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Setting (The AKLB setting)

Let A be an integrally closed domain with K = Frac(A). Let L/K
be a separable extension of degree [L : K ] = n. Let B be the
integral closure of A in L.

Claim

In the AKLB setting, there exists β ∈ B such that L = K (β).
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We recall the following theorem from field theory.

Theorem

Every finite separable extension is simple.

Proof of Claim.

L/K is finite + separable =⇒ ∃γ ∈ L s.t. L = K (γ).
Recall that “L = B/A” =⇒ ∃α ∈ A, β ∈ B γ = β/α.
=⇒ L = K (γ) = K (β/α) = K (β).

Another theorem we recall here without a proof.

Theorem

Let L/K be an algebraic extension. Let S be all elements in L that
are separable over K . Then, S is a field.
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Proposition

Assume the AKLB setting. Write L = K (β). Then, ∃d ∈ A \ {0}
s.t. the A-module B is contained in

F = A
β0

d
+ A

β

d
+ · · ·+ A

βn−1

d
.

Corollary (Main message from this unit!)

Assume AKLB. Then, A is noetheiran =⇒ B is a f.g. A-module.
In particular, B is a noetheiran ring.

Proof of Corollary.

A noetheiran + F f.g. A-module =⇒ F noetherian A-module.
B an A-submodule of F =⇒ B f.g. A-module.
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Proof of Proposition.

Since L = K (β), ∀b ∈ B ∃x0, . . . , xn−1 ∈ K s.t. b =
∑n−1

i=0 xiβ
i .

L/K separable of degree n =⇒ ΓL/K = {σ1, . . . , σn : L ↪→ K̄}.
Define the n × n matrix M by Mi ,j = σi (β

j−1).Observe that σ1(b)
...

σn(b)

 = M

 x0
...

xn−1

 .

Indeed,

σi (b) = σi

n−1∑
j=0

xjβ
j

 =
n−1∑
j=0

xjσi (β
j).

Gil Cohen Noetherianity in Separable Extensions



Proof of Proposition (cont.) σ1(b)
...

σn(b)

 = M

 x0
...

xn−1



=⇒ M∗

 σ1(b)
...

σn(b)

 = M∗M

 x0
...

xn−1

 =

 det(M) · x0
...

det(M) · xn−1
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Proof of Proposition (cont.)

M∗

 σ1(b)
...

σn(b)

 =

 det(M) · x0
...

det(M) · xn−1


M∗ entries are integral over A + σi (b) integral over A
=⇒ det(M) · xi are all integral over A.

Observe that if det(M) ∈ K× we are done! Indeed, in such case,

b =
n−1∑
i=0

xiβ
i =

1

det(M)
·
n−1∑
i=0

(det(M) · xi )βi .

det(M) ∈ K× + det(M) integral over A =⇒ det(M) ∈ A.
Similarly, det(M) · xi are all in A. So taking d , det(M) we would
be done. However, det(M) may not be in K×.
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Claim

det(M)2 ∈ K .

Proof.

For simplicity, we are going to assume that L ⊆ K̄ . Using Steinitz’s
theorems one can handle the general case (try it!)
Take any ν ∈ ΓK . ν : K̄ ↪→ K̄ an automorphism that fixes K .
Observe that

{ν ◦ σ1, . . . , ν ◦ σn} = {σ1, . . . , σn}.

Define ν ◦M by (ν ◦M)i ,j = ν(Mi ,j). By the above, ν ◦M is M up
to row permutation =⇒ det(ν ◦M) = ± det(M).
But det(ν ◦M) = ν(det(M)).
So, ν(det(M)) = ± det(M) =⇒ ν(det(M)2) = det(M)2.
The proof follows since det(M)2 is separable over K .
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Corollary

det(M)2 ∈ A.

Proof.

det(M)2 ∈ K + det(M) is integral over A. The proof follows
since A is integrally closed.
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Claim

det(M)2 · xi ∈ A.

Proof.

det(M)2 · xi ∈ K as det(M)2 ∈ K and xi ∈ K . Now,

det(M)2 · xi = det(M) · (det(M) · xi )

and we proved that det(M) and det(M) · xi are integral over A.
The proof follows as A is integrally closed.
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Proof of Proposition (cont.)

So we can write

b =
n−1∑
i=0

xiβ
i

=
1

det(M)2
·
n−1∑
i=0

(det(M)2 · xi )βi .

Observe that det(M)2 ∈ A and det(M)2 · xi ∈ A as stated.
Only thing left is to show that det(M)2 6= 0 (check!)
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To summarize this unit,

Theorem

Let A be an integrally closed domain with K = Frac(A). Let L/K
be a finite and separable extension. Let B be the integral closure
of A in L. Then,

A noetherian =⇒ B noetherian.
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