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Group actions

Groups allow us to study the symmetries of an object though this
connection is sometimes missed in the abstract study of groups. We
quickly recap it.

Definition 1

Let X be a set and G a group. A group action α of G on X is a function

α : G × X → X

(g , x) 7→ gx

satisfying:

1 ex = x ; and

2 g(hx) = (gh)x ,

for all x ∈ X , g , h ∈ G .

The group G is said to act on X .
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Group actions

Note that for every fixed g ∈ G , the function

ϕg : X → X

x 7→ gx

is a bijection. Indeed,

ϕg (x) = ϕg (y) =⇒ gx = gy

=⇒ g−1(gx) = g−1(gy)

=⇒ (g−1g)x = (g−1g)y

=⇒ ex = ey

=⇒ x = y .

Moreover,

ϕg (g−1x) = g(g−1x) = (gg−1)(x) = ex = x .

Gil Cohen Normal Function Field Extensions



Group actions and symmetries

Informally, a symmetry of an object is doing something to it that does
not change it.

Formally, A symmetry of a set X is a bijection ϕ : X → X . The set of all
symmetries of X , denoted Sym(X ), is a group under composition.

By the previous observation, if G acts on X then every g ∈ G gives rise
to an element ϕg ∈ Sym(X ). Moreover, the map

G → Sym(X )

g 7→ ϕg

is a group homomorphism since e 7→ idX and

ϕgh = ϕgϕh.

Indeed, for every x ∈ X ,

ϕgh(x) = (gh)x = g(hx) = gϕh(x) = ϕg (ϕh(x)) = (ϕgϕh)(x).

From here on we denote ϕg by g .
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Transitive actions and orbits

Definition 2

An action of G on X 6= ∅ is called transitive if

∀x , y ∈ X ∃g ∈ G s.t. gx = y .

Definition 3

The orbit of an element x ∈ X under the action of G is

Gx = {gx | g ∈ G} .

The orbits form a partition of X , hence, they give rise to an equivalence
relation:

x ∼ y ⇐⇒ Gx = Gy .

Note that a group action is transitive iff it has a single orbit.

Definition 4

The set of all orbits of X under the action of G , denoted X/G , is called
the quotient of the action.
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The stabilizer

When gx = x we say that g fixes x or that x is a fixed point of g .

Definition 5

For x ∈ X the stabilizer subgroup of G with respect to x is given by

Gx = {g ∈ G | gx = x} .

Observe that for x , y ∈ X s.t. y = gx the two stabilizers satisfy

Gy = gGxg
−1.

Thus, the stabilizers of elements in the same orbit are conjugate to each
other.
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The orbit-stabilizer theorem

Fix x ∈ X . Then,

gx = hx ⇐⇒ h−1gx = x

⇐⇒ h−1g ∈ Gx

⇐⇒ gGx = hGx .

So
|Gx | = |(G : Gx)|.

This is despite the fact that Gx may not be normal (so G/Gx is not a
group). For finite groups,

|x ’s orbit| = |Gx | =
|G |
|Gx |

=
|G |

|x ’s stabilizer|
.

This result is called the orbit-stabilizer theorem.
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Normal field extensions

Definition 6 (Normal field extensions)

An algebraic extension L/K is said to be normal if every irreducible
polynomial f (x) ∈ K[x ] that has a root α ∈ L factors to linear factors in
L[x ].

Theorem 7

Let L/K be an algebraic extension and assume L ⊆ K̄. TFAE

1 L/K is normal.

2 L is the splitting field of some {fα(x) ∈ K[x ]}α.

3 Every automorphism of K̄/K maps L to L.

4 For every α ∈ L, all conjugates of α over K are in K.
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Separable polynomials

Definition 8 (Separability without referring to an algebraic closure)

Let K be a field. An irreducible polynomial f (x) ∈ K[x ] is separable if it
is has distinct roots in any field extension of K.

Definition 9 (Separability by referring to an algebraic closure)

Let K be a field and K̄ an algebraic closure of K. An irreducible
polynomial f (x) ∈ K[x ] is separable if it is a product of distinct linear
factors in K̄[x ].

In characteristic zero all irreducible polynomials are separable. So from
here on, we denote the characteristic by p > 0.
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Separable elements

Definition 10

Let F/E be a field extension. An element α ∈ F is separable over E if α is
algebraic over E and its minimal polynomial is separable over E.

It is known that

α, β are separable =⇒ α + β, αβ, α−1 are separable.

Thus, the set of elements in F that are separable over E form a field,
denoted by Es .
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Separable and purely inseparable extensions

If α ∈ F it not separable then ∃e ≥ 1 s.t. αpe ∈ Es . Further, the minimal
polynomial of α over Es is (x − α)p

e

.

The extension F/Es is purely inseparable, namely, every α ∈ F \ Es is not
separable over Es .

Every algebraic field extension F/E can be decomposed as

We denote q = [F : E]i = [F : Es ].
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Galois extensions

Let F/E be an algebraic field extension. Denote by Γ = Aut(F/E) the set
of automorphisms of F that fix each element of E.

Define the field

FΓ = {x ∈ F | ∀σ ∈ Γ σ(x) = x} .

By Galois Theory,

FΓ = E ⇐⇒ F/E is normal and separable.

In such case, F/E is called a Galois extension. For such extensions, the
group Γ is denoted Gal(F/E). It holds that

|Gal(F/E)| = [F : E].
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Separable and purely inseparable extensions

Assume F/E is normal and consider Es as before. We have that q is some
power of the characteristic, and that Fq = Es .

Further, Es/E is a Galois extension and Aut(F/E) can be identified with
the Galois group G = Gal(Es/E).
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A useful lemma

Lemma 11

Let F/K be a finite normal extension. Let G = Aut(F/K) and denote
N = FG . Then,

1 F/N is Galois; and

2 N/K is purely inseparable.

3 Gal(F/N) = G .
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A useful lemma

Proof.

Starting with Item 1, clearly, F/N is normal, and so we focus on
separability.

Take α ∈ F and let f (x) ∈ N(x) be its minimal polynomial over N. Let

α = α1, α2, . . . , αm

be the distinct roots of f (x). By normality of F/N these lie in F. Define

g(x) =
m∏
i=1

(x − αi ) ∈ F[x ].

Fix σ ∈ G and i ∈ [m]. Then,

0 = σ(0) = σ(f (αi )) = f (σ(αi )),

where the last equality holds since N = FG . Thus, σ(αi ) = αj . But σ is
one to one and so it acts as a bijection on α1, . . . , αm.
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A useful lemma

Proof.

Therefore,

∀σ ∈ G σg(x) =
m∏
i=1

(x − σαi ) =
m∏
i=1

(x − αi ) = g(x).

Hence,
g(x) ∈ FG [x ] = N[x ].

But f (x) is the minimal polynomial of α over N and so f (x) | g(x).
Clearly, however, g(x) | f (x) and so f (x) = g(x) is separable. Thus, α is
separable over N.
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A useful lemma

Proof.

Moving on to Item 2, we know that

[F : K]s = [F : N]s [N : K]s .

But by Item 1,
[F : N]s = [F : N].

Galois Theory tells us that

[F : N] = |Gal(F/N)| = |Gal(F/FG )| = |G | = |Aut(F/K)| = [F : K]s .

Thus,

[F : N] = [F : K]s = [F : N]s [N : K]s = [F : N][N : K]s .

Therefore, [N : K]s = 1, namely, N/K is purely inseparable.

Item 3 follows by the above.
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Isomorphism between function fields

Let F/L, F′/L′ be function fields. Let σ : F→ F′ be an isomorphism s.t.
σ(L) = L′.

For every valuation υ of F there is a corresponding valuation of F′,
denoted by συ, that is defined as follows: for x ∈ F′,

(συ)(x) = υ(σ−1(x)).

Verify that this is indeed a valuation, and note that

Oσυ = {x ∈ F′ | συ(x) ≥ 0}
= {x ∈ F′ | υ(σ−1(x)) ≥ 0}
= {σ(y) | y ∈ F and υ(y) ≥ 0}
= σ(Oυ).

Similarly, mσυ = σ(mυ).
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Isomorphism between function fields

By the above, equivalent valuations are mapped by σ to equivalent
valuations.

Further, a valuation that is trivial on L is mapped by σ to a valuation
that is trivial on L′ and vice versa.

Recall that a prime divisor p of F/L is an equivalence class of places of F
that are trivial on L. Thus, by the above, σ induces a bijection

p 7→ σp

between the prime divisors of F/L and the prime divisors of F′/L′.
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Isomorphism between function fields

As the diagram below depicts, σ also induces an isomorphism σ̄ between
the residue fields

σ̄ : Fp = Op

/
mp → Fσp = Oσp

/
mσp

that is given by σ̄x̄ = σx or, more informatively, σ̄(x + mp) = σx + mσp.

In particular, deg(σp) = deg(p).
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Normal extensions of function fields

Definition 12

A function field extension F/L over E/K is called normal if F/E is a
normal field extension.

Claim 13

If F/L is a normal extension of E/K then L/K is normal.

To prove Claim 13 we first prove

Claim 14

Let E/K be a field extension s.t. K is algebraically closed in E. Then,

f ∈ K[x ] is irreducible =⇒ f is irreducible in E[x ].
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Normal extensions of function fields

Proof.

Let g(x) ∈ E[x ] be an irreducible factor of f (x) in E[x ]. We will prove
that g(x) ∈ K[x ].

In Ē[x ] we can write

g(x) =
m∏
i=1

(x − ai ).

But the ai -s are some of the roots of f (x), and so ai ∈ K̄.

The coefficients of g(x) are polynomials in the ai -s, and so

g(x) ∈ K̄[x ].

But g(x) ∈ E[x ], and so

g(x) ∈ (K̄ ∩ E)[x ] = K[x ].
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Normal extensions of function fields

Proof of Claim 13.

We already proved that

F/E is algebraic =⇒ L/K is algebraic.

Take f (x) ∈ K[x ] irreducible with a root α ∈ L. We need to prove that
f (x) splits in L[x ].

By Claim 14, f (x) is irreducible over E. Further, α ∈ L ⊆ F, and so as
F/E is normal, f (x) splits over F.

Now, f (x) ∈ K[x ] ⊆ L[x ] and so all roots of f (x) in F are algebraic over
L, and so they belong to L.
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Normal extensions of function fields

Assume again that F/L is a normal extension of E/K.

Consider σ ∈ Aut(F/E). In particular, σ|K = idK. As L/K is normal, we
have that σ(L) = L. Namely, σ|L ∈ Aut(L/K).

As σ|E = idE we have that for a prime divisor P of F/L lying over a
prime divisor p of E/K it holds that σP is also a prime divisor of F/L
that lies over σp = p.
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Normal extensions of function fields

We have that

f (σP/p) = [L : K] · deg σP

deg p
= [L : K] · degP

deg p
= f (P/p),

e(σP/p) = (υσP(F×) : υσp(E×)) = (υP(F×) : υp(E×)) = e(P/p).

Thus, for every prime divisor p of E/K, Aut(F/E) acts on the prime
divisors lying over p, keeping the residual degree and ramification index
intact.

We turn to prove that this action is transitive.
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Normal extensions of function fields

From hereon, let F/L be a normal finite extension of E/K. We let Es be
the maximal separable extension of E in F and denote

q = [F : E]i = [F : Es ].

From Galois Theory, we know that q is some power of the characteristic
p, and that Fq = Es .

Further, Es/E is a Galois extension and Aut(F/E) can be identified with
the Galois group G = Gal(Es/E).
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Normal extensions of function fields

If z ∈ Es then ∏
σ∈G

σz

is fixed by all elements of G = Gal(Es/E) since for every τ ∈ G ,

τ
∏
σ∈G

σz =
∏
σ∈G

τσz =
∏
σ∈G

σz .

Thus,
∏
σ∈G σz ∈ EG

s = E.

For every x ∈ F we have that xq ∈ Es , and so∏
σ∈G

σ(xq) ∈ E.

This way one can define the norm of finite normal extensions:

NF/E(x) ,

(∏
σ∈G

σx

)q

∈ E.
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Normal extensions of function fields

Theorem 15

Let F/L be a finite normal function field extension of E/K. Let p be a
prime divisor of E/K. Then, Aut(F/E) acts transitively on the set of
prime divisors lying over p.

That is, for every two prime divisors P,P′ of F/L that lie over p,

∃σ ∈ Aut(F/E) s.t. σP = P′.

Proof.

Assume that P′ 6= σP for all σ ∈ G = Aut(F/E). Then, the
corresponding orbits are disjoint

{σP′ | σ ∈ G} ∩ {σP | σ ∈ G} = ∅.

By the WAT ∃x ∈ F s.t.

∀σ ∈ G υσP(x) > 0 and υσP′(x) < 0.
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Normal extensions of function fields

Proof.

Recall that q = [F : Es ], G = Gal(Es/E), and consider

y = NF/E(x) =

(∏
σ∈G

σx

)q

∈ E.

Then,

υP(y) = q
∑
σ∈G

υP(σx) = q
∑
σ∈G

υσ−1P(x) = q
∑
σ∈G

υσP(x) > 0.

As y ∈ E, we can also consider

υp(y) =
1

e(P/p)
υP(y) > 0.

However, by considering υP′ instead of P we will reach the opposite
conclusion, υp(y) < 0, and the proof follows.
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The decomposition group

Again let G = Aut(F/E), p as above and P a prime divisor lying over p.

The stabilizer of P is called the decomposition group

D(P) = {σ ∈ G | σP = P}.

Since G acts transitively on the prime divisors lying over p,

r , |GP| = number of prime divisors of F/L lying over p.

Thus, by the orbit-stabilizer theorem,

r = (G : D(P)). (1)
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Residue fields in normal extensions

Theorem 16

Let F/L be an extension of E/K, and consider prime divisors P/p.
Assume F/E is normal and finite. Then, the extension of the residue
fields FP/Ep is normal and finite.

We already saw that FP/Ep is finite since F/E is. In particular, FP/Ep is
algebraic. We turn to prove normality. To this end, we start by proving
the following claim.

Claim 17

For every z ∈ FP = OP/mP there is a representative y ∈ OP s.t.

1 υP(σy) ≥ 0 for all σ ∈ G ; and

2 υP(σy) > 0 for all σ ∈ G \ D(P).
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Residue fields in normal extensions

Proof. (of Claim 17)

Take any representative y ′ ∈ OP for z , namely, z = y ′ + mP. Note that
for σ ∈ G \ D(P), we have P 6= σ−1P. By the WAT, ∃y ∈ F s.t.

1 υP(y − y ′) > 0; and

2 υσ−1P(y) > 0 ∀σ ∈ G \ D(P).

As υP(y ′) ≥ 0 and υP(y − y ′) > 0 we have that υP(y) ≥ 0, namely,
y ∈ OP.

Item (2) above implies Item (2) of the claim since υP(σy) = υσ−1P(y).

As for Item (1), for σ ∈ D(P),

υP(σy) = υσ−1P(y) = υP(y) ≥ 0.

To conclude the proof, by Item (1),

y + mP = y ′ + mP = z .
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Residue fields in normal extensions

Proof. (of Theorem 16)

Going back to the proof of Theorem 16, we take z ∈ FP and show that
all of its Ep-conjugates are in FP.

With y = y(z) as in Claim 17, consider the polynomial

f (X ) =
∏
σ∈G

(X − σy)q =
∏
σ∈G

(X q − σ(yq)) ∈ F[X ].

Since σy ∈ OP for all σ ∈ G ,

f (X ) ∈ OP[X ].

Looking at the right expression, and since yq ∈ Es , we have that
f (X ) ∈ Es [X ].

Observe that the coefficients of f (X ) are fixed by G and so, in fact,
f (X ) ∈ EG

s [X ] = E[X ]. Thus,

f (X ) ∈ (E ∩ OP)[X ] = Op[X ].
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Residue fields in normal extensions

Proof.

So far,
f (X ) =

∏
σ∈G

(X − σy)q ∈ Op[X ].

Recall that for σ ∈ G \ D(P) we have vP(σy) > 0, namely,

σy + mP = σy = 0 (in FP = OP/mP).

Thus, the reduction of f (X ) ∈ OP[X ] to f̄ (X ) ∈ FP[X ] is

f̄ (X ) =
∏
σ∈G

(X − σy)q

= X q|G\D(P)|
∏

σ∈D(P)

(X − σy)q ∈ Ep[X ].
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Residue fields in normal extensions

Proof.

We conclude that the polynomial

g(X ) =
∏

σ∈D(P)

(X − σy)q ∈ Ep[X ]

has all its roots in FP as indeed σy ∈ OP.

Now, taking σ = id ∈ D(P), we see that

g(z) = g(ȳ) = 0.

Thus, the minimal polynomial of z over Ep divides g(X ).

We conclude that all Ep-conjugates of z are in FP, and so FP/Ep is
normal.
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Residue fields in normal extensions

Recall
D(P) = {σ ∈ Aut(F/E) | σP = P}.

Consider the map

ψ : D(P)→ Aut(FP/Ep)

σ 7→ σ̄

where σ̄x̄ = σx for all x ∈ OP (namely, σ̄(x + mP) = σx + mP). As
σ ∈ D(P) we have that

x ∈ OP =⇒ σx ∈ OσP = OP.

σ̄ acts as the identity on Ep. Indeed, take x ∈ E, then

σ̄(x + mP) = σx + mP = x + mP.

It is easy to check that σ̄ is indeed an automorphism.
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Residue fields in normal extensions

Theorem 18

ψ is an epiomorphism

Proof.

We first show that ψ is a group homomorphism. Take σ, τ ∈ D(P). We
wish to prove that ψ(στ) = ψ(σ)ψ(τ). To this end, take x ∈ OP.

We have that

ψ(σ)ψ(τ)(x + mP) = ψ(σ)(τx + mP)

= σ(τx) + mP

= (στ)x + mP

= ψ(στ)(x + mP).
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Residue fields in normal extensions

Proof.

We turn to show that ψ is onto.

Let N be the fixed field of Aut(FP/Ep). By Lemma 11, we know that
N/Ep is purely inseparable and that FP/N is Galois.
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Residue fields in normal extensions

Proof.

As FP/N is Galois and finite, by the primitive element theorem,

∃z ∈ FP s.t. FP = N(z).

As in the proof of Theorem 16, we can find y ∈ OP s.t. ȳ = z and that

g(X ) =
∏

σ∈D(P)

(X − σy)q ∈ Ep[X ].

Recall that g(z) = 0.

Take τ ∈ Aut(FP/Ep) and note that τz is also a root of g . Indeed,

0 = τ(0) = τ(g(z)) = g(τ(z)).

Hence, ∃σ ∈ D(P) s.t.

τz = σy = σ̄ȳ = σ̄z .
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Residue fields in normal extensions

Proof.

So far we wrote
FP = N(z)

for some z ∈ FP, and proved that

∀τ ∈ Aut(FP/Ep) ∃σ ∈ D(P) s.t. τz = σ̄z .

As σ̄, τ ∈ Aut(FP/Ep),
σ̄|N = τ |N = idN.

We conclude that σ̄ = τ . Namely, τ = ψ(σ) for some σ ∈ D(P), and so
ψ is onto.
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The inertia group

So far we saw the group epimorphism

ψ : D(P)→ Aut(FP/Ep).

Definition 19

The kernel of ψ, denoted by I(P/p) (or sometimes I(P) for short) is
called the inertia group of P.

Since ψ is an epimorphism, we have that

|D(P)| = |I(P)| · |Aut(FP/Ep)|. (2)
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Some equalities

Corollary 20

Assume F/E is finite and normal. Denote e = e(P/p), f = f (P/p).
Then,

1 ∀σ ∈ G e(σP) = e and f (σP) = f .

2 [F : E] = efr where r is the number of prime divisors of F lying over
p.

3 e = [F:E]i
[FP:Ep]i

· |I(P/p)|.
4 ef = [F : E]i · |D(P/p)|.

Proof.

Item 1 follows immediately by the discussion so far, and since σp = p.

Item 2 follows by Item 1 and by the fundamental equality.
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Some equalities

Proof.

We turn to prove Item 3, namely,

e =
[F : E]i

[FP : Ep]i
· |I(P/p)|.

By Item 2, e = [F:E]
fr . Consider then

[F : E] = [F : Es ][Es : E] = [F : E]i · |G |
f = [FP : Ep] = [FP : Ep]i · a,

where a = [FP : Ep]s = |Aut(FP/Ep)|.

Using the orbit-stabilizer theorem we proved that r = (G : D(P)), and so

|G | = r |D(P)| = r |I(P)| · a,

where we used Equation 2.
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Some equalities

Proof.

So far,

[F : E] = [F : E]i · |G |.
f = [FP : Ep]i · a.
|G | = r |D(P)| = r |I(P)| · a.

Thus,

e =
[F : E]

fr
=

[F : E]i
[FP : Ep]i

· |G |
ar

=
[F : E]i

[FP : Ep]i
· |I(P)|.

This proves Item 3.
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Some equalities

Proof.

Recall that

[F : E] = [F : E]i · |G |.
|G | = r |D(P)|.

We turn to prove Item 4, namely,

ef = [F : E]i · |D(P/p)|.

We have that

ef =
[F : E]

r
=

[F : E]i · |G |
r

=
[F : E]i · r |D(P)|

r
= [F : E]i · |D(P)|,

which completes the proof.

Gil Cohen Normal Function Field Extensions



Some equalities

Corollary 21

Assume F/E is a finite Galois extension and that K is a perfect field.

Denote e = e(P/p), f = f (P/p) and G = Gal(F/E). Then,

1 ∀σ ∈ G e(σP) = e and f (σP) = f .

2 [F : E] = efr where r is the number of prime divisors of F lying over
p.

3 e = |I(P/p)|.
4 ef = |D(P/p)|.
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