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Towers of Function Fields

Definition 1

A tower over Fq is an infinite sequence F = (Fi )
∞
i=0 of function fields

Fi/Fq such that
1 Fi ⊊ Fi+1 for all i .
2 each Fi+1/Fi is finite and separable.
3 gi := g(Fi ) → ∞ as i → ∞.

Remark 1

Let F0/Fq be a function field and F0 ⊆ F1 ⊆ . . . be a sequence of finite
separable field extensions. We saw in class that if

1 ∃j ≥ 0 s.t. gj ≥ 2; and
2 ∀i ≥ 0 there exist pi ∈ PFi and Pi ∈ PFi+1 s.t. Pi | pi and

e(Pi/pi ) = [Fi+1 : Fi ] > 1 ,

then F = (Fi )
∞
i=0 is a tower over Fq.
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Towers of Function Fields

Let F = (Fi )
∞
i=0 be a tower over Fq. We denote by ni = N(Fi ) the

number of prime divisors of degree one in Fi .

Definition 2
1 The splitting rate of F is defined by

ν(F) = lim
i→∞

ni
[Fi : F0]

.

2 The genus of F is defined by

γ(F) = lim
i→∞

gi
[Fi : F0]

.

3 The limit of F is defined by

λ(F) = lim
i→∞

ni
gi
.

The tower is asymptotically good if λ(F) > 0.
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Towers of Function Fields

Remark 2
We saw in class that

0 ≤ ν(F) < ∞,

0 < γ(F) ≤ ∞,

0 ≤ λ(F) =
ν(F)

γ(F)
< ∞

and F is asymptotically good ⇐⇒ ν(F) > 0 and γ(F) < ∞.

Theorem 3 (Drinfeld-Vladut)

Let F be a tower over Fq. Then

λ(F) ≤ √
q − 1.
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An optimal tower over F4

Example 4

Consider the tower T1 = (Fi )
∞
i=0 in which F0 = F4(x0) and for each i ≥ 0,

Fi+1 = Fi (xi+1) where x3
i+1 =

xi
3

x2
i + xi + 1

i.e. the tower over F4 that is recursively defined by the equation

Y 3 =
X 3

X 2 + X + 1
.

Claim 4.1
T1 is an optimal tower over F4, i.e. it is a tower with

λ(T1) =
√
q − 1 = 2 − 1 = 1.
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The tower T1

Let us first show that T1 is indeed a tower over Fq.

Let p∞ ∈ PF0 be the unique pole of x0 in F0 = F4(x0).

Suppose P∞ ∈ PF1 lies above p∞. Then

3 · νP∞(x1) = νP∞(x3
1 ) = νP∞

(
x3
0

x2
0 + x0 + 1

)
= e(P∞/p∞) · ν∞

(
x3
0

x2
0 + x0 + 1

)
︸ ︷︷ ︸

=−1

= −e(P∞/p∞)

Since 1 ≤ e(P∞/p∞) ≤ [F1 : F0] ≤ 3 we conclude that

e(P∞/p∞) = [F1 : F0] = 3 and νP∞(x1) = −1,

i.e. p∞ is totally ramified in F1/F0 and P∞ is the unique prime divisor
lying above it in F1.
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The tower T1

Moreover, F1 = F0(x1) where xn1 = u for n = 3 and u =
x3
0

x2
0+x0+1 ∈ F0,

n = 3 is coprime to char(F4) = 2
F4 contains a primitive 3rd root of unity (δ ∈ F4\{0, 1}).
u ̸= w3 for all w ∈ F0 (as 3 ∤ ν∞(u) = −1).

Therefore F1/F0 is a Kummer extension, so it is Galois and in particular
finite and separable.

Note that since νP∞(x1) = −1 = ν∞(x0), we can reiterate this argument
to get that for all i ∈ N, the extension Fi+1/Fi is finite and separable,
and there exist pi ∈ PFi and Pi ∈ PFi+1 s.t. Pi | pi and

e(Pi/pi ) = [Fi+1 : Fi ] = 3.

This part of Remark 1 implies that the constant field of each Fi is F4. It
remains to show that gj ≥ 2 for some j ≥ 0. This is indeed the case, as
we will see later.
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Rational prime divisors in T1

As F0 = F4(x0) is a rational function field, the rational (i.e. degree one)
prime divisors in F0 are p0, p1, pδ, p1+δ and p∞ (where δ2 + δ + 1 = 0).

Each rational prime divisor in F1 lies above one of them, so let us explore
the prime divisors above them in F1.

p∞: We already showed that p∞ is totally ramified in F1/F0. Since
F0 and F1 have the same constant field F4, we get that

degP∞ = f (P∞/p∞) = 1.

p1: The min. poly. of x1 over F0 is φ(Y ) = Y 3 − x3
0

x2
0+x0+1 ∈ F0[Y ],

and

φ1(Y ) := Y 3 − 13

12 + 1 + 1
= Y 3 − 1 = (Y − 1)(Y 2 + Y + 1)

= (Y − 1)(Y − δ)(Y − (1 + δ)).

By Kummer theorem, p1 splits completely in F1/F0 to P1,1,P1,δ and
P1,1+δ, all of degree 1.
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pδ: Suppose Pδ ∈ PF1 lies above pδ. Since

νδ

(
x3
0

x2
0 + x0 + 1

)
= 3 · νδ(x0)− νδ(x

2
0 + x0 + 1) = 0 − 1 = −1

we can proceed as in the analysis of p∞ to get e(Pδ/pδ) = 3. Hence
pδ is also totally ramified in F1/F0, Pδ is unique, has degree one, and

νPδ
(x1) = −1.

p1+δ: Suppose P1+δ ∈ PF1 lies above p1+δ. Since

ν1+δ

(
x3
0

x2
0 + x0 + 1

)
= 3 ·ν1+δ(x0)−ν1+δ(x

2
0 +x0+1) = 0−1 = −1

this case is also similar.
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p0: In this case

φ0(Y ) = Y 3 − 03

02 + 0 + 1
= Y 3

so we cannot apply Kummer theorem for the element x1 ∈ F1. How-
ever, if we consider the element z = x1

x0
∈ F1, then z3 = 1

x2
0+x0+1 , its

minimal polynomial is φ̃(Z ) = Z 3 − 1
x2
0+x0+1 ∈ F0[Z ] and

φ̃0(Z ) = Z 3 − 1 = (Z − 1)(Z − δ)(Z − (1 + δ)).

Hence by Kummer theorem, p0 splits completely in F1/F0 to P0,z−1,
P0,z−δ and P0,z−(1+δ), all of degree 1. Clearly, for each P | p0,

3 · νP(x1) = νP(x3
1 ) = e(P/p0) · ν0

(
x3
0

x2
0 + x0 + 1

)
= 1 · 3 = 3

so that νP(x1) = 1 = ν0(x0).
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Rational prime divisors in F1/F0

In summary, we have 3 rational prime divisors in F0 that ramify in F1/F0:

P
(1)
∞ Pδ,∞ P1+δ,∞

p∞ pδ p1+δ

e=3 e=3 e=3

and 2 rational prime divisors in F0 that split completely in F1/F0:

P0,z−1 P0,z−δ P0,z−(1+δ) P1,1 P1,δ P1,1+δ

p0 p1
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Rational prime divisors in F2/F1

We can use similar arguments to analyze the behavior of these prime
divisors in the second floor of the tower, i.e. F2/F1. For the ramified
places we obtain

P
(2)
∞ Pδ,∞,∞ P1+δ,∞,∞

P
(1)
∞ Pδ,∞ P1+δ,∞

e=3 e=3 e=3

The prime divisors above p0 splits completely. For example, for P0,z−1,
denoting w = x2

x1
∈ F2, we get

P0,z−1,w−1 P0,z−1,w−δ P0,z−1,w−(1+δ)

P0,z−1
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Rational prime divisors in F2/F1

Finally, for the prime divisors above p1 in F1, we get that two of them are
totally ramified in F2/F1 while P1,1 splits completely there:

P1,1,1 P1,1,δ P1,1,1+δ P1,δ,∞ P1,1+δ,∞

P1,1 P1,δ P1,1+δ

e=3 e=3

and we can continue in the same manner to the next levels of the tower.

In particular, since each prime divisor lying above p0 in Fi/F0 splits
completely, we get that

ni = N(Fi ) ≥ 3i . (1)
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To conclude, we need to find the genera gi .

Since each Fi+1/Fi is finite and separable (and both have the same
constant field Fq), we get by Hurwitz Genus Formula that

2gi+1 − 2 = [Fi+1 : Fi ] · (2gi − 2) + degDiff(Fi+1/Fi ). (2)

Note that [Fi+1 : Fi ] = 3 and this extension is Galois, so each
ramification index is either 1 or 3, and above each ramified p ∈ PFi there
is a unique P ∈ PFi+1 with degP = 1. Hence

degDiff(Fi+1/Fi ) =
∑
p∈PFi

∑
P∈PFi+1

p|P

(e(P/p)− 1) degP = 2Ri

where Ri is the number of p ∈ PFi which are ramified in Fi+1/Fi . Let us
assume that every such p lies above a rational prime divisor in
F0 = F4(x0) (we will be justify this later). By the previous analysis of the
rational prime divisors in F0 and their extensions in the tower, we obtain

Ri = 3 + 2i
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Substituting in Equation (2), we get

2gi+1 − 2 = [Fi+1 : Fi ] · (2gi − 2) + degDiff(Fi+1/Fi )

= 3 · (2gi − 2) + 2Ri

which implies

gi+1 − 1 = 3 · (gi − 1) + Ri = 3gi − 3 + 3 + 2i

which gives gi+1 = 3gi + 2i + 1. Since g0 = 0, we can solve to get

gi = 3i − i − 1.

Note that in particular g2 = 6 ≥ 2 so it is indeed a tower (this is also
clear as gi → ∞ as i → ∞).
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The limit of T1

Finally, we can see that

λ(T1) = lim
i→∞

ni
gi

≥ lim
i→∞

3i

3i − i − 1
= 1

But by the Drinfeld-Vladut bound,

λ(T1) ≤
√
q − 1 =

√
4 − 1 = 1

hence λ(T1) = 1 and this tower is optimal over F4.

We are almost done - we still need to show that all the ramification in
the tower occur above rational prime divisors in F0.
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The ramification locus of T1

Definition 5
Let F be a tower over Fq. The set

Ram(F) = {p ∈ PF0 | p is ramified in Fi/F0 for some i ≥ 1}

is called the ramification locus of F .

Suppose that P ∈ PFi is ramified in Fi+1/Fi , i.e. there exists P̂ ∈ PFi+1

s.t. P̂ | P and e(P̂/P) > 1. Let p ∈ PF0 be the prime divisor below P.

Then clearly p ∈ Ram(F), as

P̂

P

p

e>1

e(P̂/p) = e(P̂/P)︸ ︷︷ ︸
>1

·e(P/p) > 1.
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Thus, it suffices to show that Ram(T1) ⊆ P1
F0

. Fortunately, we have

Theorem 6

Let F = (Fi )
∞
i=0 be a recursive tower over Fq defined by the equation

f (Y ) = h(X ),

with a basic function field F , i.e. F = Fq(x , y) where f (y) = h(x).
Assume that every prime divisor of Fq(x) that ramifies in F/Fq(x) is
rational. In particular,

Λ0 := {x(p) | p ∈ PFq(x) is ramified in F/Fq(x)} ⊆ Fq ∪ {∞}.

Suppose that Λ ⊆ Fq ∪ {∞} satisfies:
1 Λ0 ⊆ Λ; and
2 if β ∈ Λ and α ∈ Fq ∪ {∞} satisfy the equation f (β) = h(α), then

α ∈ Λ.
Then, the ramification locus is finite and

Ram(F) ⊆ {p ∈ P1
F0

| x0(p) ∈ Λ}.
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Let us apply this theorem to the tower T1.

First, the basic function field F = F4(x , y) where y3 = x3

x2+x+1 is a
Kummer extension of F4(x) (with n = 3 and u = x3

x2+x+1 ). By Kummer
theory, if P ∈ PF lies above p ∈ PF4(x), then

e(P/p) =
n

rp
=

n

gcd(n, νp(u))
=

3
gcd(3, νp(u))

.

Since u = x3

(x−δ)(x−(1+δ)) , we have

νp(u) =


3 p = p0

−1 p ∈ {pδ, p1+δ, p∞}
0 otherwise

Thus, the only prime divisors in PF4(x) which are ramified in F/F4(x) are
pδ, p1+δ and p∞, and so

Λ0 = {δ, 1 + δ,∞}.
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To conclude, we claim that Λ := Λ0 ∪ {1} = {1, δ, 1 + δ,∞} satisfies the
required conditions.

1 Clearly Λ0 ⊆ Λ.
2 Let β ∈ Λ and suppose β3 = α3

α2+α+1 .

If β = ∞ then either α = ∞, or α2 + α+ 1 = 0, i.e. α ∈ {δ, 1 + δ}.
In any case, α ∈ Λ.

Otherwise, β ∈ F×
4 so that β3 = 1 and hence α3

α2+α+1 = 1. Therefore
α3 = α2 + α+ 1. Since the characteristic is 2, we get

(α+ 1)3 = α3 + α2 + α+ 1 = 0

and therefore α = 1 ∈ Λ.
Thus,

Ram(T1) ⊆ {p ∈ P1
F0

| x0(p) ∈ Λ} = {p1, pδ, p1+δ, p∞}.

In fact, by the previous analysis, this holds with equality.
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A simpler calculation

Let us give an immediate proof, using another theorem from class. First,
recall

Definition 7
Let F be a tower over Fq. The set

Split(F) =
{
p ∈ P1

F0
| p splits completely in all extensions Fi/F0

}
is called the splitting locus of F .

In our case, we saw that Split(T1) = {p0}.

In fact, we can show that {p0} ⊆ Split(T1) using an analogue theorem for
the splitting locus.
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The splitting locus

Theorem 8

Let F = (Fi )
∞
i=0 be a recursive tower over Fq defined by the equation

f (Y ) = h(X ),

and let F be the basic function field of the tower. Assume that there
exists ∅ ≠ Σ ⊆ Fq ∪ {∞} s.t. for all α ∈ Σ:

1 px−α splits completely in F ; and
2 for all P ∈ PF s.t. P | px−α, it holds that y(P) ∈ Σ.

Then,
{px0−α | α ∈ Σ} ⊆ Split(F).

In our case, we can apply this theorem with Σ = {0}. The same
arguments used for F1/F0 shows that px−0 splits completely in F , and for
every P ∈ PF s.t. P | px−0 it holds that νP(y) = 1, hence y(P) = 0 ∈ Σ
as desired.
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To conclude, recall

Definition 9

A tower F = (Fi )
∞
i=0 over Fq is called tame if all ramification indices

e(P/p) (where p ∈ PF0 and P ∈ PFi ) are coprime to charFq.

Theorem 10

Let F = (Fi )
∞
i=0 be a tame tower over Fq with F0 = Fq(x0) and

s = |Split(F)| and r =
∑

p∈Ram(F)

deg p.

Then
λ(F) ≥ 2s

r − 2
.

Since the tower T1 is a tame tower over F4 with s ≥ 1 (in fact s = 1)
and r = |Ram(T1)| = 4, we obtain

λ(T1) ≥
2s

r − 2
=

2 · 1
4 − 2

= 1.
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Transformation of Variables

So far we considered the recursive tower T1 over F4 defined by the
equation

Y 3 =
X 3

X 2 + X + 1
.

Consider the variable transformation zi :=
1
xi

. Clearly Fi = Fi−1(zi ) and

z3
i+1 =

1
x3
i+1

=
x2
i + xi + 1

x3
i

=
1
xi

+
1
x2
i

+
1
x3
i

= zi + z2
i + z3

i = (zi + 1)3 − 1.

Thus, T1 is recursively defined (with F0 = F4(z0) and Fi = Fi−1(zi )) by
the nicer equation

Y 3 = (X + 1)3 − 1.

In fact, this is a particular case of a more general result.
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An asymptotically good tower over non-prime fields

Theorem 11
Let ℓ be a prime power and let q = ℓr , where 2 ≤ r ∈ N. Let

m =
q − 1
ℓ− 1

= 1 + ℓ+ . . .+ ℓr−1.

Then the equation
Ym = (X + 1)m − 1

defines a recursive tower T over Fq with

λ(T ) ≥ 2
q − 2

> 0.

The tower T1 over F4 is obtained by taking ℓ = r = 2.
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