Algebraic	Geometry	for	Theoretical	Computer	Science
Assignment 10					
Lecturer: Gil Cohen			Hand in date: January 15, 2015		

Instructions: Please write your solutions in $\mathbb{E}_{TE} X / Word$ or exquisite handwriting. Submission can be done individually or in pairs.

Let p be a prime power, and let $q = p^2$. In class we saw the Hermitian function field $\mathbb{F}_q(x,y)/\mathbb{F}_q$, with the defining equation $y^p + y = x^{p+1}$. We now consider the algebraic extension $\mathbb{F}_q(x,y,z)/\mathbb{F}_q$ of the Hermitian function field, with the defining equation $z^p + z = y^{p+1}$. We denote this function field by H^2/\mathbb{F}_q .

- 1. How many rational places H^2/\mathbb{F}_q has?
- 2. Show that the function x has a unique pole at H^2/\mathbb{F}_q , and that it lies over P_{∞} the unique pole of x at $\mathbb{F}_q(x)$. We denote this unique pole by P'_{∞} .
- 3. What is the Weierstrass semi-group of P'_{∞} ?
- 4. What is $\dim(r \cdot P'_{\infty})$? (an answer up to a constant multiplicative factor will do).
- 5. What are the parameters of the Goppa code one obtains by taking $\mathcal{L}(r \cdot P'_{\infty})$ as the space of functions to be evaluated, and the rational places from the first item (not including P'_{∞}) as the set of evaluation places?
- 6. What are the parameters of the small-bias set one gets by applying the general transformation we saw in class to this code?