wish to prove that

$$[\mathsf{F}:\mathsf{EL}]=[\mathsf{F}\bar{\mathsf{K}}:\mathsf{E}\bar{\mathsf{K}}].$$

Fix $x \in E \setminus L$. By Lemma 17 (taking the constant field extension $E\bar{K}/\bar{K}$ of EL/L) $[EL : L(x)] = [E\bar{K} : \bar{K}(x)].$

Similarly, by considering the constant field extension $F\bar{K}/\bar{K}$ of F/L,

$$[\mathsf{F}:\mathsf{L}(x)]=[\mathsf{F}\bar{\mathsf{K}}:\bar{\mathsf{K}}(x)].$$

Thus,

$$[\mathsf{F}:\mathsf{EL}] = \frac{[\mathsf{F}:\mathsf{L}(x)]}{[\mathsf{EL}:\mathsf{L}(x)]} = \frac{[\mathsf{F}\bar{\mathsf{K}}:\bar{\mathsf{K}}(x)]}{[\mathsf{E}\bar{\mathsf{K}}:\bar{\mathsf{K}}(x)]} = [\mathsf{F}\bar{\mathsf{K}}:\mathsf{E}\bar{\mathsf{K}}].$$

< 同 > < 三 > < 三 >

Corollary 19

Let F/L be a finite function field extension of E/K, with K perfect. Assume that F = E(y) and that $\varphi(T) \in E[T]$ is the minimal polynomial of y over E. Then, TFAE:

$$\bullet L = K.$$

2
$$\varphi(T)$$
 is irreducible in $E\overline{K}[T]$.

Proof.

By Theorem 18,

$$[\mathsf{F}:\mathsf{E}] = [\mathsf{F}\bar{\mathsf{K}}:\mathsf{E}\bar{\mathsf{K}}]\cdot[\mathsf{L}:\mathsf{K}],$$

and so (1) is equivalent to

$$[F:E] = [F\bar{K}:E\bar{K}].$$

ヘロト 人間 とくほ とくほ とうほう

So far,

(1)
$$\iff$$
 [F : E] = [F \overline{K} : E \overline{K}].

But F = E(y) and so

$$[F : E] = [E(y) : E],$$
$$[F\overline{K} : E\overline{K}] = [E\overline{K}(y) : E\overline{K}].$$

So

(1)
$$\iff$$
 $[\mathsf{E}(y) : \mathsf{E}] = [\mathsf{E}\bar{\mathsf{K}}(y) : \mathsf{E}\bar{\mathsf{K}}].$

The proof then follows since also

$$(2) \quad \Longleftrightarrow \quad [\mathsf{E}(y) : \mathsf{E}] = [\mathsf{E}\bar{\mathsf{K}}(y) : \mathsf{E}\bar{\mathsf{K}}].$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

2

Corollary 20

Let ${\sf F}/{\sf K}$ be a finite extension of ${\sf E}/{\sf K},$ with ${\sf K}$ perfect. Then, for every algebraic separable extension ${\sf L}/{\sf K},$

 $[\mathsf{F}:\mathsf{E}]=[\mathsf{FL}:\mathsf{EL}].$

Proof.

By Theorem 18,

$$[F:E] = [F\bar{K}:E\bar{K}] \cdot [K:K] = [F\bar{K}:E\bar{K}],$$

and (using that $\bar{K} = \bar{L}$),

$$[\mathsf{FL} : \mathsf{EL}] = [\mathsf{FL}\overline{\mathsf{L}} : \mathsf{EL}\overline{\mathsf{L}}] \cdot [\mathsf{L} : \mathsf{L}] = [\mathsf{F}\overline{\mathsf{K}} : \mathsf{E}\overline{\mathsf{K}}].$$

Therefore

$$[\mathsf{F}:\mathsf{E}]=[\mathsf{FL}:\mathsf{EL}].$$

Definition 21

A polynomial $\varphi(T) \in K(x)[T]$ is said to be absolutely irreducible if $\varphi(T)$ is irreducible in $\overline{K}(x)[T]$.

Theorem 22

Let F/K be a field extension s.t. $F \neq K$,

 $\mathsf{F}=\mathsf{K}(x,y),$

and $[F : K(x)] < \infty$. Assume K is perfect.

Let $\varphi(T) \in K(x)[T]$ be the minimal polynomial of y over K(x). TFAE:

- F/K is a function field;
- **2** $\varphi(T)$ is absolutely irreducible.

▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Proof.

Per our assumption, $F \neq K$, F = K(x, y) and $[F : K(x)] < \infty$. Thus, we need to prove that

K is algebraically closed in F $\iff \varphi(T)$ is absolutely irreducible.

Let L be the algebraic closure of K in F. Note that F/L is a function field. Indeed, $F = L(x, y) \neq L$ (as F/K is of transcendence degree 1 and L/K is algebraic) and

 $[\mathsf{F}:\mathsf{L}(x)] \leq [\mathsf{F}:\mathsf{K}(x)] < \infty.$

Moreover, L is algebraically closed in F (as the algebraic closure of K).

Proof.

Consider the function field extension F/L over K(x)/K. This is a function field extension x is transcendental over K and so

$$\mathsf{L}\cap\mathsf{K}(x)=\mathsf{K}.$$

Since $[F : K(x)] < \infty$, L/K is finite. Indeed,

$$[L:K] = [L(x):K(x)] = \frac{[F:K(x)]}{[F:L(x)]}$$

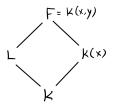
As K is perfect we conclude that L/K is separable.

L/K is finite and separable, and so by Corollary 19 (with E = K(x)),

$$L = K \iff \varphi(T)$$
 is irreducible in $K(x)\overline{K}[T]$.

The proof follows as

$$K(x)\overline{K} = \overline{K}(x).$$



(1) マント (1) マント

3

Consider our running example F = K(x, y) where K is a finite field and

$$y^2 = x^3 - x.$$

By Theorem 22, to prove that F/K is a function field, it suffices to prove that

$$T^2 - x^3 + x \in \bar{\mathsf{K}}(x)[T]$$

is irreducible.

If this is not the case then

$$T^{2} - x^{3} + x = (T + a(x))(T + b(x)),$$

with $a(x), b(x) \in \overline{K}(x)$.

$$T^2-x^3+x=(T+a(x))(T+b(x)),$$
 with $a(x),b(x)\in \bar{\mathsf{K}}(x).$ But then $a(x)=-b(x)$ and
$$a(x)b(x)=x^3-x,$$

and so

$$a(x)^2 = x - x^3$$

which forces $a(x) \in \overline{K}[x]$ and then yields a contradiction by degree considerations.

◆□▶ ◆□▶ ◆ ミ ▶ ◆ ミ ▶ ● ○ ○ ○ ○