Algebraic Geometric Codes

Recitation 13

Tomer Manket

Tel Aviv University

Towers of Function Fields

Definition 1

A tower over \mathbb{F}_q is an infinite sequence $\mathcal{F} = (F_i)_{i=0}^{\infty}$ of function fields F_i/\mathbb{F}_q such that

- $F_i \subsetneq F_{i+1}$ for all *i*.
- **2** each F_{i+1}/F_i is finite and separable.

Remark 1

Let F_0/\mathbb{F}_q be a function field and $F_0 \subseteq F_1 \subseteq \dots$ be a sequence of finite separable field extensions. We saw in class that if

•
$$\exists j \geq 0 \text{ s.t. } g_j \geq 2; \text{ and }$$

3 $\forall i \geq 0$ there exist $\mathfrak{p}_i \in \mathbb{P}_{F_i}$ and $\mathfrak{P}_i \in \mathbb{P}_{F_{i+1}}$ s.t. $\mathfrak{P}_i \mid \mathfrak{p}_i$ and

$$e(\mathfrak{P}_i/\mathfrak{p}_i)=[F_{i+1}:F_i]>1\,,$$

then $\mathcal{F} = (F_i)_{i=0}^{\infty}$ is a tower over \mathbb{F}_q .

Towers of Function Fields

Let $\mathcal{F} = (F_i)_{i=0}^{\infty}$ be a *tower over* \mathbb{F}_q . We denote by $n_i = N(F_i)$ the number of prime divisors of degree one in F_i .

Definition 2

• The *splitting rate* of \mathcal{F} is defined by

$$\nu(\mathcal{F}) = \lim_{i \to \infty} \frac{n_i}{[F_i : F_0]}.$$

2 The *genus* of \mathcal{F} is defined by

$$\gamma(\mathcal{F}) = \lim_{i \to \infty} \frac{g_i}{[F_i : F_0]}.$$

() The *limit* of \mathcal{F} is defined by

$$\lambda(\mathcal{F}) = \lim_{i \to \infty} \frac{n_i}{g_i}$$

The tower is asymptotically good if $\lambda(\mathcal{F}) > 0$.

Towers of Function Fields

Remark 2

We saw in class that

$$egin{aligned} 0 &\leq
u(\mathcal{F}) < \infty, \ 0 &< \gamma(\mathcal{F}) \leq \infty, \ 0 &\leq \lambda(\mathcal{F}) = rac{
u(\mathcal{F})}{\gamma(\mathcal{F})} < \infty \end{aligned}$$

and \mathcal{F} is asymptotically good $\iff \nu(\mathcal{F}) > 0$ and $\gamma(\mathcal{F}) < \infty$.

Theorem 3 (Drinfeld-Vladut)

Let \mathcal{F} be a tower over \mathbb{F}_q . Then

$$\lambda(\mathcal{F}) \leq \sqrt{q} - 1.$$

Example 4

Consider the tower $\mathcal{T}_1 = (F_i)_{i=0}^{\infty}$ in which $F_0 = \mathbb{F}_4(x_0)$ and for each $i \ge 0$,

$$F_{i+1} = F_i(x_{i+1})$$
 where $x_{i+1}^3 = rac{{x_i}^3}{x_i^2 + x_i + 1}$

i.e. the tower over \mathbb{F}_4 that is recursively defined by the equation

$$Y^3 = \frac{X^3}{X^2 + X + 1}.$$

Claim 4.1

 \mathcal{T}_1 is an optimal tower over \mathbb{F}_4 , i.e. it is a tower with

$$\lambda(\mathcal{T}_1) = \sqrt{q} - 1 = 2 - 1 = 1.$$

The tower \mathcal{T}_1

Let us first show that \mathcal{T}_1 is indeed a tower over \mathbb{F}_q .

• Let $\mathfrak{p}_{\infty} \in \mathbb{P}_{F_0}$ be the unique pole of x_0 in $F_0 = \mathbb{F}_4(x_0)$. Suppose $\mathfrak{P}_{\infty} \in \mathbb{P}_{F_1}$ lies above \mathfrak{p}_{∞} . Then

$$3 \cdot \nu_{\mathfrak{P}_{\infty}}(x_1) = \nu_{\mathfrak{P}_{\infty}}(x_1^3) = \nu_{\mathfrak{P}_{\infty}}\left(\frac{x_0^3}{x_0^2 + x_0 + 1}\right)$$

= $e(\mathfrak{P}_{\infty}/\mathfrak{p}_{\infty}) \cdot \underbrace{\nu_{\infty}\left(\frac{x_0^3}{x_0^2 + x_0 + 1}\right)}_{=-1} = -e(\mathfrak{P}_{\infty}/\mathfrak{p}_{\infty})$

Since $1 \leq e(\mathfrak{P}_\infty/\mathfrak{p}_\infty) \leq [F_1:F_0] \leq 3$ we conclude that

$$e(\mathfrak{P}_{\infty}/\mathfrak{p}_{\infty})=[\mathit{F}_{1}:\mathit{F}_{0}]=3 \ \text{and} \ \nu_{\mathfrak{P}_{\infty}}(x_{1})=-1,$$

i.e. \mathfrak{p}_{∞} is totally ramified in F_1/F_0 and \mathfrak{P}_{∞} is the unique prime divisor lying above it in F_1 .

The tower \mathcal{T}_1

Moreover, $F_1 = F_0(x_1)$ where $x_1^n = u$ for n = 3 and $u = \frac{x_0^3}{x_0^2 + x_0 + 1} \in F_0$,

- n = 3 is coprime to char $(\mathbb{F}_4) = 2$
- \mathbb{F}_4 contains a primitive 3^{rd} root of unity $(\delta \in \mathbb{F}_4 \setminus \{0, 1\})$.
- $u \neq w^3$ for all $w \in F_0$ (as $3 \nmid \nu_{\infty}(u) = -1$).

Therefore F_1/F_0 is a Kummer extension, so it is Galois and in particular finite and separable.

Note that since $\nu_{\mathfrak{P}_{\infty}}(x_1) = -1 = \nu_{\infty}(x_0)$, we can reiterate this argument to get that for all $i \in \mathbb{N}$, the extension F_{i+1}/F_i is finite and separable, and there exist $\mathfrak{p}_i \in \mathbb{P}_{F_i}$ and $\mathfrak{P}_i \in \mathbb{P}_{F_{i+1}}$ s.t. $\mathfrak{P}_i \mid \mathfrak{p}_i$ and

$$e(\mathfrak{P}_i/\mathfrak{p}_i)=[F_{i+1}:F_i]=3.$$

This part of Remark 1 implies that the constant field of each F_i is \mathbb{F}_4 . It remains to show that $g_j \ge 2$ for some $j \ge 0$. This is indeed the case, as we will see later.

Rational prime divisors in \mathcal{T}_1

As $F_0 = \mathbb{F}_4(x_0)$ is a rational function field, the rational (i.e. degree one) prime divisors in F_0 are \mathfrak{p}_0 , \mathfrak{p}_1 , \mathfrak{p}_{δ} , $\mathfrak{p}_{1+\delta}$ and \mathfrak{p}_{∞} (where $\delta^2 + \delta + 1 = 0$).

Each rational prime divisor in F_1 lies above one of them, so let us explore the prime divisors above them in F_1 .

• \mathfrak{p}_{∞} : We already showed that \mathfrak{p}_{∞} is totally ramified in F_1/F_0 . Since F_0 and F_1 have the same constant field \mathbb{F}_4 , we get that

$$\deg \mathfrak{P}_{\infty} = f(\mathfrak{P}_{\infty}/\mathfrak{p}_{\infty}) = 1.$$

• \mathfrak{p}_1 : The min. poly. of x_1 over F_0 is $\varphi(Y) = Y^3 - \frac{x_0^3}{x_0^2 + x_0 + 1} \in F_0[Y]$, and

$$arphi_1(Y) := Y^3 - rac{1^3}{1^2 + 1 + 1} = Y^3 - 1 = (Y - 1)(Y^2 + Y + 1) = (Y - 1)(Y - \delta)(Y - (1 + \delta)).$$

By Kummer theorem, \mathfrak{p}_1 splits completely in F_1/F_0 to $\mathfrak{P}_{1,1}, \mathfrak{P}_{1,\delta}$ and $\mathfrak{P}_{1,1+\delta}$, all of degree 1.

• \mathfrak{p}_{δ} : Suppose $\mathfrak{P}_{\delta} \in \mathbb{P}_{F_1}$ lies above \mathfrak{p}_{δ} . Since

$$\nu_{\delta}\left(\frac{x_0^3}{x_0^2 + x_0 + 1}\right) = 3 \cdot \nu_{\delta}(x_0) - \nu_{\delta}(x_0^2 + x_0 + 1) = 0 - 1 = -1$$

we can proceed as in the analysis of \mathfrak{p}_{∞} to get $e(\mathfrak{P}_{\delta}/\mathfrak{p}_{\delta}) = 3$. Hence \mathfrak{p}_{δ} is also totally ramified in F_1/F_0 , \mathfrak{P}_{δ} is unique, has degree one, and

$$\nu_{\mathfrak{P}_{\delta}}(\mathbf{x}_{1}) = -1.$$

• $\mathfrak{p}_{1+\delta}$: Suppose $\mathfrak{P}_{1+\delta} \in \mathbb{P}_{F_1}$ lies above $\mathfrak{p}_{1+\delta}$. Since

$$\nu_{1+\delta}\left(\frac{x_0^3}{x_0^2+x_0+1}\right) = 3 \cdot \nu_{1+\delta}(x_0) - \nu_{1+\delta}(x_0^2+x_0+1) = 0 - 1 = -1$$

this case is also similar.

• p₀: In this case

$$\varphi_0(Y) = Y^3 - \frac{0^3}{0^2 + 0 + 1} = Y^3$$

so we cannot apply Kummer theorem for the element $x_1 \in F_1$. However, if we consider the element $z = \frac{x_1}{x_0} \in F_1$, then $z^3 = \frac{1}{x_0^2 + x_0 + 1}$, its minimal polynomial is $\tilde{\varphi}(Z) = Z^3 - \frac{1}{x_0^2 + x_0 + 1} \in F_0[Z]$ and

$$ilde{arphi}_0(Z)=Z^3-1=(Z-1)(Z-\delta)(Z-(1+\delta)).$$

Hence by Kummer theorem, \mathfrak{p}_0 splits completely in F_1/F_0 to $\mathfrak{P}_{0,z-1}$, $\mathfrak{P}_{0,z-\delta}$ and $\mathfrak{P}_{0,z-(1+\delta)}$, all of degree 1. Clearly, for each $\mathfrak{P} \mid \mathfrak{p}_0$,

$$3 \cdot \nu_{\mathfrak{P}}(x_1) = \nu_{\mathfrak{P}}(x_1^3) = e(\mathfrak{P}/\mathfrak{p}_0) \cdot \nu_0\left(\frac{x_0^3}{x_0^2 + x_0 + 1}\right) = 1 \cdot 3 = 3$$

so that $\nu_{\mathfrak{P}}(x_1) = 1 = \nu_0(x_0)$.

In summary, we have 3 rational prime divisors in F_0 that ramify in F_1/F_0 :

$$\mathfrak{P}_{\infty}^{(1)}$$
 $\mathfrak{P}_{\delta,\infty}$ $\mathfrak{P}_{1+\delta,\infty}$
 $\Big|_{e=3}$ $\Big|_{e=3}$ $\Big|_{e=3}$
 \mathfrak{p}_{∞} \mathfrak{p}_{δ} $\mathfrak{p}_{1+\delta}$

and 2 rational prime divisors in F_0 that split completely in F_1/F_0 :

We can use similar arguments to analyze the behavior of these prime divisors in the second floor of the tower, i.e. F_2/F_1 . For the ramified places we obtain

The prime divisors above \mathfrak{p}_0 splits completely. For example, for $\mathfrak{P}_{0,z-1}$, denoting $w = \frac{x_2}{x_1} \in F_2$, we get

Finally, for the prime divisors above \mathfrak{p}_1 in F_1 , we get that two of them are totally ramified in F_2/F_1 while $\mathfrak{P}_{1,1}$ splits completely there:

and we can continue in the same manner to the next levels of the tower.

In particular, since each prime divisor lying above p_0 in F_i/F_0 splits completely, we get that

$$n_i = N(F_i) \ge 3^i. \tag{1}$$

To conclude, we need to find the genera g_i .

To conclude, we need to find the genera g_i .

Since each F_{i+1}/F_i is finite and separable (and both have the same constant field \mathbb{F}_q), we get by Hurwitz Genus Formula that

$$2g_{i+1} - 2 = [F_{i+1} : F_i] \cdot (2g_i - 2) + \deg \operatorname{Diff}(F_{i+1}/F_i).$$
(2)

Note that $[F_{i+1} : F_i] = 3$ and this extension is Galois, so each ramification index is either 1 or 3, and above each ramified $\mathfrak{p} \in \mathbb{P}_{F_i}$ there is a unique $\mathfrak{P} \in \mathbb{P}_{F_{i+1}}$ with deg $\mathfrak{P} = 1$. Hence

$$\operatorname{\mathsf{deg}}\operatorname{\mathsf{Diff}}(F_{i+1}/F_i) = \sum_{\substack{\mathfrak{p} \in \mathbb{P}_{F_i}}} \sum_{\substack{\mathfrak{P} \in \mathbb{P}_{F_{i+1}} \\ \mathfrak{p} \mid \mathfrak{P}}} (e(\mathfrak{P}/\mathfrak{p}) - 1) \operatorname{\mathsf{deg}} \mathfrak{P} = 2R_i$$

where R_i is the number of $\mathfrak{p} \in \mathbb{P}_{F_i}$ which are ramified in F_{i+1}/F_i . Let us assume that every such \mathfrak{p} lies above a *rational* prime divisor in $F_0 = \mathbb{F}_4(x_0)$ (we will be justify this later). By the previous analysis of the rational prime divisors in F_0 and their extensions in the tower, we obtain

$$R_i = 3 + 2i$$

Substituting in Equation (2), we get

$$2g_{i+1} - 2 = [F_{i+1} : F_i] \cdot (2g_i - 2) + \deg \operatorname{Diff}(F_{i+1}/F_i) \\= 3 \cdot (2g_i - 2) + 2R_i$$

which implies

$$g_{i+1} - 1 = 3 \cdot (g_i - 1) + R_i = 3g_i - 3 + 3 + 2i$$

which gives $g_{i+1} = 3g_i + 2i + 1$. Since $g_0 = 0$, we can solve to get

$$g_i=3^i-i-1.$$

Note that in particular $g_2 = 6 \ge 2$ so it is indeed a tower (this is also clear as $g_i \to \infty$ as $i \to \infty$).

Finally, we can see that

$$\lambda(\mathcal{T}_1) = \lim_{i o \infty} rac{n_i}{g_i} \geq \lim_{i o \infty} rac{3^i}{3^i - i - 1} = 1$$

But by the Drinfeld-Vladut bound,

$$\lambda(\mathcal{T}_1) \leq \sqrt{q} - 1 = \sqrt{4} - 1 = 1$$

hence $\lambda(\mathcal{T}_1) = 1$ and this tower is optimal over \mathbb{F}_4 .

Finally, we can see that

$$\lambda(\mathcal{T}_1) = \lim_{i o \infty} rac{n_i}{g_i} \geq \lim_{i o \infty} rac{3^i}{3^i - i - 1} = 1$$

But by the Drinfeld-Vladut bound,

$$\lambda(\mathcal{T}_1) \leq \sqrt{q} - 1 = \sqrt{4} - 1 = 1$$

hence $\lambda(\mathcal{T}_1) = 1$ and this tower is optimal over \mathbb{F}_4 .

We are almost done - we still need to show that all the ramification in the tower occur above *rational* prime divisors in F_0 .

The ramification locus of \mathcal{T}_1

Definition 5

Let \mathcal{F} be a tower over \mathbb{F}_q . The set

 $\mathsf{Ram}(\mathcal{F}) = \{ \mathfrak{p} \in \mathbb{P}_{F_0} \mid \mathfrak{p} \text{ is ramified in } F_i / F_0 \text{ for some } i \geq 1 \}$

is called the *ramification locus* of \mathcal{F} .

Suppose that $\mathfrak{P} \in \mathbb{P}_{F_i}$ is ramified in F_{i+1}/F_i , i.e. there exists $\hat{\mathfrak{P}} \in \mathbb{P}_{F_{i+1}}$ s.t. $\hat{\mathfrak{P}} \mid \mathfrak{P}$ and $e(\hat{\mathfrak{P}}/\mathfrak{P}) > 1$. Let $\mathfrak{p} \in \mathbb{P}_{F_0}$ be the prime divisor below \mathfrak{P} .

Then clearly $\mathfrak{p} \in \mathsf{Ram}(\mathcal{F})$, as

$$e(\hat{\mathfrak{P}}/\mathfrak{p}) = \underbrace{e(\hat{\mathfrak{P}}/\mathfrak{P})}_{>1} \cdot e(\mathfrak{P}/\mathfrak{p}) > 1.$$

e > 1

Thus, it suffices to show that $\operatorname{Ram}(\mathcal{T}_1) \subseteq \mathbb{P}^1_{F_0}$. Fortunately, we have

Theorem 6

Let $\mathcal{F} = (F_i)_{i=0}^{\infty}$ be a recursive tower over \mathbb{F}_q defined by the equation

f(Y)=h(X),

with a basic function field F, i.e. $F = \mathbb{F}_q(x, y)$ where f(y) = h(x). Assume that every prime divisor of $\mathbb{F}_q(x)$ that ramifies in $F/\mathbb{F}_q(x)$ is rational. In particular,

 $\Lambda_0 := \{x(\mathfrak{p}) \ | \ \mathfrak{p} \in \mathbb{P}_{\mathbb{F}_q(x)} \text{ is ramified in } F/\mathbb{F}_q(x)\} \subseteq \mathbb{F}_q \cup \{\infty\}.$

Suppose that $\Lambda \subseteq \mathbb{F}_q \cup \{\infty\}$ satisfies:

- $\ \, {\bf 0} \ \, \Lambda_0 \subseteq \Lambda; \ \, and \ \,$
- **e** if $\beta \in \Lambda$ and $\alpha \in \overline{\mathbb{F}_q} \cup \{\infty\}$ satisfy the equation $f(\beta) = h(\alpha)$, then $\alpha \in \Lambda$.

Then, the ramification locus is finite and

$$\mathsf{Ram}(\mathcal{F}) \subseteq \{\mathfrak{p} \in \mathbb{P}^1_{F_0} \mid x_0(\mathfrak{p}) \in \Lambda\}.$$

Let us apply this theorem to the tower \mathcal{T}_1 .

First, the basic function field $F = \mathbb{F}_4(x, y)$ where $y^3 = \frac{x^3}{x^2+x+1}$ is a Kummer extension of $\mathbb{F}_4(x)$ (with n = 3 and $u = \frac{x^3}{x^2+x+1}$). By Kummer theory, if $\mathfrak{P} \in \mathbb{P}_F$ lies above $\mathfrak{p} \in \mathbb{P}_{\mathbb{F}_4(x)}$, then

$$e(\mathfrak{P}/\mathfrak{p}) = \frac{n}{r_\mathfrak{p}} = \frac{n}{\gcd(n,\nu_\mathfrak{p}(u))} = \frac{3}{\gcd(3,\nu_\mathfrak{p}(u))}.$$

Since $u = \frac{x^3}{(x-\delta)(x-(1+\delta))}$, we have

$$u_{\mathfrak{p}}(u) = egin{cases} 3 & \mathfrak{p} = \mathfrak{p}_0 \ -1 & \mathfrak{p} \in \{\mathfrak{p}_{\delta}, \mathfrak{p}_{1+\delta}, \mathfrak{p}_\infty\} \ 0 & ext{otherwise} \end{cases}$$

Thus, the only prime divisors in $\mathbb{P}_{\mathbb{F}_4(x)}$ which are ramified in $F/\mathbb{F}_4(x)$ are \mathfrak{p}_{δ} , $\mathfrak{p}_{1+\delta}$ and \mathfrak{p}_{∞} , and so

$$\Lambda_0 = \{\delta, 1 + \delta, \infty\}.$$

To conclude, we claim that $\Lambda:=\Lambda_0\cup\{1\}=\{1,\delta,1+\delta,\infty\}$ satisfies the required conditions.

- $\ \ \, \textbf{O} \ \ \, \textbf{Clearly} \ \ \, \Lambda_0 \subseteq \Lambda.$
- **3** Let $\beta \in \Lambda$ and suppose $\beta^3 = \frac{\alpha^3}{\alpha^2 + \alpha + 1}$.

If $\beta = \infty$ then either $\alpha = \infty$, or $\alpha^2 + \alpha + 1 = 0$, i.e. $\alpha \in \{\delta, 1 + \delta\}$. In any case, $\alpha \in \Lambda$.

Otherwise, $\beta \in \mathbb{F}_4^{\times}$ so that $\beta^3 = 1$ and hence $\frac{\alpha^3}{\alpha^2 + \alpha + 1} = 1$. Therefore $\alpha^3 = \alpha^2 + \alpha + 1$. Since the characteristic is 2, we get

$$(\alpha+1)^3 = \alpha^3 + \alpha^2 + \alpha + 1 = 0$$

and therefore $\alpha = 1 \in \Lambda$.

Thus,

$$\mathsf{Ram}(\mathcal{T}_1) \subseteq \{\mathfrak{p} \in \mathbb{P}^1_{F_0} \mid x_0(\mathfrak{p}) \in \Lambda\} = \{\mathfrak{p}_1, \mathfrak{p}_{\delta}, \mathfrak{p}_{1+\delta}, \mathfrak{p}_{\infty}\}.$$

In fact, by the previous analysis, this holds with equality.

Let us give an immediate proof, using another theorem from class. First, recall

Definition 7

Let \mathcal{F} be a tower over \mathbb{F}_q . The set

 $\mathsf{Split}(\mathcal{F}) = \left\{ \mathfrak{p} \in \mathbb{P}^1_{F_0} \mid \mathfrak{p} \text{ splits completely in all extensions } F_i/F_0 \right\}$

is called the *splitting locus* of \mathcal{F} .

Let us give an immediate proof, using another theorem from class. First, recall

Definition 7

Let \mathcal{F} be a tower over \mathbb{F}_q . The set

 $\mathsf{Split}(\mathcal{F}) = \left\{ \mathfrak{p} \in \mathbb{P}^1_{F_0} \mid \mathfrak{p} \text{ splits completely in all extensions } F_i/F_0 \right\}$

is called the *splitting locus* of \mathcal{F} .

In our case, we saw that $Split(\mathcal{T}_1) = \{\mathfrak{p}_0\}.$

In fact, we can show that $\{\mathfrak{p}_0\} \subseteq \text{Split}(\mathcal{T}_1)$ using an analogue theorem for the splitting locus.

The splitting locus

Theorem 8

Let $\mathcal{F} = (F_i)_{i=0}^{\infty}$ be a recursive tower over \mathbb{F}_q defined by the equation

$$f(Y)=h(X),$$

and let F be the basic function field of the tower. Assume that there exists $\emptyset \neq \Sigma \subseteq \mathbb{F}_q \cup \{\infty\}$ s.t. for all $\alpha \in \Sigma$:

Q $\mathfrak{p}_{\mathbf{x}-\alpha}$ splits completely in *F*; and

e for all $\mathfrak{P} \in \mathbb{P}_F$ s.t. $\mathfrak{P} \mid \mathfrak{p}_{\mathsf{x}-\alpha}$, it holds that $y(\mathfrak{P}) \in \Sigma$. Then,

$$\{\mathfrak{p}_{\mathsf{x_0}-\alpha} \mid \alpha \in \Sigma\} \subseteq \mathsf{Split}(\mathcal{F}).$$

In our case, we can apply this theorem with $\Sigma = \{0\}$. The same arguments used for F_1/F_0 shows that \mathfrak{p}_{x-0} splits completely in F, and for every $\mathfrak{P} \in \mathbb{P}_F$ s.t. $\mathfrak{P} \mid \mathfrak{p}_{x-0}$ it holds that $\nu_{\mathfrak{P}}(y) = 1$, hence $y(\mathfrak{P}) = 0 \in \Sigma$ as desired.

To conclude, recall

Definition 9

A tower $\mathcal{F} = (F_i)_{i=0}^{\infty}$ over \mathbb{F}_q is called *tame* if all ramification indices $e(\mathfrak{P}/\mathfrak{p})$ (where $\mathfrak{p} \in \mathbb{P}_{F_0}$ and $\mathfrak{P} \in \mathbb{P}_{F_i}$) are coprime to char \mathbb{F}_q .

Theorem 10

Let
$$\mathcal{F} = (F_i)_{i=0}^{\infty}$$
 be a tame tower over \mathbb{F}_q with $F_0 = \mathbb{F}_q(x_0)$ and

$$s = |\mathsf{Split}(\mathcal{F})|$$
 and $r = \sum_{\mathfrak{p}\in\mathsf{Ram}(\mathcal{F})} \deg \mathfrak{p}.$

Then

$$\lambda(\mathcal{F}) \geq rac{2s}{r-2}$$
.

Since the tower \mathcal{T}_1 is a tame tower over \mathbb{F}_4 with $s \ge 1$ (in fact s = 1) and $r = |\mathsf{Ram}(\mathcal{T}_1)| = 4$, we obtain

$$\lambda(\mathcal{T}_1) \geq \frac{2s}{r-2} = \frac{2 \cdot 1}{4-2} = 1.$$

So far we considered the recursive tower \mathcal{T}_1 over \mathbb{F}_4 defined by the equation

$$Y^3 = \frac{X^3}{X^2 + X + 1}.$$

Consider the variable transformation $z_i := \frac{1}{x_i}$. Clearly $F_i = F_{i-1}(z_i)$ and

$$z_{i+1}^3 = \frac{1}{x_{i+1}^3} = \frac{x_i^2 + x_i + 1}{x_i^3} = \frac{1}{x_i} + \frac{1}{x_i^2} + \frac{1}{x_i^3}$$
$$= z_i + z_i^2 + z_i^3 = (z_i + 1)^3 - 1.$$

Thus, \mathcal{T}_1 is recursively defined (with $F_0 = \mathbb{F}_4(z_0)$ and $F_i = F_{i-1}(z_i)$) by the nicer equation

$$Y^3 = (X+1)^3 - 1.$$

In fact, this is a particular case of a more general result.

Theorem 11

Let ℓ be a prime power and let $q = \ell^r$, where $2 \leq r \in \mathbb{N}$. Let

$$m = rac{q-1}{\ell-1} = 1 + \ell + \ldots + \ell^{r-1}.$$

Then the equation

$$Y^m = (X+1)^m - 1$$

defines a recursive tower \mathcal{T} over \mathbb{F}_q with

$$\lambda(\mathcal{T}) \geq rac{2}{q-2} > 0.$$

The tower \mathcal{T}_1 over \mathbb{F}_4 is obtained by taking $\ell = r = 2$.