AG codes - Spring 2022 Problem Set 03

Gil Cohen

Shir Peleg

March 2022

Problem 1. Let F/K be a function field.

(a) $\Lambda(\mathfrak{a})$ is a K-vector space, a subspace of \mathbb{A} .

(b)
$$\mathcal{L}(\mathfrak{a}) = \Lambda(\mathfrak{a}) \cap F.$$

Problem 2. For divisors $\mathfrak{a}, \mathfrak{b}$ and $x \in F$. Show

- (a) $\mathfrak{a} \leq \mathfrak{b} \to \Lambda(\mathfrak{a}) \subseteq \Lambda(b)$.
- (b) $\Lambda(\mathfrak{a}) \cap \Lambda(\mathfrak{b}) = \Lambda(\min(\mathfrak{a}, \mathfrak{b})).$
- (c) $\Lambda(\mathfrak{a}) + \Lambda(\mathfrak{b}) = \Lambda(\max(\mathfrak{a}, \mathfrak{b})).$
- (d) $x\Lambda(\mathfrak{a}) = \Lambda(\mathfrak{a} (x)).$

Problem 3. Consider the function field K(x)/K

- (a) Let $f = \frac{g}{h} \in K(x)$, use unique factorization to describe (f).
- (b) Prove that the genus of K(x)/K is 0, and that every divisor of degree -2 is canonical.
- (c) Prove that every degree 0 divisor is principle.
- (d) Let $\mathfrak{a} \in \mathcal{P}$, prove that dim $\mathfrak{a} = \max(0, \deg \mathfrak{a} + 1)$.
- (e) Let $f \in K[x]$ be a polynomial. Show that $\deg(f(x))_{\infty} = \deg f$.

Problem 4. Let F/K be a function field.

- (a) Prove that if $x, y \in F \setminus K$ are such that $\deg(x)_{\infty}, \deg(y)_{\infty}$ are co-prime then F = K(x, y).
- (b) Assume F/K has a degree one prime divisor. Prove that there exist $x, y \in F$ such that [F: K(x)] = [F: K(y)] = 2g + 1 and F = K(x, y).

Problem 5. Assume that $char(K) \neq 2$. Let F = K(x, y) with

$$y^2 = f(x) \in K[x], \ \deg f(x) = 2m + 1 \ge 3.$$

Show:

- (a) If g(t) is irreducible in K[t], then it is also irreducible in k(x)[t].
- (b) K is the full constant field of F.
- (c) There is exactly one place $P \in \mathcal{P}$ which is a pole of x, and this place is also the only pole of y.
- (d) For every $r \ge 0$, the elements $1, x, x^2, \ldots, x^r, y, xy, \ldots, x^s y$ with $0 \le s < r m$ are in $\mathcal{L}(2rP)$.
- (e) The genus of F/K satisfies $g \leq m$.