Noetherianity in Separable Extensions

Introduction to Algebraic-Geometric Codes. Fall 2019

April 30, 2019

Gil Cohen Noetherianity in Separable Extensions

Setting (The AKLB setting)

Let A be an integrally closed domain with K = Frac(A). Let L/K be a separable extension of degree [L : K] = n. Let B be the integral closure of A in L.

Claim

In the AKLB setting, there exists $\beta \in B$ such that $L = K(\beta)$.

We recall the following theorem from field theory.

Theorem

Every finite separable extension is simple.

Proof of Claim.

L/K is finite + separable $\implies \exists \gamma \in L \text{ s.t. } L = K(\gamma).$ Recall that "L = B/A" $\implies \exists \alpha \in A, \beta \in B \ \gamma = \beta/\alpha.$ $\implies L = K(\gamma) = K(\beta/\alpha) = K(\beta).$

Another theorem we recall here without a proof.

Theorem

Let L/K be an algebraic extension. Let S be all elements in L that are separable over K. Then, S is a field.

Proposition

Assume the AKLB setting. Write $L = K(\beta)$. Then, $\exists d \in A \setminus \{0\}$ s.t. the A-module B is contained in

$$F = A \frac{\beta^0}{d} + A \frac{\beta}{d} + \dots + A \frac{\beta^{n-1}}{d}$$

Corollary (Main message from this unit!)

Assume AKLB. Then, A is noetheiran \implies B is a f.g. A-module. In particular, B is a noetheiran ring.

Proof of Corollary.

A noetheiran + F f.g. A-module \implies F noetherian A-module. B an A-submodule of $F \implies$ B f.g. A-module.

Proof of Proposition.

Since $L = K(\beta)$, $\forall b \in B \; \exists x_0, \dots, x_{n-1} \in K \text{ s.t. } b = \sum_{i=0}^{n-1} x_i \beta^i$. L/K separable of degree $n \implies \Gamma_{L/K} = \{\sigma_1, \dots, \sigma_n : L \hookrightarrow \overline{K}\}$. Define the $n \times n$ matrix M by $M_{i,j} = \sigma_i(\beta^{j-1})$.Observe that

$$\left(\begin{array}{c}\sigma_1(b)\\\vdots\\\sigma_n(b)\end{array}\right) = M\left(\begin{array}{c}x_0\\\vdots\\x_{n-1}\end{array}\right)$$

Indeed,

$$\sigma_i(b) = \sigma_i\left(\sum_{j=0}^{n-1} x_j \beta^j\right) = \sum_{j=0}^{n-1} x_j \sigma_i(\beta^j).$$

Proof of Proposition (cont.)

$$\begin{pmatrix} \sigma_{1}(b) \\ \vdots \\ \sigma_{n}(b) \end{pmatrix} = M \begin{pmatrix} x_{0} \\ \vdots \\ x_{n-1} \end{pmatrix}$$
$$\implies M^{*} \begin{pmatrix} \sigma_{1}(b) \\ \vdots \\ \sigma_{n}(b) \end{pmatrix} = M^{*}M \begin{pmatrix} x_{0} \\ \vdots \\ x_{n-1} \end{pmatrix} = \begin{pmatrix} \det(M) \cdot x_{0} \\ \vdots \\ \det(M) \cdot x_{n-1} \end{pmatrix}$$

Proof of Proposition (cont.)

$$M^* \begin{pmatrix} \sigma_1(b) \\ \vdots \\ \sigma_n(b) \end{pmatrix} = \begin{pmatrix} \det(M) \cdot x_0 \\ \vdots \\ \det(M) \cdot x_{n-1} \end{pmatrix}$$

 M^* entries are integral over $A + \sigma_i(b)$ integral over $A \implies \det(M) \cdot x_i$ are all integral over A.

Observe that if $det(M) \in K^{\times}$ we are done! Indeed, in such case,

$$b = \sum_{i=0}^{n-1} x_i \beta^i = \frac{1}{\det(M)} \cdot \sum_{i=0}^{n-1} (\det(M) \cdot x_i) \beta^i.$$

 $\det(M) \in K^{\times} + \det(M)$ integral over $A \implies \det(M) \in A$. Similarly, $\det(M) \cdot x_i$ are all in A. So taking $d \triangleq \det(M)$ we would be done. However, $\det(M)$ may not be in K^{\times} .

Claim

 $\det(M)^2 \in K$.

Proof.

For simplicity, we are going to assume that $L \subseteq \overline{K}$. Using Steinitz's theorems one can handle the general case (try it!) Take any $\nu \in \Gamma_K$. $\nu : \overline{K} \hookrightarrow \overline{K}$ an automorphism that fixes K. Observe that

$$\{\nu \circ \sigma_1, \ldots, \nu \circ \sigma_n\} = \{\sigma_1, \ldots, \sigma_n\}.$$

Define $\nu \circ M$ by $(\nu \circ M)_{i,j} = \nu(M_{i,j})$. By the above, $\nu \circ M$ is M up to row permutation $\implies \det(\nu \circ M) = \pm \det(M)$. But $\det(\nu \circ M) = \nu(\det(M))$. So, $\nu(\det(M)) = \pm \det(M) \implies \nu(\det(M)^2) = \det(M)^2$. The proof follows since $\det(M)^2$ is separable over K.

Corollary

 $\det(M)^2 \in A.$

Proof.

 $det(M)^2 \in K + det(M)$ is integral over A. The proof follows since A is integrally closed.

Claim

 $\det(M)^2 \cdot x_i \in A.$

Proof.

 $\det(M)^2 \cdot x_i \in K$ as $\det(M)^2 \in K$ and $x_i \in K$. Now,

$$\det(M)^2 \cdot x_i = \det(M) \cdot (\det(M) \cdot x_i)$$

and we proved that det(M) and $det(M) \cdot x_i$ are integral over A. The proof follows as A is integrally closed.

Proof of Proposition (cont.)

So we can write

$$b = \sum_{i=0}^{n-1} x_i \beta^i$$
$$= \frac{1}{\det(M)^2} \cdot \sum_{i=0}^{n-1} (\det(M)^2 \cdot x_i) \beta^i.$$

Observe that $\det(M)^2 \in A$ and $\det(M)^2 \cdot x_i \in A$ as stated. Only thing left is to show that $\det(M)^2 \neq 0$ (check!) To summarize this unit,

Theorem

Let A be an integrally closed domain with K = Frac(A). Let L/K be a finite and separable extension. Let B be the integral closure of A in L. Then,

A noetherian \implies B noetherian.