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Recall - local integral bases

Definition 1

Let F/L be an extension of E/K, and let p ∈ P(E).

A basis z1, . . . , zn of F/E for which

O′p =
n∑

i=1

Opzi

is called an integral basis of O′p over Op (or a local integral basis of F/E
for p).

Note that if z1, . . . , zn is a local integral basis for p then z1, . . . , zn ∈ O′p.

But z1, . . . , zn ∈ O′p only implies

O′p ⊇
n∑

i=1

Opzi .
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Recall - local integral bases and the complementary module

Recall the definition of the complementary module

Cp =
{
z ∈ F : TrF/E(zO′p) ⊆ Op

}
.

Claim 2

Let z1, . . . , zn be a local integral basis of F/E for p, namely, z1, . . . , zn is
a basis of F over E s.t.

O′p =
n∑

i=1

Opzi

(we proved such a basis always exists). Then,

Cp =
n∑

i=1

Opz
∗
i .
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A lemma about the dual basis

We have the following lemma about dual bases.

Lemma 3

Let F/L be a degree n separable extension of E/K s.t.

F = E(y) y ∈ F.

Let ϕ(T ) ∈ E[T ] be the minimal polynomial of y over E, and write

ϕ(T ) = (T − y)(c0 + c1T + c2T
2 + · · ·+ cn−1T

n−1),

with ci ∈ F. Then, the dual basis of 1, y , y2, . . . , yn−1 is given by

c0

ϕ′(y)
, . . . ,

cn−1

ϕ′(y)
.

Note that ϕ′(y) 6= 0 as y is separable over E.
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A lemma about the dual basis

Proof.

We need to show that

∀i , ` ∈ {0, 1, . . . , n − 1} TrF/E

(
ci

ϕ′(y)
· y `
)

= δi,`.

To this end, consider the n distinct embeddings σ1, . . . , σn of F over E
into F̄.

Denote yj = σj(y). By Galois theory,

ϕ(T ) =
n∏

j=1

(T − yj) ∈ F̄[T ].

Differentiating and substituting T = yν yields

ϕ′(yν) =
∏
i 6=ν

(yν − yi ).
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A lemma about the dual basis

Proof.

For 0 ≤ ` ≤ n − 1 consider the polynomial

ϕ`(T ) =

 n∑
j=1

ϕ(T )

T − yj
·

y `j
ϕ′(yj)

− T ` ∈ F̄[T ].

For every 1 ≤ ν ≤ n,

ϕ`(yν) =

∏
i 6=ν

(yν − yi )

 · y `ν
ϕ′(yν)

− y `ν = 0.

Since the yν-s are all distinct, and degϕ`(T ) ≤ n − 1, and , ϕ`(T ) is the
zero polynomial. That is, for 0 ≤ ` ≤ n − 1,

T ` =
n∑

j=1

ϕ(T )

T − yj
·

y `j
ϕ′(yj)

.
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A lemma about the dual basis

Proof.

∀0 ≤ ` ≤ n − 1 T ` =
n∑

j=1

ϕ(T )

T − yj
·

y `j
ϕ′(yj)

.

We extend the embeddings σi : F→ F̄ in the natural way to
F(T )→ F̄(T ) by setting σi (T ) = T . We get

T ` =
n∑

j=1

σj

(
ϕ(T )

T − y
· y `

ϕ′(y)

)

=
n∑

j=1

σj

(
n−1∑
i=0

ciT
i · y `

ϕ′(y)

)

=
n−1∑
i=0

 n∑
j=1

σj

(
ci

ϕ′(y)
· y `
)T i =

n−1∑
i=0

TrF/E

(
ci

ϕ′(y)
· y `
)
T i .
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A lemma about the dual basis

Proof.

T ` =
n−1∑
i=0

TrF/E

(
ci

ϕ′(y)
· y `
)
T i .

Comparing coefficients we get that

TrF/E

(
ci

ϕ′(y)
· y `
)

= δi,`

as required.
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A bound on the different exponent

Theorem 4

Let F/L be a finite separable extension of E/K s.t.

F = E(y) y ∈ F.

Let p ∈ P(E) be s.t. y ∈ O′p.

Let ϕ(T ) ∈ Op[T ] be the minimal polynomial of y over E.

Let P1, . . . ,Pr ∈ P(F) be the prime divisors lying over p. Then,

∀i ∈ [r ] d(Pi/p) ≤ υPi (ϕ
′(y)).
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A bound on the different exponent

Proof.

Recall that

ϕ(T ) = (T − y)(c0 + c1T + · · ·+ cn−2T
n−2 + cn−1T

n−1) ∈ Op[T ]

and ci ∈ F. However, we claim that ci ∈ Op[y ]. Indeed, cn−1 = 1, and
looking at the coefficient of T n−1 in ϕ(T ),

cn−2 − ycn−1 = cn−2 − y ∈ Op =⇒ cn−2 ∈ y +Op ∈ Op[y ].

Similarly by looking at the coefficient of T n−2,

cn−3 − ycn−2 ∈ Op =⇒ cn−3 ∈ Op[y ].

The proof follows by a backwards induction using

cn−i − ycn−i+1 ∈ Op.
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A bound on the different exponent

Proof.

So far we showed that

ci ∈ Op[y ] ∀i = 0, 1, . . . , n − 1.

A similar proof can be used to establish that

1, y , . . . , yn−1 ∈
n−1∑
j=0

cjOp.

With these observations in mind we go ahead and prove the theorem,
namely,

∀i ∈ [r ] d(Pi/p) ≤ υPi (ϕ
′(y)).

Equivalently, we need to show that for all i ∈ [r ],

∀z ∈ Cp υPi (z) ≥ −υPi (ϕ
′(y)).
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A bound on the different exponent

Proof.

We ought to show that for all i ∈ [r ],

∀z ∈ Cp υPi (z) ≥ −υPi (ϕ
′(y)).

By Lemma 3, { ci
ϕ′(y) | i = 0, 1, . . . , n − 1} is a basis of F/E, and so we

can write

z =
n−1∑
i=0

ri
ci

ϕ′(y)
r0, . . . , rn−1 ∈ E.

As z ∈ Cp and y ` ∈ O′p, we have by Lemma 3,

Op 3 TrF/E(y `z) =
n−1∑
i=0

riTrF/E

(
ci

ϕ′(y)
y `
)

= r`.
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A bound on the different exponent

Proof.

So far we wrote

z =
n−1∑
i=0

ri
ci

ϕ′(y)
r0, . . . , rn−1 ∈ Op.

By the above observations we have ci ∈ Op[y ], and so

z ∈ 1

ϕ′(y)
Op[y ] ⊆ 1

ϕ′(y)
O′p.

Hence, for every Pi/p,

υPi (z) ≥ υPi

(
1

ϕ′(y)

)
= −υPi (ϕ

′(y)),

as required.
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The different exponent and local bases

Theorem 5

Let F/L be a finite separable extension of E/K s.t.

F = E(y) y ∈ F.

Let p ∈ P(E) be s.t. y ∈ O′p.

Let ϕ(T ) ∈ Op[T ] be the minimal polynomial of y over E.

Let P1, . . . ,Pr ∈ P(F) be the prime divisors lying over p. Then,

O′p = Op[y ] ⇐⇒ ∀i ∈ [r ] d(Pi/p) = υPi (ϕ
′(y)).

Recall that
y ∈ O′p =⇒ Op[y ] ⊆ O′p.

Moreover, O′p = Op[y ] iff 1, y , y2, . . . , yn−1 is a local integral basis for p.
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The different exponent and local bases

Proof. (addendum)

By the observations made in the proof of Theorem 4, we have that

n−1∑
i=0

Opy
i =

n−1∑
i=0

Opci .

For the first direction, assume Op[y ] = O′p. Then, by Lemma 2 and
Lemma 3,

Cp =
n−1∑
i=0

Op
ci

ϕ′(y)
.

Thus,

Cp =
1

ϕ′(y)
·
n−1∑
i=0

Opci =
1

ϕ′(y)
·
n−1∑
i=0

Opy
i

=
1

ϕ′(y)
Op[y ] =

1

ϕ′(y)
O′p.
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The different exponent and local bases

Proof.

So, under the assumption that Op[y ] = O′p we conclude that

Cp =
1

ϕ′(y)
O′p.

Hence, by the definition of the different exponent,

d(Pi/p) = υPi (ϕ
′(y)).
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The different exponent and local bases

Proof.

As for the other direction, we need to prove that

∀i ∈ [r ] d(Pi/p) = υPi (ϕ
′(y)) =⇒ O′p = Op[y ].

The non-trivial inclusion is O′p ⊆ Op[y ].

Take z ∈ O′p and expand it as

z =
n−1∑
i=0

tiy
i ti ∈ E.

By the observations we made, cj ∈ Op[y ] ⊆ O′p. Further, per our
assumption in this direction,

Cp =
1

ϕ′(y)
O′p.
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The different exponent and local bases

Proof.

Thus,

TrF/E

(
1

ϕ′(y)
· cjz

)
∈ Op.

But

TrF/E

(
1

ϕ′(y)
cj · z

)
= TrF/E

(
n−1∑
i=0

tiy
i cj
ϕ′(y)

)

=
n−1∑
i=0

tiTrF/E

(
y i cj
ϕ′(y)

)
= tj

Thus, tj ∈ Op and

z =
n−1∑
i=0

tiy
i ∈ Op[y ].
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A useful corollary

Corollary 6 (addendum)

Let F/L be a finite separable extension of E/K s.t.

F = E(y) y ∈ F.

Let p ∈ P(E) be s.t. y ∈ O′p.

Let ϕ(T ) ∈ Op[T ] be the minimal polynomial of y over E.

Assume that
∀P/p υP(ϕ′(y)) = 0.

Then, p is unramified in F/E and Op[y ] = O′p.

Gil Cohen Explicit Formulas for the Different



A useful corollary

Proof.

By Theorem 4, and per our assumption, for every P/p,

0 ≤ d(P/p) ≤ υP(ϕ′(y)) = 0.

Thus,
∀P/p υP(ϕ′(y)) = d(P/p) = 0.

Therefore, by Theorem 5, O′p = Op[y ].

To conclude the proof recall that as d(P/p) = 0, Dedekind’s Theorem
implies that e(P/p) = 1.
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The different exponent and total ramification

The following result will be useful when we discuss Artin-Schreier
extensions - extensions in which [F : E] = char K.

Proposition 7 (addendum)

Let F/L be a degree n separable extension of E/K. Let p ∈ P(E) and
P ∈ P(F) lying over p s.t. P/p is totally ramified (namely, e(P/p) = n).

Let t ∈ F be a P-prime element (namely, υP(t) = 1) and consider the
minimal polynomial ϕ(T ) ∈ E[T ] of t over E. Then,

1 d(P/p) = υP(ϕ′(t)); and

2 O′p = Op[t].
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The different exponent and total ramification

Proof.

We start by showing that 1, t, . . . , tn−1 are linearly independent over E.
Otherwise,

n−1∑
i=0

ri t
i = 0

with ri ∈ E not all zero.

For every i for which ri 6= 0 we have that

υP(ri t
i ) = υP(t i ) + e(P/p) · υp(ri )

= i + n · υp(ri ),

and so
υP(ri t

i ) ≡ i mod n.

Therefore, υP(ri t
i ) 6= υP(rj t

j) for i 6= j s.t. ri , rj 6= 0.
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The different exponent and total ramification

Proof.

We start by showing that 1, t, . . . , tn−1 are linearly independent over E.
Otherwise,

n−1∑
i=0

ri t
i = 0.

We have shown that υP(ri t
i ) 6= υP(rj t

j) for i 6= j s.t. ri , rj 6= 0.

By the strict triangle inequality we conclude that

υP

(
n−1∑
i=0

ri t
i

)
= min{vP(ri t

i ) | i s.t. ri 6= 0}

which is finite, contradicting υP(0) =∞.

Thus, {1, t, t2, . . . , tn−1} is a basis of F over E.
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The different exponent and total ramification

Proof.

By the fundamental equality, P is the only prime divisor lying over p.
Hence, O′p = OP. Thus, to prove Item 2, we need to show that

OP =
n−1∑
i=0

Opt
i .

The only non-trivial inclusion is ⊆. So, take z ∈ OP and expand

z =
n−1∑
i=0

xi t
i xi ∈ E.

Now, for xi 6= 0,

υP(xi t
i ) = υP(xi ) + i = n · υp(xi ) + i ,

and so υP(xi t
i ) 6= υP(xj t

j) for i 6= j (and xi , xj 6= 0)
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The different exponent and total ramification

Proof.

Recall

z =
n−1∑
i=0

xi t
i xi ∈ E,

and that
υP(xi t

i ) = n · υp(xi ) + i .

In particular, υP(xi t
i ) 6= υP(xj t

j) for i 6= j (and xi , xj 6= 0).

Thus, as z ∈ OP, and using the strict triangle inequality,

0 ≤ υP(z) = min{n · υp(xi ) + i | i s.t. xi 6= 0}.

Therefore, υp(xi ) ≥ 0 for all i and so,

z ∈
n−1∑
i=0

Opt
i .

Item 1 follows by Theorem 5.
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