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Constant field extensions

Definition 1 (Constant field extensions)

Let E/K be a function field, and L a field extension of K. Denote
F = LE.

Assuming F/L is a function field we say that F/L is a constant field
extension of E/K.

It is not generally true that F/L as defined above is a function field, even
assuming L/K is finite. But, as we will show, this is the case if L/K is
separable.

Recall that if K is a finite field and L/K is finite, then L/K is separable.
Indeed, finite fields are perfect.
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Overview

© An extension of the primitive element theorem

© Separable constant field extensions

© Residue fields under constant field extensions

@ Riemann-Roch spaces in finite separable constant field extensions
© The genus in finite separable constant field extensions

@ Characterization of constant field invariance
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Normal closure

Definition 2

Let M/K be a field extension, and fix an algebraic closure K of K
containing M. The normal closure M of M/K is the smallest subfield of K
containing M that is normal over K.

Assuming M/K is finite we can write
M= K(ag,...,ap)

for some ay,...,a, € M.

Let 01, ...,0x be the embeddings of M in K. Then,
M=K({oi(ey) | i €[k], j€[n]}).

In particular, when M/K is finite so is M/K.
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Normal closure

M=K({oi(ay) | i€k, j€[n]}).
Note further that if M/K is separable then M/K is Galois. Indeed,
M/K is separable =  M/K is separable

as we only adjoined K-conjugates of elements that are separable over K.

We conclude that |\7I/K is Galois as it is also normal. In this case we call
M the Galois closure of M/K.

Gil Cohen Constant Field Extensions



Compositum of purely inseparable extensions

Let M/K be a field extension and

KCEL,E2 CM,

where E1, E> are purely inseparable over K. Then, E1E;, is purely
inseparable over K.

The set of purely inseparable elements in a field extension is an
intermediate field. Indeed, recall that a is purely inseparable over K iff
aP™ € K for some integer e, > 0. So, if a, b are purely inseparable over K
then, for e = max(e,, ep),

(a4 b)P" =" + b €F.
Same for multiplication and inverse.
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Compositum of purely inseparable extensions

Proof.

Let F be the field of inseparable elements in E;E; over K. Clearly, E; C F
and E; C F.

But, E1E; is the smallest field containing E;, E> and so E;E;, = F.
Namely, all elements in E;E, are purely inseparable over K.

/\
\/
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The primitive element theorem

Recall

Theorem 4 (The primitive element theorem)

Every finite separable extension is simple.

Steinitz established the following generalization (note that finite fields are
handled differently.)

Assume K is an infinite field. A finite field extension M/K is simple iff
there are finitely many intermediate fields K C E C M.

The latter implies the former as follows: Let M/K be a finite separable
extension, and consider the normal closure M of M/K. Then, I\7I/K is a
finite Galois extension. By Galois Theory, there is a finite number of
intermediate fields in M/K.
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A variant of the primitive element theorem

Let M/K be a finite field extension, and denote p = char K. Then,

[M:Klj=p = M/K issimple.

Note that the primitive element theorem concludes the same under the
assumption [M : K]; = 1.

The assertion is trivial for a finite field K.

Using Steinitz’ Theorem (Theorem 5), it suffices to prove that M/K has
finitely many intermediate fields.
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A variant of the primitive element theorem

Proof.
We first show that K has at most one purely inseparable extension

KCECM.
Indeed, assume two such extensions Eq, E, exist. Then,
[Er:Kl=[E:K]i=p
(as it is a power of p and E; # K). Thus, since E; # Ej,
[E1Ez : K] > p.
But by Lemma 3, E;E; is a purely inseparable extension of K, and so
p=[M:K]; > [EiEz : K]; = [E1E2 : K] > p,

which is a contradiction.
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A variant of the primitive element theorem

Proof.
Let Mg be the separable closure of K in M.

Consider now an intermediate field K C E C M.

Further consider the separable closure of K in E.
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A variant of the primitive element theorem

We have that M K]
A P
M : E = = o = .
M : Eo] Eo Ry 1 P
Thus, Eg has at most one purely inseparable extension in M (other than
Eo), and so we can identify E with Eg.

But Mg/K is finite and separable, and so it has only finitely many

intermediate fields Eg, which completes the proof. O
T adt
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Overview

© Separable constant field extensions
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Separable constant field extensions

Let E/K be a function field and L/K finite and separable. Then, LE/L is
a function field.

It suffices to prove that for every non-trivial finite extension M/L
(namely, M # L) it holds that M Z LE.

Indeed, if & € LE\ L is algebraic over L then we can take
M = L(«).

M/L is finite and M # L. But, of course, M C LE, in contradiction.

Moreover, we can assume that M/L has no intermediate fields as
otherwise we can descend to one.

In particular, M/L is either separable or purely inseparable.
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Separable constant field extensions

In the second case, we may assume that

[M o L],:p

Indeed,
[M:L]=[M:L]; =p°

for some e > 1. Take o € M. If [L(«) : L] < p® we can descend to L(«).
Otherwise, the minimal polynomial of « is

(T—a) =T —a* eL[T].
Consider 5 = a”. Note that (T — B)Pe_l € L[T] vanishes at 5 and so
L(3): L] < p* Y,

Thus, we can take L(8) instead of M and proceed this way until we get a
degree p inseparable extension of L.
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Separable constant field extensions

In any case,

[M:L]; € {1, p},

and so, since L/K is separable,
[M:K];=[M:L];-[L:K]; € {1, p}.

The primitive element theorem and its extension given by Lemma 6 imply
that M/K is simple, namely, for some 5 € M,

M = K(3).
E Le ME
K—— L — M=K(p
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Separable constant field extensions

Recall a claim we proved when we talked about normal extensions.
Claim 8

Let E/K be a field extension s.t. K is algebraically closed in E. Then,

f € K[x] is irreducible =~ = f is irreducible in E[x].
With this we return to the proof of Theorem 7.

Proof. (Proof of Theorem 7)

Let f(x) € K[x] be the minimal polynomial of 8 over K. Then, by
Claim 8, f(x) is also the minimal polynomial of 5 over E.

£ le— ne

K——L——m=kp
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Separable constant field extensions

Let f(x) € K[x] be the minimal polynomial of 8 over K. Then, f(x) is
also the minimal polynomial of 5 over E. Thus,

ME = EK(8) = E(8).

and
[ME : E] =degf =[M: K].

But, M # L and so
[ME:E]=[M:K]>[L:K]>[LE:E].
Thus, ME # LE, and so M & LE, as desired.

E— L% ——me= EW

K——L——m=k(p



Separable constant field extensions

From this point on up until the last part of this unit,
F/L=LE/L

refers to a constant field extension of E/K where L is a finite separable
extension of K.
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Separable constant field extensions

Under the above,

[F:E]=][L:K].
Moreover, Va € D(E/K) it holds that

degr a = degg a.
Since L/K is separable, L = K(«a) for some « € L. Thus,
F = LE = E(a).

Let f(x) € K[x] be the minimal polynomial of & over K. By Claim 8,
f(x) is irreducible over E, and so

[F:E]=[E(x) : E] =degf = [K(e): K] =[L:K].
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Separable constant field extensions

Proof.
Per our assumption that L/K is finite we have that F/E is finite.

We proved in the previous unit that for a finite extension F/E,

F
degra = m - degg a.

Thus, in our case,
degr a = degg a.

Gil Cohen Constant Field Extensions



Overview

© Residue fields under constant field extensions
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A lemma from Galois Theory

Lemma 10

Let K C L,F be fields s.t. F/K is Galois. Then LF/L is Galois.

/\
\

a‘,—%p 00

Proof.

The separability of LF/L is clear. Indeed, every element of F is separable
over K, let alone over L. Thus, every element of LF is separable over L.

We turn to prove normality.
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A lemma from Galois Theory

Proof.

As for normality, recall the characterization of normal extensions as
splitting fields.

As F/K is normal, F is the splitting field of

{fi(x) € K[x]}jes-

Let S; C K be the roots of fi(x), and S = U;S;. Then, F = K(S). But
then
LF = LK(S) = L(S)

is the splitting field of
{fi(x) € LIx]}jes-
Hence, LF/L is normal. O
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Residue fields under constant field extensions

Theorem 11

Let B3 be a prime divisor of F/L lying over p in E/K. Then,

Fo = (LE)y = LE,.

The D direction follows as both L, E, C Fg.

Take Z € Fz. We want to show Z € LE,.

B G B L F=Le
I I R
EF GP p K E
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Residue fields under constant field extensions

Proof.

Let L be the normal closure of L/K. Recall that E/K is not only normal
but also separable since L/K is separable. So L/K is Galois.

By Lemma 10,
L/Kis Galois = (LE)/(KE) = F/E is Galois.
-L¢e
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Residue fields under constant field extensions

Fix ‘ﬁ/‘ﬁ We turn to prove that Z has a representative z € Og s.t.

Vo € Gal(F/E) oz € Og.
Let 2/ € Og that represents z. By the WAT, 3z € F s.t.

vp(z—2')>0 and VP'/pePe\{B} vy (z) >0.

A Q
\2

~ \7[“/60:% A A A A

= v2eOg 8 L Fele
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Residue fields under constant field extensions

Let z’ € Oy that represents z. By the WAT, 3z € F s.t.

vp(z—2')>0 and VP /pePr\{PB} vy (z)>0.
Thus, z is also a representative of z. Moreover,

VR /p P vg(2) >0,

and so
Vo € Gal(F/E) vg(oz) =v,.153(2) 20 = o0z€ 0.
¢I

A Vb&u.\L A
=4 v2e0g ) L F-le

‘ \ ’/ ‘ ) Aee ‘

ze |y 20y 2 G4 L F=LE \Gulie
‘ \ ’/ ’ N ’
v Op P K E
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Residue fields under constant field extensions

Denote n = [L : K] and let « be a primitive element of L/K. Then,

is a basis for L/K.

By Lemma 9,
[F:Els=[F:E]=[L:K]=n,

so there are precisely n distinct embeddings of F < F over E which we

denote by g, ...,0,_1.
We have that
F=LE = E(a)
and so 1,,...,a" ! is also a basis for F/E. Thus,

n—1
z:E xjo! X0,-.-,Xn—1 € E.
Jj=0
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Residue fields under constant field extensions

n—1
z:Z)ga»’ X0,-.-,Xn—1 € E.
Jj=0

Thus, for i =0,1,...,n—1,
n—1
0z = ij(g,a}’.
j=0

Thus we are looking at a linear system of n equations in n unknowns
Xp, - - -»Xp—1. The corresponding matrix A satisfies

A,')j = (O’,'Oé)j.

Observe that A is a matrix over L. Indeed, a € L, (0;)|x = idk and so
(o7))]L : L= L. Thus, o;a € L.
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Residue fields under constant field extensions

A,‘)j = (U;a)j € E

Note that A is a Vandermonde matrix and so

detA = H(O’ga — oja).
j<t
Since L/K is separable, oya # gja for j # £. Indeed, otherwise o, and o;
will be equal on K(a) = L.
Thus, det A # 0 and so A has an inverse B over L. So,

n—1
VO<j<n x = Z bjioiz € Spant(aoz, ey Op_1Z).
i=0

But, recall that x; € E.
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Residue fields under constant field extensions

Vj x; € ENSpang(ooz,...,00-12).

Recap. recall that we took Z € Fyz and we wish to prove that Z € LE,.
We further took a representative z € Oy s.t.

00Zy...,0n_1Z € (953.
But L C (953 and so
X0y---,Xn—1 € Equ’:} :Op.

Recall that z = Y27 xjo/ and so

n—1 )
Z= ol € Epl.

Gil Cohen Constant Field Extensions



Overview

@ Riemann-Roch spaces in finite separable constant field extensions
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Riemann-Roch spaces in separable constant field extensions

We recall the following basic fact from Galois Theory.

Claim 12

Let My, M5 be two field extensions of a field K, and assume M extend
both M; and M.

Assume that every set A; C M; that is linearly independent over K is
also linearly independent over M, (were we think of A; C M).

Then, every set A, C M; that is linearly independent over K is also
linearly independent over My (where we think of Ay C M).

My ———m

) ( M
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Riemann-Roch spaces in separable constant field extensions

Proof.
Let y1,...,¥n € My be linearly independent over K. Take
ag,...,ap € My st

n
Z ajy; = 0.
i=1
We wish to show that oy =--- = o, = 0.

Let xq,...,Xn € My be a basis of

Spang(aq,...,a,) € M.

Then, for every i € [n],
m
=Y bk,
k=1

with {bik}i,k C K.
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Riemann-Roch spaces in separable constant field extensions

n m
Z ay;i=0 ap = Z bix X
=il k=1

So,
n m m n
= ( b> =5 (z b,-ky,)
i=1 \k=1 k=1 \i=1
Recall that Let xg, ..., x, € My are linearly independent over K. Thus,

per our assumption they are also linearly independent over M.

Recall that {bj}ix C K and that yi,...,y, € M. Thus, for every

k € [m],
n
Z bikyi = 0.
i=1
But y1,..., Yy, are linearly independent over K and so by = 0, and so
a]_:...:an:O.
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Riemann-Roch spaces in separable constant field extensions

Corollary 13

Assume F/L is a constant field extension of E/K with L/K finite and
separable.

If A C E is linearly independent over K then (viewed as a subset of F) A
is linearly independent over L.

Proof.

By Claim 12, it suffices to prove that if A C L is linearly independent
over K then A is also linearly independent over E.

£ —F-le

K——1L
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Riemann-Roch spaces in separable constant field extensions

Proof.
Since L/K is separable and finite, L = K(«) for some « € L.

Denote n = [L: K]. Then 1,q,...,a" ! is a basis for L/K. Now,
F=EL = E(a)

and, as we proved, the minimal polynomial f of « over K is also its
minimal polynomial over E, and so

[F:E]=degf =[L:K]=n.

Thus, 1,q,...,a" ! is also a basis for F/E.
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Riemann-Roch spaces in separable constant field extensions

Proof.
Now take fi,...,Bm € L that are linearly independent over K.

Complete this to a basis i, ..., 8, of L/K.

Then, there is an invertible matrix M over K that changes bases from
Bl Pntola,...,a" L

M is also invertible as a matrix over E and so, since 1,a,...,a" 1is a
basis of F/E then f1,..., 8, is also a basis of F/E.

In particular, B1,...,B8m are linearly independent over E.
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Riemann-Roch spaces in separable constant field extensions

Recall that if a is a divisor of E/K then Con(a) is the “respective” divisor
in F/L. Indeed, for a prime divisor p € E/L we defined

Con(p) = > e(B/p)B,

B/p

and Con(a) was extended by linearity.

To keep notation simple, we denote Con(a) by a and infer from context.
In particular, for a divisor a of E/K, we use the convention

Le(a) = Le(Con(a)).

Theorem 14

Let a be a divisor of E/K. Then,

Le(a) = LLg(a) = Span, (Le(a)).
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Riemann-Roch spaces in separable constant field extensions

Proof.
We have that

Le(a)={x€E | (x)+a>0}
C{xeF | (x)+a>0}=_Lr(a)

Note that the more elaborated way of writing this is as follows:

Le(a)={x€E | (x)+a>0}
= {x € E | Con((x)+a) >0}
={x € E | Con(x)+ Cona > 0}
C{yeF | (y)+Cona>0}=L(a)

Anyhow, Lg(a) C L(a). But Lg(a) is an L-vector space, and so

LﬁE(Cl) c EF(a).
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Riemann-Roch spaces in separable constant field extensions

Proof.

We turn to prove the other direction, namely, L¢(a) C LLg(a). To this
end take z € L¢(a) and consider again the Galois closure L of L/K. We
turn to prove that

Vo € Gal(F/E) oz € Le(a).

\& \2
g2 G ) p B
TzZ6E d."; () LE ad J_
‘ ’ Grb(ois
2c J\F (a,) L C = v Grf\"b L Ga)o\s
‘ SQ?
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Riemann-Roch spaces in separable constant field extensions

Proof.
As z € Lg(a),
as divisors of E/E Namely,
v € Pep vg(2) +vg(a) 2 0.

In particular, for every such Sﬁ

’UU,hﬁ(Z) + Ug,lgﬁ(a) > 0.
But, ?/E is Galois, and so

vg(a) = e(B/p)vp(a)

= e(0™"B/p)vy(a)
= Ua,lgﬁ(a).

Gil Cohen Constant Field Extensions



Riemann-Roch spaces in separable constant field extensions

So far,
VB v, 15(2) +v,p(a) 20
and
vg(a) = v, 15(a)
Thus,
vg(0z) + vg(a) = v, 15(2) + vg(a)
= U, 3(2) +v,1(a) 2 0
That is,
(6z)+a>0
as divisors of E/E and so
oz € Lg(a).
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Riemann-Roch spaces in separable constant field extensions

Proof.

By inspecting the proof of Theorem 11, we can write

n—1
z= g xjo!
Jj=0

with

x; € ENSpang ({az | o€ GaI(?/E)})
CEN Eg(a)
= Le(a).

Therefore, as o € L,
z € LLg(a).
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Riemann-Roch spaces in separable constant field extensions

Corollary 15

With the above notations,

dimF a= dimE a.

By Theorem 14,
Le(a) = LLg(a) = Span, (Le(a)).
Now,

dimg a = dim_ L¢(a) = dim Span, (Le(a)),
dimE a= dimK ,CE(U.).

Thus, we need to show that

dimg Lg(a) = dimi_ Span, (Lg(a)).



Riemann-Roch spaces in finite separable constant field
extensions

Proof.
We need to show that

dimK ,CE(CI.) = dim|_ SpanL(EE(a)).

Corollary 13 states that if A C E is linearly independent over K then
(viewed as a subset of F) A is linearly independent over L. Taking A to
be a basis of Lg(a) (over K) yields the < direction.

The > direction readily follows since there is a basis for Span, (Lg(a))
(over L) that is contained in Lg(a). Such a basis certainly remains
independent over K. O
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Overview

© The genus in finite separable constant field extensions
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The genus in finite separable constant field extensions

Theorem 16

If F/L is a finite separable constant field extension of E/K and the
respective genera are gr, ge then

8F = 8E-

Proof.
Take p a prime divisor of E/K and k € N large enough so that

min(degg a, dege a) > k > max(2ge — 2, 2gF — 2),
where a = kp. By Riemann-Roch,

dimga = degga+ 1 — g,
dimpa =degra+ 1 — gr.
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The genus in finite separable constant field extensions

dimga =degga+ 1 — g,
dimpa=degra+1— gr.
Now, by Lemma 9,
degg a = degp a,

and by Corollary 15,
dimE a= dimF a.

Therefore, ge = gr.
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Overview

@ Characterization of constant field invariance
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Characterization of constant field invariance

Let E/K a function field with K a perfect field. Let L/K be an algebraic
extension (finite or infinite) and denote F = EL. Then,

© L is algebraically closed in F.
@ Any subset of E that is K-linearly independent remains so over L.
@ For every x € E\ K,

[E: K(x)] = [F : L(x)].

We start with Item 1. Take v € F that is algebraic over L. We wish to
show v € L. As F =EL,

Jag,...,a, €L v € E(ag,...,a;).

Now K(aq,...,a,)/K is finite hence separable, and so Ja € L s.t
Klag,...,ar) = K(a).
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Characterization of constant field invariance

Proof.

Recall that « is algebraic over L and so it is algebraic over K. Indeed,
consider the chain L(v)/L/K. Thus, K(a,~)/K is finite hence separable,
and so

PBeF  Kla,7)=K(@).
Adjoining E we get that

E(8) = E(@,7) = E(e),
where the last equality follows since v € E(as ..., a,) = E(«). Hence,
[K(B) : K] = deg fg = [E(B) : E] = [E() : E] = deg f, = [K(a) : K].
Thus, K(a) = K(8) and so

v € K(B) =K(a) C L.
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Characterization of constant field invariance

We turn to prove Item 2. Take yi,..., Yy, € E that are linearly
independent over K. Assume that

r
> viyi=0  y,...%weL
i=1

We want to show that 73 = --- =+, = 0. Since K is perfect and
K(71,--.,7-)/K is finite hence separable,

Jda el Ky .- 7r) = K(a).

For each i € [r], write
n—1
Vi = Z cijo! cij € K,
j=0

where n = [K(a) : K] = deg f,,.



Characterization of constant field invariance

Z%’yizo Yi5-- 5 €L
i=1

n—1
Yi = ZC,"J'O[! Gij € K.
Jj=0

So
r n—1 n—1 r
03 (et =5 (L) ot
i=1 \ j=0 j=0 \i=1
Recall that 1, ¢, ..., " ! are linearly independent over E since K is

algebraically closed in E.
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Characterization of constant field invariance

n—1 r )
0= Z (Z C,'7jy,'> o,

j=0 \i=1

"=1 are linearly independent over E. Thus, for every j,

r
Z cijyi = 0.
i—1

But ¢;j € K and yi, ...,y are linearly independent over K and so
¢ij =0, and so are the v;-s.

lLa,...,«a
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Characterization of constant field invariance

Proof.

We turn to prove Item 3, namely,

Vx € E\ K [E: K(x)] = [F : L(x)]-

The > direction follows as we adjoin L to E/K(x) and so the degree can
only decrease.

As for the other direction, take zj, ..., zs € E that are linearly
independent over K(x). We wish to show these remain linearly
independent over L(x). Otherwise,

S

S h0z=0  f(x) el
i=1

where not all f;(x) zeros. Thus, {x/z},; are linearly dependent over L,
and so, by ltem 2, also over K. Thus, z, ..., zs are linearly dependent
over K(x) - a contradiction. O
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Characterization of constant field invariance

Theorem 18

Let F/L be a finite function field extension of E/K. Assume K is a
perfect field. Let K be an algebraic closure of K (containing L). Then,

[F:E]=[FK:EK]-[L:K].

First,
[F:E]=][F:EL]-[EL: E].

Write L = K(a) and recall that EL = E(a) and that
[EL: E] =degf, =[L: K],
where f, is the minimal polynomial of « over K.
So it remains to prove that
[F: EL] = [FK : EK].



Characterization of constant field invariance

Proof.
We wish to prove that

[F: EL] = [FK : EK].

Fix x € E\ L. By Lemma 17 (taking the constant field extension EK/K
of EL/L) o
[EL : L(x)] = [EK : K(x)].

Similarly, by considering the constant field extension FK/K of F/L,
[F: L(x)] = [FK : K(x)].
Thus,

e [FLG)
== ELl = [EL:L(x)] [
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Characterization of constant field invariance

Corollary 19

Let F/L be a finite function field extension of E/K, with K perfect.
Assume that F = E(y) and that ¢(T) € E[T] is the minimal polynomial
of y over E. Then, TFAE:

QO L=K
Q ¢(T) is irreducible in EK[T].

By Theorem 18,

[F:E]=[FK:EK]-[L:K],
and so (1) is equivalent to

[F : E] = [FK : EK].
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Characterization of constant field invariance

Proof.

So far,
(1) <= [F:E]=[FK:EK].

But F = E(y) and so
[F: E] =[E(y) : El,
[FK : EK] = [EK(y) : EK].

So
(1) <= [E(y):E]l=[EK(y): EK].

The proof then follows since also

() <= [E(y):El=[EK(y): EK].
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Characterization of constant field invariance

Corollary 20

Let F/K be a finite extension of E/K, with K perfect. Then, for every
algebraic separable extension L/K,

[F: E] = [FL: EL].
By Theorem 18,
[F:E]=[FK:EK]-[K: K] =[FK: EK],
and (using that K = L),
[FL:EL] = [FLL : ELL] - [L: L] = [FK : EK].

Therefore
[F: E] = [FL: EL].
O



Characterization of constant field invariance

Definition 21

A polynomial ¢(T) € K(x)[T] is said to be absolutely irreducible if ¢(T)

is irreducible in K(x)[T].

Theorem 22

Let F/K be a field extension s.t. F # K,
F=K(x,y),

and [F : K(x)] < co. Assume K is perfect.
Let o(T) € K(x)[T] be the minimal polynomial of y over K(x). TFAE:

Q F/K is a function field;
@ ¢(T) is absolutely irreducible.
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Characterization of constant field invariance

Per our assumption, F # K, F = K(x,y) and [F : K(x)] < co. Thus, we
need to prove that

K is algebraically closed in F <= ¢(T) is absolutely irreducible.

Let L be the algebraic closure of K in F. Note that F/L is a function
field. Indeed, F = L(x,y) # L (as F/K is of transcendence degree 1 and
L/K is algebraic) and

[F:L(x)] <[F:K(x)] < oc.
Moreover, L is algebraically closed in F (as the algebraic closure of K).

F=ky)

L/ \
N
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Characterization of constant field invariance

Consider the function field extension F/L over K(x)/K. This is a function
field extension x is transcendental over K and so

LNK(x) =K.
Since [F : K(x)] < oo, L/Kis finite. Indeed,

_[FKW)]
[FLC]

As K is perfect we conclude that L/K is separable.

[L: K] =[L(x) : K(x)]

F=kby)

L//\\\
\)/
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Characterization of constant field invariance

L/K is finite and separable, and so by Corollary 19 (with E = K(x)),
L=K <= ¢(T) isirreducible in K(x)K[T].

The proof follows as

F=ky)

L/ \k
\k/

()
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Consider our running example F = K(x, y) where K is a finite field and

y2=x3—x

By Theorem 22, to prove that F/K is a function field, it suffices to prove
that _
T2 — 53 + x € K(X)[T]

is irreducible.

If this is not the case then
T2 -3 4 x= (T + a(x))(T + b(x)),

with a(x), b(x) € K(x).
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T2 =53 4+ x = (T + a(x))(T + b(x)),
with a(x), b(x) € K(x).
But then a(x) = —b(x) and

and so

a(x)?=x—x3

which forces a(x) € K[x] and then yields a contradiction by degree
considerations.
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