The Riemann-Roch Theorem and Its Consequences Unit 15

Gil Cohen

March 27, 2022

- 1 The Riemann-Roch Theorem
- 2 Classification of degree 0, 2g 2 divisors
- 3 Canonical divisors of the rational function field
- 4 The strong approximation theorem

The Riemann-Roch Theorem

Without further ado

Theorem 1 (Riemann-Roch)

Let F/K be a function field with genus g. Let $\mathfrak c$ be a canonical divisor of F/K. Then, for every divisor $\mathfrak a$

$$\dim \mathfrak{a} = \deg \mathfrak{a} + 1 - g + \dim(\mathfrak{c} - \mathfrak{a}).$$

Proof.

Recall that

$$\delta(\mathfrak{a}) = \dim_{\mathsf{K}} \Omega(\mathfrak{a}) = \dim_{\mathsf{K}} \mathbb{A} \Big/ (\Lambda(\mathfrak{a}) + \mathsf{F}) = g - 1 - (\deg \mathfrak{a} - \dim \mathfrak{a}).$$

Thus, it suffices to prove that

$$\delta(\mathfrak{a}) = \dim(\mathfrak{c} - \mathfrak{a}).$$

The Riemann-Roch Theorem

Proof.

Let $0 \neq \omega \in \Omega$ s.t. $\mathfrak{c} = (\omega)$. Consider the K-linear homomorphism

$$T: \mathsf{F} \to \Omega$$
$$x \mapsto x\omega$$

We have that

$$x \in \mathcal{L}(\mathfrak{c} - \mathfrak{a}) \iff (x) + (\omega) - \mathfrak{a} \ge 0$$

 $\iff (x\omega) \ge \mathfrak{a}$
 $\iff x\omega \in \Omega(\mathfrak{a}).$

So T embeds $\mathcal{L}(\mathfrak{c}-\mathfrak{a})$ in $\Omega(\mathfrak{a})$. Since every element in $\Omega(\mathfrak{a})$ is of the form $x\omega$ for some $x\in F$, we have equality in dimensions. Thus,

$$\delta(\mathfrak{a}) = \dim_{\mathsf{K}} \Omega(\mathfrak{a}) = \dim_{\mathsf{K}} \mathcal{L}(\mathfrak{c} - \mathfrak{a}) = \dim(\mathfrak{c} - \mathfrak{a}).$$

- 1 The Riemann-Roch Theorem
- 2 Classification of degree 0, 2g 2 divisors
- 3 Canonical divisors of the rational function field
- 4 The strong approximation theorem

Degree and dimension of canonical divisors

Corollary 2

Let c be a canonical divisor. Then,

$$\dim \mathfrak{c} = g,$$

 $\deg \mathfrak{c} = 2g - 2.$

Proof.

By Riemann-Roch,

$$\dim \mathfrak{a} = \deg \mathfrak{a} + 1 - g + \dim(\mathfrak{c} - \mathfrak{a}).$$

Setting $\mathfrak{a}=0$ we get

$$1 = \dim 0 = \deg 0 + 1 - g + \dim(\mathfrak{c} - 0) = 1 - g + \dim \mathfrak{c},$$

and so dim $\mathfrak{c}=g$. Again by Riemann-Roch, now applied with $\mathfrak{a}=\mathfrak{c},$

$$g = \dim \mathfrak{c} = \deg \mathfrak{c} + 1 - g + \dim(\mathfrak{c} - \mathfrak{c}) \implies \deg \mathfrak{c} = 2g - 2.$$

Degree zero divisors

Claim 3

- ① If \mathfrak{a} is principal then dim $\mathfrak{a}=1$ and deg $\mathfrak{a}=0$.
- ② If $\deg \mathfrak{a} = 0$ and \mathfrak{a} is not principal then $\dim \mathfrak{a} = 0$.

Proof.

For the first item, it suffices to consider a = 0 as

$$\dim(\mathfrak{a}+(x))=\dim\mathfrak{a},$$

$$\deg(\mathfrak{a}+(x))=\deg\mathfrak{a}.$$

The proof follows as $\dim 0 = 1$, $\deg 0 = 0$.

As for Item (2), assume that dim a > 0. Then $(x) + a \ge 0$ for some $x \ne 0$. But

$$\deg((x) + \mathfrak{a}) = \deg \mathfrak{a} = 0,$$

and so $(x) + \mathfrak{a} = 0$, namely, $\mathfrak{a} = (x^{-1})$ is principal.

Degree 2g - 2 divisors

Riemann-Roch: $\dim \mathfrak{a} = \deg \mathfrak{a} + 1 - g + \dim(\mathfrak{c} - \mathfrak{a})$.

Corollary 4 (Degree 2g - 2 divisors)

If $\deg \mathfrak{a} = 2g - 2$ and \mathfrak{a} is not canonical then $\dim \mathfrak{a} = g - 1$.

Proof.

By Riemann-Roch with " $\mathfrak{a}=\mathfrak{c}-\mathfrak{a}$ ", and using that $\deg\mathfrak{c}=2g-2$,

$$\dim(\mathfrak{c} - \mathfrak{a}) = \deg(\mathfrak{c} - \mathfrak{a}) + 1 - g + \dim(\mathfrak{c} - (\mathfrak{c} - \mathfrak{a}))$$
$$= 1 - g + \dim \mathfrak{a}.$$

Note that $\mathfrak{c}-\mathfrak{a}$ is not principal as otherwise \mathfrak{a} would be canonical. Indeed,

$$\mathfrak{c} - \mathfrak{a} = (x) \implies \mathfrak{a} = \mathfrak{c} - (x) \in \mathcal{W}.$$

By Corollary 2, $\deg(\mathfrak{c} - \mathfrak{a}) = 0$. Therefore, Claim 3 implies $\dim(\mathfrak{c} - \mathfrak{a}) = 0$. Thus, $\dim \mathfrak{a} = g - 1$.

Characterization of canonical divisors

We obtain a characterization of canonical divisors in terms of dimension and degree.

Lemma 5

$$\mathfrak{a} \in \mathcal{W} \iff \deg \mathfrak{a} = 2g-2 \text{ and } \dim \mathfrak{a} = g$$
 $\iff \deg \mathfrak{a} = 2g-2 \text{ and } \dim \mathfrak{a} \neq g-1.$

Proof.

By Corollary 2, for $\mathfrak{a} \in \mathcal{W}$ we have $\deg \mathfrak{a} = 2g - 2$ and $\dim \mathfrak{a} = g$.

By Corollary 4, if deg $\mathfrak{a}=2g-2$ and dim $\mathfrak{a}\neq g-1$ then $\mathfrak{a}\in\mathcal{W}.$

Negative degree divisors

Claim 6

If $\deg \mathfrak{a} < 0$ then $\dim \mathfrak{a} = 0$.

Proof.

If dim a > 0 then $(x) + a \ge 0$ for some $x \ne 0$. But,

$$\deg((x) + \mathfrak{a}) = \deg \mathfrak{a} < 0,$$

which is a contradiction to $(x) + \mathfrak{a} \ge 0$.

Degree > 2g - 2 divisors

Riemann-Roch: $\dim \mathfrak{a} = \deg \mathfrak{a} + 1 - g + \dim(\mathfrak{c} - \mathfrak{a})$.

Corollary 7 (Degree > 2g - 2 divisors)

If $\deg \mathfrak{a} > 2g - 2$ then $\dim \mathfrak{a} = \deg \mathfrak{a} - g + 1$.

Proof.

By Riemann-Roch with " $\mathfrak{a} = \mathfrak{c} - \mathfrak{a}$ "

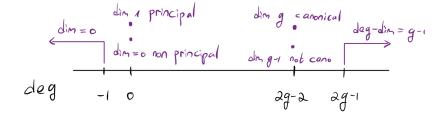
$$\dim(\mathfrak{c} - \mathfrak{a}) = \deg(\mathfrak{c} - \mathfrak{a}) + 1 - g + \dim(\mathfrak{c} - (\mathfrak{c} - \mathfrak{a})).$$

By Corollary 2, $\deg\mathfrak{c}=2g-2$ and so $\deg(\mathfrak{c}-\mathfrak{a})<0$. Thus, $\dim(\mathfrak{c}-\mathfrak{a})=0$ and so

$$0 = \deg \mathfrak{c} - \deg \mathfrak{a} + 1 - g + \dim \mathfrak{a}$$
$$= g - 1 + \dim \mathfrak{a} - \deg \mathfrak{a},$$

and the proof follows.

Summary



- 1 The Riemann-Roch Theorem
- 2 Classification of degree 0, 2g 2 divisors
- 3 Canonical divisors of the rational function field
- 4 The strong approximation theorem

Canonical divisors of the rational function field

By Lemma 5,

$$\mathfrak{a} \in \mathcal{W} \quad \Longleftrightarrow \quad \deg \mathfrak{a} = 2g-2 \ \text{and} \ \dim \mathfrak{a} = g.$$

We saw that the genus of K(x)/K is 0, and so

$$\mathfrak{a} \in \mathcal{W} \quad \Longleftrightarrow \quad \mathsf{deg}\, \mathfrak{a} = -2 \,\,\mathsf{and} \,\,\mathsf{dim}\, \mathfrak{a} = 0.$$

Note that

$$deg(-2\mathfrak{p}_{\infty}) = -2,$$

$$dim(-2\mathfrak{p}_{\infty}) = 0,$$

and so $-2\mathfrak{p}_{\infty}$ is a canonical divisor of the rational function field.

Canonical divisors of the rational function field

Lets try to give some vague informal explanation as to why $-2\mathfrak{p}_{\infty}$ is a canonical divisor of K(x)/K.

If we wish to understand dx "at infinity" we can consider $y = \frac{1}{x}$ and then

$$\frac{dx}{dy} = -\frac{1}{y^2} \quad \Longrightarrow \quad dx = -\frac{1}{y^2} \cdot dy.$$

Therefore, we would like to say that dx has a pole of order 2 at y=0, namely, at " $x=\infty$ ".

- 1 The Riemann-Roch Theorem
- 2 Classification of degree 0, 2g 2 divisors
- 3 Canonical divisors of the rational function field
- 4 The strong approximation theorem

The strong approximation theorem

Theorem 8

Let F/K be a function field. Let $S \subseteq \mathbb{P}$ be finite and $\mathfrak{q} \in \mathbb{P} \setminus S$. For every $\mathfrak{p} \in \mathbb{P}$ let $x_{\mathfrak{p}} \in F$ and $m_{\mathfrak{p}} \in \mathbb{Z}$. Then, $\exists x \in F$ satisfying

$$egin{aligned} orall \mathfrak{p} \in \mathcal{S} & \psi_{\mathfrak{p}}(x-x_{\mathfrak{p}}) = m_{\mathfrak{p}} \ orall \mathfrak{p}
ot\in \mathcal{S} \cup \{\mathfrak{q}\} & \psi_{\mathfrak{p}}(x) \geq 0. \end{aligned}$$

Proof.

We will prove a weaker version in which we get an inequality for $\mathfrak{p} \in S$ and leave it for you to obtain equality.

Denote

$$\mathfrak{a}=m\mathfrak{q}-\sum_{\mathfrak{p}\in S}m_{\mathfrak{p}}\mathfrak{p},$$

for m sufficiently large so that

$$\deg \mathfrak{a} > 2g - 2$$
.

The strong approximation theorem

Proof.

We took

$$\mathfrak{a}=m\mathfrak{q}-\sum_{\mathfrak{p}\in\mathcal{S}}m_{\mathfrak{p}}\mathfrak{p},$$

for *m* sufficiently large so that deg a > 2g - 2. Thus,

$$\deg \mathfrak{a} - \dim \mathfrak{a} = g - 1,$$

and so

$$A = \Lambda(\mathfrak{a}) + F$$
.

Define the adele α with

$$\alpha_{\mathfrak{p}} = \begin{cases} x_{\mathfrak{p}}, & \mathfrak{p} \in \mathsf{S}, \\ 0, & \text{otherwise.} \end{cases}$$

The strong approximation theorem

Proof.

Recall that $A = \Lambda(\mathfrak{a}) + F$, and

$$\mathfrak{a} = m\mathfrak{q} - \sum_{\mathfrak{p} \in \mathcal{S}} m_{\mathfrak{p}}\mathfrak{p},$$
 $lpha_{\mathfrak{p}} = egin{cases} x_{\mathfrak{p}}, & \mathfrak{p} \in \mathcal{S}, \ 0, & ext{otherwise}. \end{cases}$

So $\exists x \in F$ s.t. $\alpha - x \in \Lambda(\mathfrak{a})$, and so $x - \alpha \in \Lambda(\mathfrak{a})$. Thus,

$$\forall \mathfrak{p} \in \mathbb{P} \quad \upsilon_{\mathfrak{p}}(x - \alpha) + \upsilon_{\mathfrak{p}}(\mathfrak{a}) \geq 0.$$

So $\forall \mathfrak{p} \in S$,

$$v_{\mathfrak{p}}(x-x_{\mathfrak{p}})-m_{\mathfrak{p}}\geq 0,$$

and for $\mathfrak{p} \notin S \cup \{\mathfrak{q}\}$,

$$v_{\mathfrak{p}}(x) \geq 0.$$

