Normal Function Field Extensions Unit 19

Gil Cohen

January 3, 2025

Gil Cohen Normal Function Field Extensions

▶ ★ 문 ► ★ 문 ► ...

1 Group actions

- 2 Normal field extensions
- Separable field extensions
- Galois extensions
- 5 Isomorphism between function fields
- 6 Normal extensions of function field
- The decomposition group
- 8 The inertia group
- Some equalities

Groups allow us to study the symmetries of an object though this connection is sometimes missed in the abstract study of groups. We quickly recap it.

Definition 1

Let X be a set and G a group. A group action α of G on X is a function

$$\alpha: G \times X \to X$$
$$(g, x) \mapsto gx$$

satisfying:

ex = x; and
 g(hx) = (gh)x,
 for all x ∈ X, g, h ∈ G.
 The group G is said to act on X.

• • = • • = •

Group actions

Note that for every fixed $g \in G$, the function

$$\varphi_g: X \to X$$

 $x \mapsto gx$

is a bijection. Indeed,

$$\varphi_{g}(x) = \varphi_{g}(y) \implies gx = gy$$
$$\implies g^{-1}(gx) = g^{-1}(gy)$$
$$\implies (g^{-1}g)x = (g^{-1}g)y$$
$$\implies ex = ey$$
$$\implies x = y.$$

Moreover,

$$\varphi_g(g^{-1}x) = g(g^{-1}x) = (gg^{-1})(x) = ex = x.$$

▶ ★ 문 ► ★ 문 ► ...

Group actions and symmetries

Informally, a symmetry of an object is doing something to it that does not change it.

Formally, A symmetry of a set X is a bijection $\varphi : X \to X$. The set of all symmetries of X, denoted Sym(X), is a group under composition.

By the previous observation, if G acts on X then every $g \in G$ gives rise to an element $\varphi_g \in Sym(X)$. Moreover, the map

 $egin{aligned} G o \mathsf{Sym}(X) \ g \mapsto arphi_g \end{aligned}$

is a group homomorphism since $e \mapsto \operatorname{id}_X$ and

$$\varphi_{\rm gh}=\varphi_{\rm g}\varphi_{\rm h}.$$

Indeed, for every $x \in X$,

$$\varphi_{gh}(x) = (gh)x = g(hx) = g\varphi_h(x) = \varphi_g(\varphi_h(x)) = (\varphi_g\varphi_h)(x).$$

From here on we denote φ_g by g.

御 ト イ ヨ ト イ ヨ ト ・ ヨ ・ つ へ (~

Transitive actions and orbits

Definition 2

An action of G on $X \neq \emptyset$ is called transitive if

$$\forall x, y \in X \quad \exists g \in G \quad \text{s.t.} \quad gx = y.$$

Definition 3

The orbit of an element $x \in X$ under the action of G is

$$Gx = \{gx \mid g \in G\}.$$

The orbits form a partition of X, hence, they give rise to an equivalence relation:

$$x \sim y \quad \iff \quad Gx = Gy.$$

Note that a group action is transitive iff it has a single orbit.

Definition 4

The set of all orbits of X under the action of G, denoted X/G, is called the quotient of the action.

When gx = x we say that g fixes x or that x is a fixed point of g.

Definition 5

For $x \in X$ the stabilizer subgroup of G with respect to x is given by

$$G_{x} = \{g \in G \mid gx = x\}.$$

Observe that for $x, y \in X$ s.t. y = gx the two stabilizers satisfy

$$G_y = g G_x g^{-1}.$$

Thus, the stabilizers of elements in the same orbit are conjugate to each other.

向下 イヨト イヨト ニヨ

Fix $x \in X$. Then,

$$gx = hx \quad \Longleftrightarrow \quad h^{-1}gx = x$$
$$\Leftrightarrow \quad h^{-1}g \in G_x$$
$$\Leftrightarrow \quad gG_x = hG_x.$$

So

$$Gx|=|(G:G_x)|.$$

This is despite the fact that G_x may not be normal (so G/G_x is not a group). For finite groups,

$$|x$$
's orbit $| = |Gx| = \frac{|G|}{|G_x|} = \frac{|G|}{|x$'s stabilizer $|$.

This result is called the orbit-stabilizer theorem.

э

Group actions

- 2 Normal field extensions
- 3 Separable field extensions
- Galois extensions
- 5 Isomorphism between function fields
- 6 Normal extensions of function field
- The decomposition group
- 8 The inertia group
- Some equalities

Definition 6 (Normal field extensions)

An algebraic extension L/K is said to be normal if every irreducible polynomial $f(x) \in K[x]$ that has a root $\alpha \in L$ factors to linear factors in L[x].

Theorem 7

Let L/K be an algebraic extension and assume L $\subseteq \bar{\mathsf{K}}.$ TFAE

- L/K is normal.
- **2** L is the splitting field of some $\{f_{\alpha}(x) \in K[x]\}_{\alpha}$.
- Solution \mathbf{S} Every automorphism of $\overline{\mathsf{K}}/\mathsf{K}$ maps L to L.
- So For every $\alpha \in L$, all conjugates of α over K are in K.

通 と く ヨ と く ヨ と …

Group actions

- 2 Normal field extensions
- Separable field extensions
- Galois extensions
- 5 Isomorphism between function fields
- 6 Normal extensions of function field
- The decomposition group
- 8 The inertia group
- Some equalities

Definition 8 (Separability without referring to an algebraic closure)

Let K be a field. An irreducible polynomial $f(x) \in K[x]$ is separable if it is has distinct roots in any field extension of K.

Definition 9 (Separability by referring to an algebraic closure)

Let K be a field and \overline{K} an algebraic closure of K. An irreducible polynomial $f(x) \in K[x]$ is separable if it is a product of distinct linear factors in $\overline{K}[x]$.

In characteristic zero all irreducible polynomials are separable. So from here on, we denote the characteristic by p > 0.

向下 イヨト イヨト

Definition 10

Let F/E be a field extension. An element $\alpha \in F$ is separable over E if α is algebraic over E and its minimal polynomial is separable over E.

It is known that

 α, β are separable $\implies \alpha + \beta, \alpha \beta, \alpha^{-1}$ are separable.

Thus, the set of elements in F that are separable over E form a field, denoted by $\mathsf{E}_{\mathsf{s}}.$

向下 イヨト イヨト ニヨ

Separable and purely inseparable extensions

If $\alpha \in \mathsf{F}$ it not separable then $\exists e \geq 1$ s.t. $\alpha^{p^e} \in \mathsf{E}_s$. Further, the minimal polynomial of α over E_s is $(x - \alpha)^{p^e}$.

The extension F/E_s is purely inseparable, namely, every $\alpha \in F \setminus E_s$ is not separable over E_s .

Every algebraic field extension F/E can be decomposed as

We denote $q = [F : E]_i = [F : E_s]$.

向下 イヨト イヨト ニヨ

Group actions

- 2 Normal field extensions
- Separable field extensions
- Galois extensions
- 5 Isomorphism between function fields
- 6 Normal extensions of function field
- The decomposition group
- 8 The inertia group
- Some equalities

Let F/E be an algebraic field extension. Denote by $\Gamma=Aut(F/E)$ the set of automorphisms of F that fix each element of E.

Define the field

$$\mathsf{F}^{\mathsf{\Gamma}} = \{ x \in \mathsf{F} \mid \forall \sigma \in \mathsf{\Gamma} \ \sigma(x) = x \}.$$

By Galois Theory,

 $\mathsf{F}^{\Gamma}=\mathsf{E}\quad\iff\quad\mathsf{F}/\mathsf{E}\text{ is normal and separable}.$

In such case, F/E is called a Galois extension. For such extensions, the group Γ is denoted Gal(F/E). It holds that

 $|\mathsf{Gal}(\mathsf{F}/\mathsf{E})| = [\mathsf{F}:\mathsf{E}].$

Assume F/E is normal and consider E_s as before. We have that q is some power of the characteristic, and that $F^q = E_s$.

Further, E_s/E is a Galois extension and Aut(F/E) can be identified with the Galois group $G = Gal(E_s/E)$.

A useful lemma

Lemma 11

Let F/K be a finite normal extension. Let $G=\mathsf{Aut}(\mathsf{F}/\mathsf{K})$ and denote $\mathsf{N}=\mathsf{F}^{\mathsf{G}}.$ Then,

- F/N is Galois; and
- In N/K is purely inseparable.
- Gal(F/N) = G.

御 と く き と く き とし

A useful lemma

Proof.

Starting with Item 1, clearly, F/N is normal, and so we focus on separability.

Take $\alpha \in F$ and let $f(x) \in N(x)$ be its minimal polynomial over N. Let

 $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_m$

be the distinct roots of f(x). By normality of F/N these lie in F. Define

$$g(x) = \prod_{i=1}^{m} (x - \alpha_i) \in \mathsf{F}[x].$$

Fix $\sigma \in G$ and $i \in [m]$. Then,

$$0 = \sigma(0) = \sigma(f(\alpha_i)) = f(\sigma(\alpha_i)),$$

where the last equality holds since $N = F^{G}$. Thus, $\sigma(\alpha_i) = \alpha_j$. But σ is one to one and so it acts as a bijection on $\alpha_1, \ldots, \alpha_m$.

Therefore,

$$\forall \sigma \in \mathcal{G} \quad \sigma g(x) = \prod_{i=1}^m (x - \sigma \alpha_i) = \prod_{i=1}^m (x - \alpha_i) = g(x).$$

Hence,

$$g(x) \in \mathsf{F}^{\mathsf{G}}[x] = \mathsf{N}[x].$$

But f(x) is the minimal polynomial of α over N and so f(x) | g(x). Clearly, however, g(x) | f(x) and so f(x) = g(x) is separable. Thus, α is separable over N.

白 ト イヨ ト イヨ ト

э

A useful lemma

Proof.

Moving on to Item 2, we know that

$$[\mathsf{F}:\mathsf{K}]_s = [\mathsf{F}:\mathsf{N}]_s[\mathsf{N}:\mathsf{K}]_s.$$

But by Item 1,

$$[\mathsf{F}:\mathsf{N}]_{s}=[\mathsf{F}:\mathsf{N}].$$

Galois Theory tells us that

$$[\mathsf{F}:\mathsf{N}]=|\mathsf{Gal}(\mathsf{F}/\mathsf{N})|=|\mathsf{Gal}(\mathsf{F}/\mathsf{F}^{\mathsf{G}})|=|\mathsf{G}|=|\mathsf{Aut}(\mathsf{F}/\mathsf{K})|=[\mathsf{F}:\mathsf{K}]_{\mathfrak{s}}.$$

Thus,

$$[\mathsf{F}:\mathsf{N}]=[\mathsf{F}:\mathsf{K}]_{\mathfrak{s}}=[\mathsf{F}:\mathsf{N}]_{\mathfrak{s}}[\mathsf{N}:\mathsf{K}]_{\mathfrak{s}}=[\mathsf{F}:\mathsf{N}][\mathsf{N}:\mathsf{K}]_{\mathfrak{s}}.$$

Therefore, $[N : K]_s = 1$, namely, N/K is purely inseparable.

Item 3 follows by the above.

・ロ・・(型・・モー・・モー・)

Group actions

- 2 Normal field extensions
- Separable field extensions
- Galois extensions
- 5 Isomorphism between function fields
- 6 Normal extensions of function field
- The decomposition group
- 8 The inertia group
- Some equalities

(E)

Let F/L, F'/L' be function fields. Let $\sigma: {\rm F} \to {\rm F}'$ be an isomorphism s.t. $\sigma({\rm L}) = {\rm L}'.$

For every valuation v of F there is a corresponding valuation of F', denoted by σv , that is defined as follows: for $x \in F'$,

$$(\sigma \upsilon)(x) = \upsilon(\sigma^{-1}(x)).$$

Verify that this is indeed a valuation, and note that

$$\mathcal{O}_{\sigma v} = \{ x \in \mathsf{F}' \mid \sigma v(x) \ge 0 \}$$

= $\{ x \in \mathsf{F}' \mid v(\sigma^{-1}(x)) \ge 0 \}$
= $\{ \sigma(y) \mid y \in \mathsf{F} \text{ and } v(y) \ge 0 \}$
= $\sigma(\mathcal{O}_v).$

Similarly, $\mathfrak{m}_{\sigma \upsilon} = \sigma(\mathfrak{m}_{\upsilon}).$

By the above, equivalent valuations are mapped by σ to equivalent valuations.

Further, a valuation that is trivial on L is mapped by σ to a valuation that is trivial on L' and vice versa.

Recall that a prime divisor $\mathfrak p$ of F/L is an equivalence class of places of F that are trivial on L. Thus, by the above, σ induces a bijection

 $\mathfrak{p}\mapsto\sigma\mathfrak{p}$

between the prime divisors of F/L and the prime divisors of F'/L'.

向下 イヨト イヨト ニヨ

Isomorphism between function fields

As the diagram below depicts, σ also induces an isomorphism $\bar{\sigma}$ between the residue fields

$$\bar{\sigma}:\mathsf{F}_{\mathfrak{p}}=\mathcal{O}_{\mathfrak{p}}\big/\mathfrak{m}_{\mathfrak{p}}\to\mathsf{F}_{\sigma\mathfrak{p}}=\mathcal{O}_{\sigma\mathfrak{p}}\big/\mathfrak{m}_{\sigma\mathfrak{p}}$$

that is given by $\bar{\sigma}\bar{x} = \overline{\sigma x}$ or, more informatively, $\bar{\sigma}(x + \mathfrak{m}_{\mathfrak{p}}) = \sigma x + \mathfrak{m}_{\sigma\mathfrak{p}}$.

In particular, $deg(\sigma \mathfrak{p}) = deg(\mathfrak{p})$.

╗▶ ◀ ⊒ ▶ ◀ ⊒ ▶ ⊒ ∽ � �

Group actions

- 2 Normal field extensions
- Separable field extensions
- Galois extensions
- 5 Isomorphism between function fields
- 6 Normal extensions of function field
 - The decomposition group
- 8 The inertia group
- Some equalities

(E)

Definition 12

A function field extension F/L over E/K is called normal if F/E is a normal field extension.

Claim 13

If F/L is a normal extension of E/K then L/K is normal.

To prove Claim 13 we first prove

Claim 14

Let E/K be a field extension s.t. K is algebraically closed in E. Then,

 $f \in K[x]$ is irreducible \implies f is irreducible in E[x].

◆□ ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆

Let $g(x) \in E[x]$ be an irreducible factor of f(x) in E[x]. We will prove that $g(x) \in K[x]$.

In $\overline{E}[x]$ we can write

$$g(x) = \prod_{i=1}^m (x - a_i).$$

But the a_i -s are some of the roots of f(x), and so $a_i \in \overline{K}$.

The coefficients of g(x) are polynomials in the a_i -s, and so

 $g(x) \in \overline{\mathsf{K}}[x].$

But $g(x) \in E[x]$, and so

$$g(x) \in (\bar{\mathsf{K}} \cap \mathsf{E})[x] = \mathsf{K}[x].$$

• • = • • = •

Proof of Claim 13.

We already proved that

 $\mathsf{F}/\mathsf{E} \text{ is algebraic} \quad \Longrightarrow \quad \mathsf{L}/\mathsf{K} \text{ is algebraic}.$

Take $f(x) \in K[x]$ irreducible with a root $\alpha \in L$. We need to prove that f(x) splits in L[x].

By Claim 14, f(x) is irreducible over E. Further, $\alpha \in L \subseteq F$, and so as F/E is normal, f(x) splits over F.

Now, $f(x) \in K[x] \subseteq L[x]$ and so all roots of f(x) in F are algebraic over L, and so they belong to L.

Assume again that F/L is a normal extension of E/K.

Consider $\sigma \in Aut(F/E)$. In particular, $\sigma|_{K} = id_{K}$. As L/K is normal, we have that $\sigma(L) = L$. Namely, $\sigma|_{L} \in Aut(L/K)$.

As $\sigma|_{\mathsf{E}} = \mathsf{id}_{\mathsf{E}}$ we have that for a prime divisor \mathfrak{P} of F/L lying over a prime divisor \mathfrak{p} of E/K it holds that $\sigma\mathfrak{P}$ is also a prime divisor of F/L that lies over $\sigma\mathfrak{p} = \mathfrak{p}$.

We have that

$$\begin{split} f(\sigma \mathfrak{P}/\mathfrak{p}) &= [\mathsf{L}:\mathsf{K}] \cdot \frac{\deg \sigma \mathfrak{P}}{\deg \mathfrak{p}} = [\mathsf{L}:\mathsf{K}] \cdot \frac{\deg \mathfrak{P}}{\deg \mathfrak{p}} = f(\mathfrak{P}/\mathfrak{p}),\\ e(\sigma \mathfrak{P}/\mathfrak{p}) &= (\upsilon_{\sigma \mathfrak{P}}(\mathsf{F}^{\times}) : \upsilon_{\sigma \mathfrak{p}}(\mathsf{E}^{\times})) = (\upsilon_{\mathfrak{P}}(\mathsf{F}^{\times}) : \upsilon_{\mathfrak{p}}(\mathsf{E}^{\times})) = e(\mathfrak{P}/\mathfrak{p}). \end{split}$$

Thus, for every prime divisor $\mathfrak p$ of E/K, Aut(F/E) acts on the prime divisors lying over $\mathfrak p,$ keeping the residual degree and ramification index intact.

We turn to prove that this action is transitive.

From hereon, let F/L be a normal finite extension of E/K. We let E_s be the maximal separable extension of E in F and denote

$$q = [\mathsf{F} : \mathsf{E}]_i = [\mathsf{F} : \mathsf{E}_s].$$

From Galois Theory, we know that q is some power of the characteristic p, and that $F^q = E_s$.

Further, E_s/E is a Galois extension and Aut(F/E) can be identified with the Galois group $G = Gal(E_s/E)$.

ゆう くほう くほう しゅ

If $z \in \mathsf{E}_s$ then

$$\prod_{\sigma\in G}\sigma z$$

is fixed by all elements of $G = Gal(E_s/E)$ since for every $\tau \in G$,

$$\tau \prod_{\sigma \in \mathcal{G}} \sigma z = \prod_{\sigma \in \mathcal{G}} \tau \sigma z = \prod_{\sigma \in \mathcal{G}} \sigma z.$$

Thus, $\prod_{\sigma \in G} \sigma z \in \mathsf{E}_s^G = \mathsf{E}$.

For every $x \in F$ we have that $x^q \in E_s$, and so

$$\prod_{\sigma\in G}\sigma(x^q)\in\mathsf{E}.$$

This way one can define the norm of finite normal extensions:

$$N_{\mathsf{F}/\mathsf{E}}(x) \triangleq \left(\prod_{\sigma \in G} \sigma x\right)^q \in \mathsf{E}.$$

* E * * E *

э

Theorem 15

Let F/L be a finite normal function field extension of E/K. Let \mathfrak{p} be a prime divisor of E/K. Then, Aut(F/E) acts transitively on the set of prime divisors lying over \mathfrak{p} .

That is, for every two prime divisors $\mathfrak{P}, \mathfrak{P}'$ of F/L that lie over \mathfrak{p} ,

 $\exists \sigma \in \operatorname{Aut}(\mathsf{F}/\mathsf{E}) \quad s.t. \quad \sigma \mathfrak{P} = \mathfrak{P}'.$

Proof.

Assume that $\mathfrak{P}' \neq \sigma \mathfrak{P}$ for all $\sigma \in G = \operatorname{Aut}(F/E)$. Then, the corresponding orbits are disjoint

$$\{\sigma\mathfrak{P}' \mid \sigma \in G\} \cap \{\sigma\mathfrak{P} \mid \sigma \in G\} = \emptyset.$$

By the WAT $\exists x \in F$ s.t.

 $\forall \sigma \in G \quad v_{\sigma \mathfrak{P}}(x) > 0 \text{ and } v_{\sigma \mathfrak{P}'}(x) < 0.$

Proof.

Recall that $q = [F : E_s]$, $G = Gal(E_s/E)$, and consider

$$y = N_{\mathsf{F}/\mathsf{E}}(x) = \left(\prod_{\sigma \in \mathcal{G}} \sigma x\right)^q \in \mathsf{E}.$$

Then,

$$v_{\mathfrak{P}}(y) = q \sum_{\sigma \in \mathcal{G}} v_{\mathfrak{P}}(\sigma x) = q \sum_{\sigma \in \mathcal{G}} v_{\sigma^{-1}\mathfrak{P}}(x) = q \sum_{\sigma \in \mathcal{G}} v_{\sigma \mathfrak{P}}(x) > 0.$$

As $y \in E$, we can also consider

$$v_{\mathfrak{p}}(y) = \frac{1}{e(\mathfrak{P}/\mathfrak{p})}v_{\mathfrak{P}}(y) > 0.$$

However, by considering $v_{\mathfrak{P}'}$ instead of \mathfrak{P} we will reach the opposite conclusion, $v_{\mathfrak{p}}(y) < 0$, and the proof follows.

回 と く ヨ と く ヨ と

Group actions

- 2 Normal field extensions
- Separable field extensions
- Galois extensions
- 5 Isomorphism between function fields
- 6 Normal extensions of function field
- The decomposition group
- 8 The inertia group
- Some equalities

Again let G = Aut(F/E), \mathfrak{p} as above and \mathfrak{P} a prime divisor lying over \mathfrak{p} . The stabilizer of \mathfrak{P} is called the decomposition group

$$D(\mathfrak{P}) = \{ \sigma \in G \mid \sigma \mathfrak{P} = \mathfrak{P} \}.$$

Since G acts transitively on the prime divisors lying over p,

 $r \triangleq |G\mathfrak{P}| =$ number of prime divisors of F/L lying over \mathfrak{p} .

Thus, by the orbit-stabilizer theorem,

$$r = (G : D(\mathfrak{P})). \tag{1}$$

Theorem 16

Let F/L be an extension of E/K, and consider prime divisors $\mathfrak{P}/\mathfrak{p}.$ Assume F/E is normal and finite. Then, the extension of the residue fields $F_\mathfrak{P}/E_\mathfrak{p}$ is normal and finite.

We already saw that $F_{\mathfrak{P}}/E_{\mathfrak{p}}$ is finite since F/E is. In particular, $F_{\mathfrak{P}}/E_{\mathfrak{p}}$ is algebraic. We turn to prove normality. To this end, we start by proving the following claim.

Claim 17

For every $z \in F_{\mathfrak{P}} = \mathcal{O}_{\mathfrak{P}}/\mathfrak{m}_{\mathfrak{P}}$ there is a representative $y \in \mathcal{O}_{\mathfrak{P}}$ s.t.

•
$$v_{\mathfrak{P}}(\sigma y) \geq 0$$
 for all $\sigma \in G$; and

$$2 v_{\mathfrak{P}}(\sigma y) > 0 \text{ for all } \sigma \in G \setminus D(\mathfrak{P}).$$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Proof. (of Claim 17)

Take any representative $y' \in \mathcal{O}_{\mathfrak{P}}$ for z, namely, $z = y' + \mathfrak{m}_{\mathfrak{P}}$. Note that for $\sigma \in G \setminus D(\mathfrak{P})$, we have $\mathfrak{P} \neq \sigma^{-1}\mathfrak{P}$. By the WAT, $\exists y \in \mathsf{F}$ s.t.

•
$$v_{\mathfrak{P}}(y - y') > 0$$
; and
• $v_{\sigma^{-1}\mathfrak{P}}(y) > 0 \quad \forall \sigma \in G \setminus D(\mathfrak{P})$

As $v_{\mathfrak{P}}(y') \ge 0$ and $v_{\mathfrak{P}}(y - y') > 0$ we have that $v_{\mathfrak{P}}(y) \ge 0$, namely, $y \in \mathcal{O}_{\mathfrak{P}}$.

Item (2) above implies Item (2) of the claim since $v_{\mathfrak{P}}(\sigma y) = v_{\sigma^{-1}\mathfrak{P}}(y)$. As for Item (1), for $\sigma \in D(\mathfrak{P})$,

$$v_{\mathfrak{P}}(\sigma y) = v_{\sigma^{-1}\mathfrak{P}}(y) = v_{\mathfrak{P}}(y) \ge 0.$$

To conclude the proof, by Item (1),

$$y + \mathfrak{m}_{\mathfrak{P}} = y' + \mathfrak{m}_{\mathfrak{P}} = z.$$

向下 イヨト イヨト

Proof. (of Theorem 16)

Going back to the proof of Theorem 16, we take $z \in F_{\mathfrak{P}}$ and show that all of its $E_{\mathfrak{p}}$ -conjugates are in $F_{\mathfrak{P}}$.

With y = y(z) as in Claim 17, consider the polynomial

$$f(X) = \prod_{\sigma \in G} (X - \sigma y)^q = \prod_{\sigma \in G} (X^q - \sigma(y^q)) \in \mathsf{F}[X].$$

Since $\sigma y \in \mathcal{O}_{\mathfrak{P}}$ for all $\sigma \in G$,

 $f(X) \in \mathcal{O}_{\mathfrak{P}}[X].$

Looking at the right expression, and since $y^q \in E_s$, we have that $f(X) \in E_s[X]$.

Observe that the coefficients of f(X) are fixed by G and so, in fact, $f(X) \in \mathsf{E}^G_s[X] = \mathsf{E}[X]$. Thus,

 $f(X) \in (\mathsf{E} \cap \mathcal{O}_\mathfrak{P})[X] = \mathcal{O}_\mathfrak{p}[X].$

So far,

$$f(X) = \prod_{\sigma \in G} (X - \sigma y)^q \in \mathcal{O}_{\mathfrak{p}}[X].$$

Recall that for $\sigma \in G \setminus D(\mathfrak{P})$ we have $v_{\mathfrak{P}}(\sigma y) > 0$, namely,

$$\sigma y + \mathfrak{m}_{\mathfrak{P}} = \overline{\sigma y} = 0 \quad (\text{in } \mathsf{F}_{\mathfrak{P}} = \mathcal{O}_{\mathfrak{P}}/\mathfrak{m}_{\mathfrak{P}}).$$

Thus, the reduction of $f(X) \in \mathcal{O}_{\mathfrak{P}}[X]$ to $\overline{f}(X) \in \mathsf{F}_{\mathfrak{P}}[X]$ is

$$ar{f}(X) = \prod_{\sigma \in G} (X - \overline{\sigma y})^q$$

= $X^{q|G \setminus D(\mathfrak{P})|} \prod_{\sigma \in D(\mathfrak{P})} (X - \overline{\sigma y})^q \in \mathsf{E}_\mathfrak{p}[X]$

Image: A Image: A

э

We conclude that the polynomial

$$g(X) = \prod_{\sigma \in D(\mathfrak{P})} (X - \overline{\sigma y})^q \in \mathsf{E}_\mathfrak{p}[X]$$

has all its roots in $F_{\mathfrak{P}}$ as indeed $\sigma y \in \mathcal{O}_{\mathfrak{P}}$.

Now, taking $\sigma = \mathsf{id} \in D(\mathfrak{P})$, we see that

$$g(z)=g(\bar{y})=0.$$

Thus, the minimal polynomial of z over E_p divides g(X).

We conclude that all E_p-conjugates of z are in F_{\mathfrak{P}}, and so F_{\mathfrak{P}}/E_p is normal.

• • = • • = •

Recall

$$D(\mathfrak{P}) = \{ \sigma \in \mathsf{Aut}(\mathsf{F}/\mathsf{E}) \mid \sigma \mathfrak{P} = \mathfrak{P} \}.$$

Consider the map

$$\psi: D(\mathfrak{P})
ightarrow \mathsf{Aut}(\mathsf{F}_{\mathfrak{P}}/\mathsf{E}_{\mathfrak{p}})$$

 $\sigma \mapsto ar{\sigma}$

where $\bar{\sigma}\bar{x} = \bar{\sigma}\bar{x}$ for all $x \in \mathcal{O}_{\mathfrak{P}}$ (namely, $\bar{\sigma}(x + \mathfrak{m}_{\mathfrak{P}}) = \sigma x + \mathfrak{m}_{\mathfrak{P}}$). As $\sigma \in D(\mathfrak{P})$ we have that

$$x \in \mathcal{O}_{\mathfrak{P}} \implies \sigma x \in \mathcal{O}_{\sigma \mathfrak{P}} = \mathcal{O}_{\mathfrak{P}}.$$

 $\bar{\sigma}$ acts as the identity on $E_{\mathfrak{p}}$. Indeed, take $x \in E$, then

$$ar{\sigma}(x+\mathfrak{m}_\mathfrak{P})=\sigma x+\mathfrak{m}_\mathfrak{P}=x+\mathfrak{m}_\mathfrak{P}.$$

It is easy to check that $\bar{\sigma}$ is indeed an automorphism.

Theorem 18

 ψ is an epiomorphism

Proof.

We first show that ψ is a group homomorphism. Take $\sigma, \tau \in D(\mathfrak{P})$. We wish to prove that $\psi(\sigma\tau) = \psi(\sigma)\psi(\tau)$. To this end, take $x \in \mathcal{O}_{\mathfrak{P}}$.

We have that

$$egin{aligned} \psi(\sigma)\psi(au)(x+\mathfrak{m}_\mathfrak{P})&=\psi(\sigma)(au x+\mathfrak{m}_\mathfrak{P})\ &=\sigma(au x)+\mathfrak{m}_\mathfrak{P}\ &=(\sigma au)x+\mathfrak{m}_\mathfrak{P}\ &=\psi(\sigma au)(x+\mathfrak{m}_\mathfrak{P}). \end{aligned}$$

通 と く ヨ と く ヨ と

We turn to show that ψ is onto.

Let N be the fixed field of Aut(F_{\mathfrak{P}}/E_{\mathfrak{p}}). By Lemma 11, we know that N/E_{\mathfrak{p}} is purely inseparable and that F_{\mathfrak{P}}/N is Galois.

通 と く ヨ と く ヨ と 二 ヨ

As $F_\mathfrak{P}/N$ is Galois and finite, by the primitive element theorem,

$$\exists z \in F_{\mathfrak{P}}$$
 s.t. $F_{\mathfrak{P}} = N(z)$.

As in the proof of Theorem 16, we can find $y \in \mathcal{O}_\mathfrak{P}$ s.t. $\bar{y} = z$ and that

$$\mathsf{g}(X) = \prod_{\sigma \in D(\mathfrak{P})} (X - \overline{\sigma y})^q \in \mathsf{E}_\mathfrak{p}[X].$$

Recall that g(z) = 0.

Take $\tau \in Aut(F_{\mathfrak{P}}/\mathsf{E}_{\mathfrak{p}})$ and note that τz is also a root of g. Indeed,

$$0 = \tau(0) = \tau(g(z)) = g(\tau(z)).$$

Hence, $\exists \sigma \in D(\mathfrak{P})$ s.t.

$$\tau z = \overline{\sigma y} = \overline{\sigma} \overline{y} = \overline{\sigma} z.$$

直 とう マン・ション

So far we wrote

$$F_{\mathfrak{P}} = \mathsf{N}(z)$$

for some $z \in F_\mathfrak{P}$, and proved that

$$\forall \tau \in \operatorname{Aut}(\mathsf{F}_{\mathfrak{P}}/\mathsf{E}_{\mathfrak{p}}) \quad \exists \sigma \in D(\mathfrak{P}) \quad \text{s.t.} \quad \tau z = \bar{\sigma} z.$$

As $\bar{\sigma}, \tau \in \operatorname{Aut}(\mathsf{F}_\mathfrak{P}/\mathsf{E}_\mathfrak{p})$,

$$\bar{\sigma}|_{\mathsf{N}} = \tau|_{\mathsf{N}} = \mathsf{id}_{\mathsf{N}}.$$

We conclude that $\bar{\sigma} = \tau$. Namely, $\tau = \psi(\sigma)$ for some $\sigma \in \mathcal{D}(\mathfrak{P})$, and so ψ is onto.

э

Group actions

- 2 Normal field extensions
- Separable field extensions
- Galois extensions
- 5 Isomorphism between function fields
- 6 Normal extensions of function field
- The decomposition group
- 8 The inertia group
 - Some equalities

So far we saw the group epimorphism

$$\psi: D(\mathfrak{P}) \to \operatorname{Aut}(\mathsf{F}_{\mathfrak{P}}/\mathsf{E}_{\mathfrak{p}}).$$

Definition 19

The kernel of ψ , denoted by $I(\mathfrak{P}/\mathfrak{p})$ (or sometimes $I(\mathfrak{P})$ for short) is called the inertia group of \mathfrak{P} .

Since ψ is an epimorphism, we have that

$$|D(\mathfrak{P})| = |I(\mathfrak{P})| \cdot |\mathsf{Aut}(\mathsf{F}_{\mathfrak{P}}/\mathsf{E}_{\mathfrak{p}})|.$$
(2)

э

Group actions

- 2 Normal field extensions
- Separable field extensions
- Galois extensions
- 5 Isomorphism between function fields
- 6 Normal extensions of function field
- The decomposition group
- 8 The inertia group
- Some equalities

Corollary 20

Assume F/E is finite and normal. Denote $e = e(\mathfrak{P}/\mathfrak{p})$, $f = f(\mathfrak{P}/\mathfrak{p})$. Then,

$$\forall \sigma \in G \quad e(\sigma \mathfrak{P}) = e \text{ and } f(\sigma \mathfrak{P}) = f.$$

 [F: E] = efr where r is the number of prime divisors of F lying over p.

$$e = \frac{[\mathsf{F}:\mathsf{E}]_i}{[\mathsf{F}_{\mathfrak{P}}:\mathsf{E}_{\mathfrak{p}}]_i} \cdot |\mathrm{I}(\mathfrak{P}/\mathfrak{p})|.$$

•
$$ef = [F : E]_i \cdot |D(\mathfrak{P}/\mathfrak{p})|$$

Proof.

Item 1 follows immediately by the discussion so far, and since $\sigma \mathfrak{p} = \mathfrak{p}$.

Item 2 follows by Item 1 and by the fundamental equality.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

Some equalities

Proof.

We turn to prove Item 3, namely,

$$e = rac{[\mathsf{F}:\mathsf{E}]_i}{[\mathsf{F}_\mathfrak{P}:\mathsf{E}_\mathfrak{p}]_i} \cdot |\mathrm{I}(\mathfrak{P}/\mathfrak{p})|.$$

By Item 2, $e = \frac{[F:E]}{fr}$. Consider then

$$[F : E] = [F : E_s][E_s : E] = [F : E]_i \cdot |G$$

$$f = [F_{\mathfrak{P}} : E_{\mathfrak{p}}] = [F_{\mathfrak{P}} : E_{\mathfrak{p}}]_i \cdot a,$$

where $a = [F_{\mathfrak{P}} : E_{\mathfrak{p}}]_{\mathfrak{s}} = |Aut(F_{\mathfrak{P}}/E_{\mathfrak{p}})|.$

Using the orbit-stabilizer theorem we proved that $r = (G : D(\mathfrak{P}))$, and so

$$|G| = r|D(\mathfrak{P})| = r|I(\mathfrak{P})| \cdot a,$$

where we used Equation 2.

通 と く ヨ と く ヨ と

э

So far,

$$[F : E] = [F : E]_i \cdot |G|.$$

$$f = [F_{\mathfrak{P}} : E_{\mathfrak{p}}]_i \cdot a.$$

$$|G| = r|D(\mathfrak{P})| = r|I(\mathfrak{P})| \cdot a.$$

Thus,

$$e = \frac{[\mathsf{F} : \mathsf{E}]}{fr} = \frac{[\mathsf{F} : \mathsf{E}]_i}{[\mathsf{F}_{\mathfrak{P}} : \mathsf{E}_{\mathfrak{p}}]_i} \cdot \frac{|G|}{ar} = \frac{[\mathsf{F} : \mathsf{E}]_i}{[\mathsf{F}_{\mathfrak{P}} : \mathsf{E}_{\mathfrak{p}}]_i} \cdot |\mathrm{I}(\mathfrak{P})|.$$

This proves Item 3.

<回>< E> < E> < E> <

Recall that

$$[\mathsf{F} : \mathsf{E}] = [\mathsf{F} : \mathsf{E}]_i \cdot |G|.$$
$$|G| = r|D(\mathfrak{P})|.$$

We turn to prove Item 4, namely,

$$ef = [\mathsf{F} : \mathsf{E}]_i \cdot |D(\mathfrak{P}/\mathfrak{p})|.$$

We have that

$$ef = \frac{[\mathsf{F} : \mathsf{E}]}{r} = \frac{[\mathsf{F} : \mathsf{E}]_i \cdot |G|}{r} = \frac{[\mathsf{F} : \mathsf{E}]_i \cdot r |\mathcal{D}(\mathfrak{P})|}{r} = [\mathsf{F} : \mathsf{E}]_i \cdot |D(\mathfrak{P})|,$$

wh ch completes

回 と く ヨ と く ヨ と

Corollary 21

Assume F/E is a finite Galois extension and that K is a perfect field.

Denote $e = e(\mathfrak{P}/\mathfrak{p})$, $f = f(\mathfrak{P}/\mathfrak{p})$ and G = Gal(F/E). Then,

•
$$\forall \sigma \in G \quad e(\sigma \mathfrak{P}) = e \text{ and } f(\sigma \mathfrak{P}) = f.$$

[F: E] = efr where r is the number of prime divisors of F lying over p.

•
$$e = |I(\mathfrak{P}/\mathfrak{p})|$$

• $ef = |D(\mathfrak{P}/\mathfrak{p})|.$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● のへの