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Constant field extensions

Definition 1 (Constant field extensions)

Let E/K be a function field, and L a field extension of K. Denote

F = LE.

Assuming F/L is a function field we say that F/L is a constant field
extension of E/K.

It is not generally true that F/L as defined above is a function field, even
assuming L/K is finite. But, as we will show, this is the case if L/K is
separable.

Recall that if K is a finite field and L/K is finite, then L/K is separable.
Indeed, finite fields are perfect.
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Normal closure

Definition 2

Let M/K be a field extension, and fix an algebraic closure K̄ of K

containing M. The normal closure M̂ of M/K is the smallest subfield of K̄
containing M that is normal over K.

Assuming M/K is finite we can write

M = K(α1, . . . , αn)

for some α1, . . . , αn ∈ M.

Let σ1, . . . , σk be the embeddings of M in K̄. Then,

M̂ = K ({σi (αj) | i ∈ [k], j ∈ [n]}) .

In particular, when M/K is finite so is M̂/K.
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Normal closure

M̂ = K ({σi (αj) | i ∈ [k], j ∈ [n]}) .

Note further that if M/K is separable then M̂/K is Galois. Indeed,

M/K is separable =⇒ M̂/K is separable

as we only adjoined K-conjugates of elements that are separable over K.

We conclude that M̂/K is Galois as it is also normal. In this case we call

M̂ the Galois closure of M/K.
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Compositum of purely inseparable extensions

Lemma 3

Let M/K be a field extension and

K ⊆ E1,E2 ⊆ M,

where E1,E2 are purely inseparable over K. Then, E1E2 is purely
inseparable over K.

Proof.

The set of purely inseparable elements in a field extension is an
intermediate field. Indeed, recall that a is purely inseparable over K iff
ap

ea ∈ K for some integer ea ≥ 0. So, if a, b are purely inseparable over K
then, for e = max(ea, eb),

(a + b)p
e

= ap
e

+ bp
e

∈ F.

Same for multiplication and inverse.
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Compositum of purely inseparable extensions

Proof.

Let F be the field of inseparable elements in E1E2 over K. Clearly, E1 ⊆ F
and E2 ⊆ F.

But, E1E2 is the smallest field containing E1,E2 and so E1E2 = F.
Namely, all elements in E1E2 are purely inseparable over K.
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The primitive element theorem

Recall

Theorem 4 (The primitive element theorem)

Every finite separable extension is simple.

Steinitz established the following generalization (note that finite fields are
handled differently.)

Theorem 5

Assume K is an infinite field. A finite field extension M/K is simple iff
there are finitely many intermediate fields K ⊆ E ⊆ M.

The latter implies the former as follows: Let M/K be a finite separable

extension, and consider the normal closure M̂ of M/K. Then, M̂/K is a
finite Galois extension. By Galois Theory, there is a finite number of
intermediate fields in M̂/K.
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A variant of the primitive element theorem

Lemma 6

Let M/K be a finite field extension, and denote p = char K. Then,

[M : K]i = p =⇒ M/K is simple.

Note that the primitive element theorem concludes the same under the
assumption [M : K]i = 1.

Proof.

The assertion is trivial for a finite field K.

Using Steinitz’ Theorem (Theorem 5), it suffices to prove that M/K has
finitely many intermediate fields.
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A variant of the primitive element theorem

Proof.

We first show that K has at most one purely inseparable extension

K ( E ⊆ M.

Indeed, assume two such extensions E1,E2 exist. Then,

[E1 : K] = [E1 : K]i ≥ p

(as it is a power of p and E1 6= K). Thus, since E2 6= E1,

[E1E2 : K] > p.

But by Lemma 3, E1E2 is a purely inseparable extension of K, and so

p = [M : K]i ≥ [E1E2 : K]i = [E1E2 : K] > p,

which is a contradiction.
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A variant of the primitive element theorem

Proof.

Let M0 be the separable closure of K in M.

Consider now an intermediate field K ⊆ E ⊆ M.

Further consider the separable closure of K in E.
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A variant of the primitive element theorem

Proof.

We have that

[M : E0]i =
[M : K]i
[E0 : K]i

=
p

1
= p.

Thus, E0 has at most one purely inseparable extension in M (other than
E0), and so we can identify E with E0.

But M0/K is finite and separable, and so it has only finitely many
intermediate fields E0, which completes the proof.
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Separable constant field extensions

Theorem 7

Let E/K be a function field and L/K finite and separable. Then, LE/L is
a function field.

Proof.

It suffices to prove that for every non-trivial finite extension M/L
(namely, M 6= L) it holds that M 6⊆ LE.

Indeed, if α ∈ LE \ L is algebraic over L then we can take

M = L(α).

M/L is finite and M 6= L. But, of course, M ⊆ LE, in contradiction.

Moreover, we can assume that M/L has no intermediate fields as
otherwise we can descend to one.

In particular, M/L is either separable or purely inseparable.
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Separable constant field extensions

Proof.

In the second case, we may assume that

[M : L]i = p.

Indeed,
[M : L] = [M : L]i = pe

for some e ≥ 1. Take α ∈ M. If [L(α) : L] < pe we can descend to L(α).
Otherwise, the minimal polynomial of α is

(T − α)p
e

= T pe

− αpe

∈ L[T ].

Consider β = αp. Note that (T − β)p
e−1 ∈ L[T ] vanishes at β and so

[L(β) : L] ≤ pe−1.

Thus, we can take L(β) instead of M and proceed this way until we get a
degree p inseparable extension of L.
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Separable constant field extensions

Proof.

In any case,
[M : L]i ∈ {1, p},

and so, since L/K is separable,

[M : K]i = [M : L]i · [L : K]i ∈ {1, p}.

The primitive element theorem and its extension given by Lemma 6 imply
that M/K is simple, namely, for some β ∈ M,

M = K(β).
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Separable constant field extensions

Recall a claim we proved when we talked about normal extensions.

Claim 8

Let E/K be a field extension s.t. K is algebraically closed in E. Then,

f ∈ K[x ] is irreducible =⇒ f is irreducible in E[x ].

With this we return to the proof of Theorem 7.

Proof. (Proof of Theorem 7)

Let f (x) ∈ K[x ] be the minimal polynomial of β over K. Then, by
Claim 8, f (x) is also the minimal polynomial of β over E.
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Separable constant field extensions

Proof.

Let f (x) ∈ K[x ] be the minimal polynomial of β over K. Then, f (x) is
also the minimal polynomial of β over E. Thus,

ME = EK(β) = E(β),

and
[ME : E] = deg f = [M : K].

But, M 6= L and so

[ME : E] = [M : K] > [L : K] ≥ [LE : E].

Thus, ME 6= LE, and so M 6⊆ LE, as desired.
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Separable constant field extensions

From this point on up until the last part of this unit,

F/L = LE/L

refers to a constant field extension of E/K where L is a finite separable
extension of K.
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Separable constant field extensions

Lemma 9

Under the above,
[F : E] = [L : K].

Moreover, ∀a ∈ D(E/K) it holds that

degF a = degE a.

Proof.

Since L/K is separable, L = K(α) for some α ∈ L. Thus,

F = LE = E(α).

Let f (x) ∈ K[x ] be the minimal polynomial of α over K. By Claim 8,
f (x) is irreducible over E, and so

[F : E] = [E(α) : E] = deg f = [K(α) : K] = [L : K].

Gil Cohen Constant Field Extensions



Separable constant field extensions

Proof.

Per our assumption that L/K is finite we have that F/E is finite.

We proved in the previous unit that for a finite extension F/E,

degF a =
[F : E]

[L : K]
· degE a.

Thus, in our case,
degF a = degE a.
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A lemma from Galois Theory

Lemma 10

Let K ⊆ L,F be fields s.t. F/K is Galois. Then LF/L is Galois.

Proof.

The separability of LF/L is clear. Indeed, every element of F is separable
over K, let alone over L. Thus, every element of LF is separable over L.

We turn to prove normality.
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A lemma from Galois Theory

Proof.

As for normality, recall the characterization of normal extensions as
splitting fields.

As F/K is normal, F is the splitting field of

{fj(x) ∈ K[x ]}j∈J .

Let Sj ⊆ K be the roots of fj(x), and S = ∪jSj . Then, F = K(S). But
then

LF = LK(S) = L(S)

is the splitting field of
{fj(x) ∈ L[x ]}j∈J .

Hence, LF/L is normal.
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Residue fields under constant field extensions

Theorem 11

Let P be a prime divisor of F/L lying over p in E/K. Then,

FP = (LE)P = LEp.

Proof.

The ⊇ direction follows as both L,Ep ⊆ FP.

Take z̄ ∈ FP. We want to show z̄ ∈ LEp.
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Residue fields under constant field extensions

Proof.

Let L̂ be the normal closure of L/K. Recall that L̂/K is not only normal

but also separable since L/K is separable. So L̂/K is Galois.

By Lemma 10,

L̂/K is Galois =⇒ (L̂E)/(KE) = F̂/E is Galois.
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Residue fields under constant field extensions

Proof.

Fix P̂/P. We turn to prove that z̄ has a representative z ∈ OP s.t.

∀σ ∈ Gal(F̂/E) σz ∈ OP̂.

Let z ′ ∈ OP that represents z̄ . By the WAT, ∃z ∈ F s.t.

υP(z − z ′) > 0 and ∀P′/p ∈ PF \ {P} υP′(z) ≥ 0.
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Residue fields under constant field extensions

Proof.

Let z ′ ∈ OP that represents z̄ . By the WAT, ∃z ∈ F s.t.

υP(z − z ′) > 0 and ∀P′/p ∈ PF \ {P} υP′(z) ≥ 0.

Thus, z is also a representative of z̄ . Moreover,

∀P̂′/p ∈ PF̂ υP̂′(z) ≥ 0,

and so

∀σ ∈ Gal(F̂/E) υP̂(σz) = υσ−1P̂(z) ≥ 0 =⇒ σz ∈ OP̂.
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Residue fields under constant field extensions

Proof.

Denote n = [L : K] and let α be a primitive element of L/K. Then,

1, α, α2, . . . , αn−1

is a basis for L/K.

By Lemma 9,
[F : E]s = [F : E] = [L : K] = n,

so there are precisely n distinct embeddings of F ↪→ F̂ over E which we
denote by σ0, . . . , σn−1.

We have that
F = LE = E(α)

and so 1, α, . . . , αn−1 is also a basis for F/E. Thus,

z =
n−1∑
j=0

xjα
j x0, . . . , xn−1 ∈ E.
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Residue fields under constant field extensions

Proof.

z =
n−1∑
j=0

xjα
j x0, . . . , xn−1 ∈ E.

Thus, for i = 0, 1, . . . , n − 1,

σiz =
n−1∑
j=0

xj(σiα)j .

Thus we are looking at a linear system of n equations in n unknowns
x0, . . . , xn−1. The corresponding matrix A satisfies

Ai,j = (σiα)j .

Observe that A is a matrix over L̂. Indeed, α ∈ L, (σi )|K = idK and so

(σi )|L : L→ L̂. Thus, σiα ∈ L̂.
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Residue fields under constant field extensions

Proof.

Ai,j = (σiα)j ∈ L̂.

Note that A is a Vandermonde matrix and so

detA =
∏
j<`

(σ`α− σjα).

Since L/K is separable, σ`α 6= σjα for j 6= `. Indeed, otherwise σ` and σj
will be equal on K(α) = L.

Thus, detA 6= 0 and so A has an inverse B over L̂. So,

∀0 ≤ j < n xj =
n−1∑
i=0

bjiσiz ∈ SpanL̂(σ0z , . . . , σn−1z).

But, recall that xj ∈ E.
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Residue fields under constant field extensions

Proof.

∀j xj ∈ E ∩ SpanL̂(σ0z , . . . , σn−1z).

Recap. recall that we took z̄ ∈ FP and we wish to prove that z̄ ∈ LEp.
We further took a representative z ∈ OP s.t.

σ0z , . . . , σn−1z ∈ OP̂.

But L̂ ⊆ OP̂ and so

x0, . . . , xn−1 ∈ E ∩ OP̂ = Op.

Recall that z =
∑n−1

j=0 xjα
j and so

z̄ =
n−1∑
j=0

x̄jα
j ∈ EpL.
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Riemann-Roch spaces in separable constant field extensions

We recall the following basic fact from Galois Theory.

Claim 12

Let M1,M2 be two field extensions of a field K, and assume M extend
both M1 and M2.

Assume that every set A1 ⊆ M1 that is linearly independent over K is
also linearly independent over M2 (were we think of A1 ⊆ M).

Then, every set A2 ⊆ M2 that is linearly independent over K is also
linearly independent over M1 (where we think of A2 ⊆ M).
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Riemann-Roch spaces in separable constant field extensions

Proof.

Let y1, . . . , yn ∈ M2 be linearly independent over K. Take
α1, . . . , αn ∈ M1 s.t.

n∑
i=1

αiyi = 0.

We wish to show that α1 = · · · = αn = 0.

Let x1, . . . , xm ∈ M1 be a basis of

SpanK(α1, . . . , αn) ⊆ M1.

Then, for every i ∈ [n],

αi =
m∑

k=1

bikxk ,

with {bik}i,k ⊆ K.
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Riemann-Roch spaces in separable constant field extensions

Proof.

n∑
i=1

αiyi = 0 αi =
m∑

k=1

bikxk .

So,

0 =
n∑

i=1

(
m∑

k=1

bikxk

)
yi =

m∑
k=1

(
n∑

i=1

bikyi

)
xk .

Recall that Let x1, . . . , xm ∈ M1 are linearly independent over K. Thus,
per our assumption they are also linearly independent over M2.

Recall that {bik}i,k ⊆ K and that y1, . . . , yn ⊆ M2. Thus, for every
k ∈ [m],

n∑
i=1

bikyi = 0.

But y1, . . . , yn are linearly independent over K and so bik = 0, and so
α1 = · · · = αn = 0.
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Riemann-Roch spaces in separable constant field extensions

Corollary 13

Assume F/L is a constant field extension of E/K with L/K finite and
separable.

If A ⊆ E is linearly independent over K then (viewed as a subset of F) A
is linearly independent over L.

Proof.

By Claim 12, it suffices to prove that if A ⊆ L is linearly independent
over K then A is also linearly independent over E.
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Riemann-Roch spaces in separable constant field extensions

Proof.

Since L/K is separable and finite, L = K(α) for some α ∈ L.

Denote n = [L : K]. Then 1, α, . . . , αn−1 is a basis for L/K. Now,

F = EL = E(α)

and, as we proved, the minimal polynomial f of α over K is also its
minimal polynomial over E, and so

[F : E] = deg f = [L : K] = n.

Thus, 1, α, . . . , αn−1 is also a basis for F/E.
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Riemann-Roch spaces in separable constant field extensions

Proof.

Now take β1, . . . , βm ∈ L that are linearly independent over K.

Complete this to a basis β1, . . . , βn of L/K.

Then, there is an invertible matrix M over K that changes bases from
β1, . . . , βn to 1, α, . . . , αn−1.

M is also invertible as a matrix over E and so, since 1, α, . . . , αn−1 is a
basis of F/E then β1, . . . , βn is also a basis of F/E.

In particular, β1, . . . , βm are linearly independent over E.
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Riemann-Roch spaces in separable constant field extensions

Recall that if a is a divisor of E/K then Con(a) is the “respective” divisor
in F/L. Indeed, for a prime divisor p ∈ E/L we defined

Con(p) =
∑
P/p

e(P/p)P,

and Con(a) was extended by linearity.

To keep notation simple, we denote Con(a) by a and infer from context.
In particular, for a divisor a of E/K, we use the convention

LF(a) = LF(Con(a)).

Theorem 14

Let a be a divisor of E/K. Then,

LF(a) = LLE(a) = SpanL(LE(a)).
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Riemann-Roch spaces in separable constant field extensions

Proof.

We have that

LE(a) = {x ∈ E | (x) + a ≥ 0}
⊆ {x ∈ F | (x) + a ≥ 0} = LF(a).

Note that the more elaborated way of writing this is as follows:

LE(a) = {x ∈ E | (x) + a ≥ 0}
= {x ∈ E | Con((x) + a) ≥ 0}
= {x ∈ E | Con(x) + Con a ≥ 0}
⊆ {y ∈ F | (y) + Con a ≥ 0} = LF(a).

Anyhow, LE(a) ⊆ LF(a). But LF(a) is an L-vector space, and so

LLE(a) ⊆ LF(a).
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Riemann-Roch spaces in separable constant field extensions

Proof.

We turn to prove the other direction, namely, LF(a) ⊆ LLE(a). To this

end take z ∈ LF(a) and consider again the Galois closure L̂ of L/K. We
turn to prove that

∀σ ∈ Gal(F̂/E) σz ∈ LF̂(a).
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Riemann-Roch spaces in separable constant field extensions

Proof.

As z ∈ LF(a),
(z) + a ≥ 0

as divisors of F̂/L̂. Namely,

∀P̂ ∈ PF̂/L̂ υP̂(z) + υP̂(a) ≥ 0.

In particular, for every such P̂,

υσ−1P̂(z) + υσ−1P̂(a) ≥ 0.

But, F̂/E is Galois, and so

υP̂(a) = e(P̂/p)υp(a)

= e(σ−1P̂/p)υp(a)

= υσ−1P̂(a).
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Riemann-Roch spaces in separable constant field extensions

Proof.

So far,
∀P̂ υσ−1P̂(z) + υσ−1P̂(a) ≥ 0.

and

υP̂(a) = υσ−1P̂(a).

Thus,

υP̂(σz) + υP̂(a) = υσ−1P̂(z) + υP̂(a)

= υσ−1P̂(z) + υσ−1P̂(a) ≥ 0.

That is,
(σz) + a ≥ 0

as divisors of F̂/L̂, and so
σz ∈ LF̂(a).
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Riemann-Roch spaces in separable constant field extensions

Proof.

By inspecting the proof of Theorem 11, we can write

z =
n−1∑
j=0

xjα
j

with

xj ∈ E ∩ SpanL̂

({
σz | σ ∈ Gal(F̂/E)

})
⊆ E ∩ LF̂(a)

= LE(a).

Therefore, as α ∈ L,
z ∈ LLE(a).
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Riemann-Roch spaces in separable constant field extensions

Corollary 15

With the above notations,

dimF a = dimE a.

Proof.

By Theorem 14,

LF(a) = LLE(a) = SpanL(LE(a)).

Now,

dimF a = dimL LF(a) = dimL SpanL(LE(a)),

dimE a = dimK LE(a).

Thus, we need to show that

dimK LE(a) = dimL SpanL(LE(a)).
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Riemann-Roch spaces in finite separable constant field
extensions

Proof.

We need to show that

dimK LE(a) = dimL SpanL(LE(a)).

Corollary 13 states that if A ⊆ E is linearly independent over K then
(viewed as a subset of F) A is linearly independent over L. Taking A to
be a basis of LE(a) (over K) yields the ≤ direction.

The ≥ direction readily follows since there is a basis for SpanL(LE(a))
(over L) that is contained in LE(a). Such a basis certainly remains
independent over K.
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The genus in finite separable constant field extensions

Theorem 16

If F/L is a finite separable constant field extension of E/K and the
respective genera are gF, gE then

gF = gE.

Proof.

Take p a prime divisor of E/K and k ∈ N large enough so that

min(degE a, degF a) ≥ k ≥ max(2gE − 2, 2gF − 2),

where a = kp. By Riemann-Roch,

dimE a = degE a + 1− gE,

dimF a = degF a + 1− gF.
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The genus in finite separable constant field extensions

Proof.

dimE a = degE a + 1− gE,

dimF a = degF a + 1− gF.

Now, by Lemma 9,
degE a = degF a,

and by Corollary 15,
dimE a = dimF a.

Therefore, gE = gF.
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Characterization of constant field invariance

Lemma 17

Let E/K a function field with K a perfect field. Let L/K be an algebraic
extension (finite or infinite) and denote F = EL. Then,

1 L is algebraically closed in F.

2 Any subset of E that is K-linearly independent remains so over L.

3 For every x ∈ E \ K,

[E : K(x)] = [F : L(x)].

Proof.

We start with Item 1. Take γ ∈ F that is algebraic over L. We wish to
show γ ∈ L. As F = EL,

∃α1, . . . , αr ∈ L γ ∈ E(α1, . . . , αr ).

Now K(α1, . . . , αr )/K is finite hence separable, and so ∃α ∈ L s.t
K(α1, . . . , αr ) = K(α).
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Characterization of constant field invariance

Proof.

Recall that γ is algebraic over L and so it is algebraic over K. Indeed,
consider the chain L(γ)/L/K. Thus, K(α, γ)/K is finite hence separable,
and so

∃β ∈ F K(α, γ) = K(β).

Adjoining E we get that

E(β) = E(α, γ) = E(α),

where the last equality follows since γ ∈ E(α1 . . . , αr ) = E(α). Hence,

[K(β) : K] = deg fβ = [E(β) : E] = [E(α) : E] = deg fα = [K(α) : K].

Thus, K(α) = K(β) and so

γ ∈ K(β) = K(α) ⊆ L.
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Characterization of constant field invariance

Proof.

We turn to prove Item 2. Take y1, . . . , yr ∈ E that are linearly
independent over K. Assume that

r∑
i=1

γiyi = 0 γ1, . . . , γr ∈ L.

We want to show that γ1 = · · · = γr = 0. Since K is perfect and
K(γ1, . . . , γr )/K is finite hence separable,

∃α ∈ L K(γ1, . . . , γr ) = K(α).

For each i ∈ [r ], write

γi =
n−1∑
j=0

ci,jα
j ci,j ∈ K,

where n = [K(α) : K] = deg fα.
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Characterization of constant field invariance

Proof.

r∑
i=1

γiyi = 0 γ1, . . . , γr ∈ L,

γi =
n−1∑
j=0

ci,jα
j ci,j ∈ K.

So

0 =
r∑

i=1

n−1∑
j=0

ci,jα
j

 yi =
n−1∑
j=0

(
r∑

i=1

ci,jyi

)
αj .

Recall that 1, α, . . . , αn−1 are linearly independent over E since K is
algebraically closed in E.
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Characterization of constant field invariance

Proof.

0 =
n−1∑
j=0

(
r∑

i=1

ci,jyi

)
αj .

1, α, . . . , αn−1 are linearly independent over E. Thus, for every j ,

r∑
i=1

ci,jyi = 0.

But ci,j ∈ K and y1, . . . , yr are linearly independent over K and so
ci,j = 0, and so are the γi -s.
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Characterization of constant field invariance

Proof.

We turn to prove Item 3, namely,

∀x ∈ E \ K [E : K(x)] = [F : L(x)].

The ≥ direction follows as we adjoin L to E/K(x) and so the degree can
only decrease.

As for the other direction, take z1, . . . , zs ∈ E that are linearly
independent over K(x). We wish to show these remain linearly
independent over L(x). Otherwise,

s∑
i=1

fi (x)zi = 0 fi (x) ∈ L[x ],

where not all fi (x) zeros. Thus, {x jzi}i,j are linearly dependent over L,
and so, by Item 2, also over K. Thus, z1, . . . , zs are linearly dependent
over K(x) - a contradiction.
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Characterization of constant field invariance

Theorem 18

Let F/L be a finite function field extension of E/K. Assume K is a
perfect field. Let K̄ be an algebraic closure of K (containing L). Then,

[F : E] = [FK̄ : EK̄] · [L : K].

Proof.

First,
[F : E] = [F : EL] · [EL : E].

Write L = K(α) and recall that EL = E(α) and that

[EL : E] = deg fα = [L : K],

where fα is the minimal polynomial of α over K.

So it remains to prove that

[F : EL] = [FK̄ : EK̄].
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Characterization of constant field invariance

Proof.

We wish to prove that

[F : EL] = [FK̄ : EK̄].

Fix x ∈ E \ L. By Lemma 17 (taking the constant field extension EK̄/K̄
of EL/L)

[EL : L(x)] = [EK̄ : K̄(x)].

Similarly, by considering the constant field extension FK̄/K̄ of F/L,

[F : L(x)] = [FK̄ : K̄(x)].

Thus,

[F : EL] =
[F : L(x)]

[EL : L(x)]
=

[FK̄ : K̄(x)]

[EK̄ : K̄(x)]
= [FK̄ : EK̄].
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Characterization of constant field invariance

Corollary 19

Let F/L be a finite function field extension of E/K, with K perfect.
Assume that F = E(y) and that ϕ(T ) ∈ E[T ] is the minimal polynomial
of y over E. Then, TFAE:

1 L = K.

2 ϕ(T ) is irreducible in EK̄[T ].

Proof.

By Theorem 18,
[F : E] = [FK̄ : EK̄] · [L : K],

and so (1) is equivalent to

[F : E] = [FK̄ : EK̄].

Gil Cohen Constant Field Extensions



Characterization of constant field invariance

Proof.

So far,
(1) ⇐⇒ [F : E] = [FK̄ : EK̄].

But F = E(y) and so

[F : E] = [E(y) : E],

[FK̄ : EK̄] = [EK̄(y) : EK̄].

So
(1) ⇐⇒ [E(y) : E] = [EK̄(y) : EK̄].

The proof then follows since also

(2) ⇐⇒ [E(y) : E] = [EK̄(y) : EK̄].
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Characterization of constant field invariance

Corollary 20

Let F/K be a finite extension of E/K, with K perfect. Then, for every
algebraic separable extension L/K,

[F : E] = [FL : EL].

Proof.

By Theorem 18,

[F : E] = [FK̄ : EK̄] · [K : K] = [FK̄ : EK̄],

and (using that K̄ = L̄),

[FL : EL] = [FLL̄ : ELL̄] · [L : L] = [FK̄ : EK̄].

Therefore
[F : E] = [FL : EL].
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Characterization of constant field invariance

Definition 21

A polynomial ϕ(T ) ∈ K(x)[T ] is said to be absolutely irreducible if ϕ(T )
is irreducible in K̄(x)[T ].

Theorem 22

Let F/K be a field extension s.t. F 6= K,

F = K(x , y),

and [F : K(x)] <∞. Assume K is perfect.

Let ϕ(T ) ∈ K(x)[T ] be the minimal polynomial of y over K(x). TFAE:

1 F/K is a function field;

2 ϕ(T ) is absolutely irreducible.
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Characterization of constant field invariance

Proof.

Per our assumption, F 6= K, F = K(x , y) and [F : K(x)] <∞. Thus, we
need to prove that

K is algebraically closed in F ⇐⇒ ϕ(T ) is absolutely irreducible.

Let L be the algebraic closure of K in F. Note that F/L is a function
field. Indeed, F = L(x , y) 6= L (as F/K is of transcendence degree 1 and
L/K is algebraic) and

[F : L(x)] ≤ [F : K(x)] <∞.

Moreover, L is algebraically closed in F (as the algebraic closure of K).
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Characterization of constant field invariance

Proof.

Consider the function field extension F/L over K(x)/K. This is a function
field extension x is transcendental over K and so

L ∩ K(x) = K.

Since [F : K(x)] <∞, L/K is finite. Indeed,

[L : K] = [L(x) : K(x)] =
[F : K(x)]

[F : L(x)]
.

As K is perfect we conclude that L/K is separable.
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Characterization of constant field invariance

Proof.

L/K is finite and separable, and so by Corollary 19 (with E = K(x)),

L = K ⇐⇒ ϕ(T ) is irreducible in K(x)K̄[T ].

The proof follows as
K(x)K̄ = K̄(x).
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Example

Consider our running example F = K(x , y) where K is a finite field and

y2 = x3 − x .

By Theorem 22, to prove that F/K is a function field, it suffices to prove
that

T 2 − x3 + x ∈ K̄(x)[T ]

is irreducible.

If this is not the case then

T 2 − x3 + x = (T + a(x))(T + b(x)),

with a(x), b(x) ∈ K̄(x).
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Example

T 2 − x3 + x = (T + a(x))(T + b(x)),

with a(x), b(x) ∈ K̄(x).

But then a(x) = −b(x) and

a(x)b(x) = x3 − x ,

and so
a(x)2 = x − x3

which forces a(x) ∈ K̄[x ] and then yields a contradiction by degree
considerations.
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