The Different Unit 21

Gil Cohen

December 30, 2024

イロン イ団 と イヨン イヨン

Oedekind different theorem

イロン イヨン イヨン イヨン

Definition 1

Let F/L be an extension of E/K with F/E finite and separable. Let $\mathfrak p$ be a prime divisor of E/K with valuation ring $\mathcal O_\mathfrak p$ and integral closure $\mathcal O'_\mathfrak p$ in F. Let

$$\mathsf{C}_\mathfrak{p} = t_\mathfrak{p} \mathcal{O}'_\mathfrak{p}$$

be the complementary module over $\mathcal{O}_{\mathfrak{p}}$.

We define the different exponent of $\mathfrak{P}/\mathfrak{p}$ by

$$d(\mathfrak{P}/\mathfrak{p}) = -\upsilon_{\mathfrak{P}}(t_{\mathfrak{p}}).$$

The different of F/E if defined by

$$\mathsf{Diff}(\mathsf{F}/\mathsf{E}) = \sum_{\mathfrak{p} \in \mathbb{P}(\mathsf{E})} \sum_{\mathfrak{P}/\mathfrak{p}} d(\mathfrak{P}/\mathfrak{p})\mathfrak{P}.$$

$$\mathsf{Diff}(\mathsf{F}/\mathsf{E}) = \sum_{\mathfrak{p} \in \mathbb{P}(\mathsf{E})} \sum_{\mathfrak{P}/\mathfrak{p}} d(\mathfrak{P}/\mathfrak{p})\mathfrak{P}.$$

where $d(\mathfrak{P}/\mathfrak{p}) = -\upsilon_{\mathfrak{P}}(t_{\mathfrak{p}})$ and $C_{\mathfrak{p}} = t_{\mathfrak{p}}\mathcal{O}'_{\mathfrak{p}}$.

Some remarks are in order:

- As proved, $v_{\mathfrak{P}}(t_{\mathfrak{p}})$ does not depend on the choice of $t_{\mathfrak{p}}$ when writing $C_{\mathfrak{p}} = t_{\mathfrak{p}}\mathcal{O}'_{\mathfrak{p}}$. Thus, $d(\mathfrak{P}/\mathfrak{p})$ is well-defined.
- We further proved that $d(\mathfrak{P}/\mathfrak{p}) = 0$ for almost all $\mathfrak{P}/\mathfrak{p}$ and so Diff(F/E) is a divisor.
- $v_{\mathfrak{P}}(t_{\mathfrak{p}}) \leq 0$ and so $d(\mathfrak{P}/\mathfrak{p}) \geq 0$. Thus, $\text{Diff}(F/E) \geq 0$.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Claim 2

For all $z \in F$,

$$z\in\mathsf{C}_\mathfrak{p}\quad\iff\quad \forall\mathfrak{P}/\mathfrak{p}\quad v_\mathfrak{P}(z)\geq -d(\mathfrak{P}/\mathfrak{p}).$$

Proof.

イロン イヨン イヨン イヨン

Lemma 3

Assume F/E is separable. Let $\mathfrak{p} \in \mathbb{P}(\mathsf{E})$ and $\mathfrak{P} = \mathfrak{P}_1, \dots, \mathfrak{P}_r \in \mathbb{P}(\mathsf{F})$ be the prime divisors of F lying over \mathfrak{p} . Let

$$\pi: \mathcal{O}_{\mathfrak{P}} \to \mathsf{F}_{\mathfrak{P}}$$

be the corresponding projective map (that can be extended to a place) which extends the projection map $\pi : \mathcal{O}_{\mathfrak{p}} \to \mathsf{E}_{\mathfrak{p}}$.

Let $F_{\mathfrak{P},s}$ be the separable closure of $E_{\mathfrak{p}}$ in $F_{\mathfrak{P}}$.

Let
$$y \in \mathcal{O}'_{\mathfrak{p}}$$
 be s.t.
• $v_{\mathfrak{P}_j}(y) > 0$ for $j = 2, ..., r$; and
• $\pi(y) \in F_{\mathfrak{P},\mathfrak{s}}$.

Then,

$$\pi\left(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(y)\right) = e(\mathfrak{P}/\mathfrak{p}) \cdot \mathsf{Tr}_{\mathsf{F}_{\mathfrak{P},s}/\mathsf{E}_{\mathfrak{p}}}(\pi(y)).$$

Recall that, had F/E were Galois, the ramification index would have been given by

$$e(\mathfrak{P}/\mathfrak{p}) = rac{[\mathsf{F}:\mathsf{E}]}{[\mathsf{F}_\mathfrak{P}:\mathsf{E}_\mathfrak{p}]_i} \cdot |\mathrm{I}(\mathfrak{P}/\mathfrak{p})|.$$

However, we are not guaranteed that F/E is Galois (we only assumed F/E is separable).

To overcome this, let $\widehat{\mathsf{F}}$ be the Galois closure of F/E . Let $\widehat{\mathfrak{P}}$ be a prime divisor over \mathfrak{P} . We extend the projection map π to $\pi : \mathcal{O}_{\widehat{\mathfrak{P}}} \to \widehat{\mathsf{F}}_{\widehat{\mathfrak{P}}}$ We have that

$$\operatorname{Tr}_{\mathsf{F}/\mathsf{E}}(y) = \sum_{i=1}^n \sigma_i(y)$$

where $\sigma_1, \ldots, \sigma_n : F \to \widehat{F}$ are the distinct E-embeddings of F into \widehat{F} .

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Proof.

We extend each $\sigma_i : F \to \widehat{F}$ to an automorphism of \widehat{F} . Typically we will have a freedom which automorphism to pick. We will choose an automorphism arbitrarily but for the following rule: If there is an extension in $\mathcal{D}(\widehat{\mathfrak{P}}/\mathfrak{p})$ we will pick it.

We denote the extension of σ_i by $\hat{\sigma_i}$, and assume that $\sigma_1 = id_F$ and that $\hat{\sigma_1} = id_F$ (which is consistent with the rule above).

Proof.

Recall that the decomposition group of $\widehat{\mathfrak{P}}$ is given by

$$\mathcal{D}(\widehat{\mathfrak{P}}/\mathfrak{p}) = \{ \sigma \in \mathsf{Gal}(\widehat{\mathsf{F}}/\mathsf{E}) \mid \sigma \widehat{\mathfrak{P}} = \widehat{\mathfrak{P}} \},$$

and the epimorphism

$$\psi: D(\widehat{\mathfrak{P}}/\mathfrak{p}) o \operatorname{Aut}(\widehat{\mathsf{F}}_{\widehat{\mathfrak{P}}}/\mathsf{E}_\mathfrak{p})$$

 $\sigma \mapsto \overline{\sigma}$

where $\forall x \in \widehat{\mathsf{F}}$ $\overline{\sigma}(\pi x) = \pi(\sigma x)$.

Proof.

Note further that Aut($\widehat{F}_{\widehat{\mathfrak{P}}}/\mathsf{E}_{\mathfrak{p}}) = \mathsf{Gal}(\widehat{F}_{\hat{\mathfrak{P}},s}/\mathsf{E}_{\mathfrak{p}})$ as the extension $\widehat{F}_{\widehat{\mathfrak{P}}}/\widehat{F}_{\widehat{\mathfrak{P}},s}$ is purely inseparable and so every automorphism of $\widehat{F}_{\widehat{\mathfrak{P}},s}/\mathsf{E}_{\mathfrak{p}}$ can be uniquely extended to an automorphism of $\widehat{F}_{\widehat{\mathfrak{P}}}/\mathsf{E}_{\mathfrak{p}}$.

Of course, in our case, the restriction of $\overline{\hat{\sigma}}_i$ to $\hat{F}_{\hat{\mathfrak{P}},s}$ is an E_p -embedding. Thus, for every $\hat{\sigma}_i \in \mathcal{D}(\hat{\mathfrak{P}}/\mathfrak{p})$ we have that $\overline{\hat{\sigma}}_i$ is an embedding over $E_\mathfrak{p}$ of $F_{\mathfrak{P},s}$ into $\hat{F}_{\hat{\mathfrak{P}}}$. In particular,

 $\{\hat{\bar{\sigma_i}}(\pi(y)) \mid \hat{\sigma_i} \in \mathcal{D}(\hat{\mathfrak{P}}/\mathfrak{p})\} \subseteq \{\alpha(\pi(y)) \mid \mathsf{E}_\mathfrak{p} \text{ embedding } \alpha : \mathsf{F}_{\mathfrak{P},\mathfrak{s}} \to \hat{F}_{\hat{\mathfrak{P}}}\}.$

イロト イヨト イヨト イヨト

We turn to prove the other direction, namely,

 $\{\hat{\sigma_i}(\pi(y)) \mid \hat{\sigma_i} \in \mathcal{D}(\hat{\mathfrak{P}}/\mathfrak{p})\} \supseteq \{\alpha(\pi(y)) \mid \mathsf{E}_\mathfrak{p} \text{ embedding } \alpha : \mathsf{F}_{\mathfrak{P},\mathfrak{s}} \to \hat{\mathsf{F}}_{\hat{\mathfrak{P}}}\}.$

Indeed, take $\alpha : F_{\mathfrak{P},\mathfrak{s}} \to \hat{F}_{\hat{\mathfrak{P}}}$ an embedding over $E_{\mathfrak{p}}$, and extend it to an automorphism $\hat{\alpha}$ of $\hat{F}_{\hat{\mathfrak{P}}}$ over $E_{\mathfrak{p}}$ (this is an automorphism as $\hat{F}_{\hat{\mathfrak{P}}}$ is normal).

Recall that the map $\psi: D(\hat{\mathfrak{P}}/\mathfrak{p}) \to \operatorname{Aut}(\hat{\mathsf{F}}_{\hat{\mathfrak{P}}}/\mathsf{E}_{\mathfrak{p}})$ is onto. Thus, there exists $\hat{\sigma} \in D(\hat{\mathfrak{P}}/\mathfrak{p}) \leq \operatorname{Aut}(\hat{\mathsf{F}}/\mathsf{E})$ such that $\overline{\hat{\sigma}} = \psi(\hat{\sigma}) = \hat{\alpha}$.

Had $\hat{\sigma} = \hat{\sigma}_i$ for some *i* we would have been done. However, it is not necessarily the case that $\hat{\sigma}$ is one of the extensions of σ_i as there is freedom in how to choose an extension $\hat{\sigma}_i$ of σ_i .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Proof.

Nonetheless, we will show how to tweak $\hat{\sigma}$ so to get the result. Indeed,

$$\pi(\hat{\sigma}y) = \overline{\hat{\sigma}}(\pi(y)) = \hat{\alpha}(\pi(y)).$$

Now, per our assumption, $\pi(y) \in F_{\mathfrak{P},s}$. As $\hat{\alpha}$ extends α from $F_{\mathfrak{P},s}$ to $\hat{F}_{\hat{\mathfrak{n}}}$, we have that

$$\pi(\hat{\sigma}y) = \alpha(\pi(y)).$$

Now, $\hat{\sigma}$ restricted to F is some σ_i , namely,

$$\hat{\sigma}|_{\mathsf{F}} = \sigma_i|_{\mathsf{F}}$$
 and so $(\hat{\sigma}^{-1}\sigma_i)|_{\mathsf{F}} = \mathsf{id}_{\mathsf{F}}.$

Thus, $\hat{\sigma}^{-1}\sigma_i = \tau \in \operatorname{Aut}(\hat{\mathsf{F}}/\mathsf{F})$. Namely, $\hat{\sigma} = \sigma_i \tau$.

Since $\hat{\sigma} \in \mathcal{D}(\hat{\mathfrak{P}}/\mathfrak{p})$ extends σ_i it is also the case that $\hat{\sigma}_i \in \mathcal{D}(\hat{\mathfrak{P}}/\mathfrak{p})$ as by our rule, if there is an extension of σ_i in $\mathcal{D}(\hat{\mathfrak{P}}/\mathfrak{p})$ then we pick such extension.

As $\tau|_{\mathsf{F}} = \mathsf{id}_{\mathsf{F}}$ we have that

$$\pi(\sigma_i(y)) = \pi(\sigma_i(\tau y)) = \pi((\sigma_i \tau)y) = \pi(\hat{\sigma}(y)) = \bar{\sigma}(\pi(y)) = \alpha(\pi(y)).$$

イロト 不得 トイヨト イヨト 二日

Consider now the case that $\hat{\sigma}_i \hat{\mathfrak{P}} \neq \hat{\mathfrak{P}}$ or, equivalently, $\hat{\sigma}_i^{-1} \hat{\mathfrak{P}} \neq \hat{\mathfrak{P}}$. Let \mathfrak{P}' be the prime divisor of F that is under $\hat{\sigma}_i^{-1}\mathfrak{P}$. We claim that $\mathfrak{P}' \neq \mathfrak{P}$. Otherwise, there exists $\tau \in \operatorname{Aut}(\hat{\mathsf{F}}/\mathsf{F})$ such that

$$au\hat{\mathfrak{P}} = \hat{\mathfrak{P}}' \quad ext{ and so } \quad \hat{\sigma}_i au \in \mathcal{D}(\hat{\mathfrak{P}}/\mathfrak{P}) \subseteq \mathcal{D}(\hat{\mathfrak{P}}/\mathfrak{p}).$$

But $\tau|_{\mathsf{F}} = \mathsf{id}_{\mathsf{F}}$ and so $\hat{\sigma}_i \tau|_{\mathsf{F}} = \hat{\sigma}_i|_{\mathsf{F}}$.

This stands in contradiction to our assumption $\hat{\sigma}_i \hat{\mathfrak{P}} \neq \hat{\mathfrak{P}}$. Indeed, by our rule and under this assumption, when choosing $\hat{\sigma}_i$ as the extension of σ_i there was no choice of an extension in $\mathcal{D}(\hat{\mathfrak{P}}/\mathfrak{p})$.

Since $\mathfrak{P}' \neq \mathfrak{P}$ we have, per our assumption, that $v_{\mathfrak{P}'}(y) > 0$ and so $v_{\hat{\sigma}_i^{-1}\hat{\mathfrak{P}}}(y) > 0$, and so

$$v_{\hat{\mathfrak{P}}}(\sigma_i y) = v_{\hat{\sigma}_i^{-1}\hat{\mathfrak{P}}}(y) > 0 \implies \hat{\sigma}_i y \in \mathcal{O}_{\hat{\mathfrak{P}}} \text{ and } \pi(\hat{\sigma}_i y) = 0.$$

・ロト ・ 一下・ ・ ヨト・

э

Denote $\widehat{\mathcal{D}} = \mathcal{D}(\widehat{\mathfrak{P}}/\mathfrak{p})$ and

$$\mathsf{A} = \{ \alpha : \mathsf{F}_{\mathfrak{P}, \mathfrak{s}} \to \widehat{\mathsf{F}}_{\hat{\mathfrak{P}}} \ | \ \alpha \text{ that is an } \mathsf{E}_{\mathfrak{p}}\text{-embedding} \}.$$

Recall that for *i* such that $\hat{\sigma}_i \notin \hat{\mathcal{D}}$ we have that $\pi(\hat{\sigma}_i(y)) = 0$, and so

$$\pi(\operatorname{Tr}_{\mathsf{F}/\mathsf{E}}(y)) = \sum_{i=1}^{n} \pi(\sigma_i(y)) = \sum_{i=1}^{n} \pi(\widehat{\sigma}_i(y))$$
$$= \sum_{\sigma_i \in \widehat{\mathcal{D}}} \pi(\widehat{\sigma}_i(y)) = \sum_{\sigma_i \in \widehat{\mathcal{D}}} (\overline{\widehat{\sigma}}_i(\pi(y)))$$
$$= \sum_{\alpha \in \mathcal{A}} |\{i \mid \widehat{\sigma}_i \in \widehat{\mathcal{D}}, \overline{\widehat{\sigma}}_i = \alpha\}| \cdot \alpha(\pi(y))$$

<ロ> <四> <四> <四> <三</p>

To summarize,

$$\pi(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(y)) = \sum_{\alpha \in A} |\{i \mid \hat{\sigma}_i \in \hat{\mathcal{D}}, \overline{\hat{\sigma}}_i = \alpha\}| \cdot \alpha(\pi(y)).$$

but

$$|\{i \mid \hat{\sigma}_i \in \hat{\mathcal{D}}, \overline{\hat{\sigma}}_i = \alpha\}| = e(\mathfrak{P}/\mathfrak{p}),$$

and so

$$\pi(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(y)) = e(\mathfrak{P}/\mathfrak{p}) \cdot \sum_{\alpha \in A} \alpha(\pi(y)) = e(\mathfrak{P}/\mathfrak{p}) \cdot \mathsf{Tr}_{\mathsf{F}_{\mathfrak{P}, \mathfrak{s}/\mathsf{E}_{\mathfrak{p}}}}(\pi(y)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

イロト イヨト イヨト イヨト

Theorem 4 (Dedekind Different Theorem)

Let F/L be a finite separable extension of E/K. Let $\mathfrak{p} \in \mathbb{P}(E)$ and $\mathfrak{P} \in \mathbb{P}(F)$ lying over \mathfrak{p} . Then,

- $d(\mathfrak{P}/\mathfrak{p}) \geq e(\mathfrak{P}/\mathfrak{p}) 1$; and
- $\ \, {\mathfrak G} \ \, d(\mathfrak{P}/\mathfrak{p})=e(\mathfrak{P}/\mathfrak{p})-1 \quad \Longleftrightarrow \quad {\rm char} \ {\sf K} \nmid e(\mathfrak{P}/\mathfrak{p}).$

Corollary 5

With the above notations,

$$d(\mathfrak{P}/\mathfrak{p})=0 \quad \Longleftrightarrow \quad e(\mathfrak{P}/\mathfrak{p})=1$$

In particular, for almost all $\mathfrak{p}, \mathfrak{P}/\mathfrak{p}$ we have that $e(\mathfrak{P}/\mathfrak{p}) = 1$.

The proof of the corollary is straightforward.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Let $\mathfrak{P} = \mathfrak{P}_1, \dots, \mathfrak{P}_n$ be all prime divisors lying over \mathfrak{p} . By the WAT $\exists z \in \mathsf{F} \text{ s.t.}$

$$\forall i \in [n] \quad v_{\mathfrak{P}_i}(z) = 1 - e(\mathfrak{P}_i/\mathfrak{p}).$$

To prove the first item, it suffices to show that

$$z \in \mathsf{C}_{\mathfrak{p}} = t_{\mathfrak{p}}\mathcal{O}'_{\mathfrak{p}} = t_{\mathfrak{p}}\bigcap_{i=1}^{n}\mathcal{O}_{\mathfrak{P}_{i}}.$$

Indeed, if this is the case then

$$1-e(\mathfrak{P}_i/\mathfrak{p})=\upsilon_{\mathfrak{P}_i}(z)\geq \upsilon_{\mathfrak{P}_i}(t_\mathfrak{p})=-d(\mathfrak{P}_i/\mathfrak{p}).$$

In particular, $d(\mathfrak{P}/\mathfrak{p}) \geq e(\mathfrak{P}/\mathfrak{p}) - 1.$

イロン 不同 とくほう イヨン しほう

Proof.

Let \widehat{F} be the Galois closure of F/E and \widehat{L} be the algebraic closure of K in $\widehat{F}.$

Denote n = [F : E] and let $\sigma_1, \ldots, \sigma_n$ be the E-embeddings of F in \widehat{F} . n such embeddings exist since F/E is separable and since \widehat{F} is the Galois closure of F/E. We extend each σ_i to an automorphism of \widehat{F} over E.

Choose $\widehat{\mathfrak{P}}$ over \mathfrak{P} and consider the prime divisor $\sigma_i^{-1}\widehat{\mathfrak{P}}$. As $\sigma_i^{-1} \in \operatorname{Gal}(\widehat{\mathsf{F}}/\mathsf{E}), \ \sigma_i^{-1}\widehat{\mathfrak{P}}$ lies over \mathfrak{p} . Let $\mathfrak{P}_i \in \mathbb{P}(\mathsf{F})$ be the prime divisor of F between \mathfrak{p} and $\sigma_i^{-1}\widehat{\mathfrak{P}}$.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Proof.

Take $x \in \mathcal{O}'_{\mathfrak{p}}$ and note that $\sigma_i(x) \in \mathcal{O}'_{\mathfrak{p}}$. Thus, $v_{\widehat{\mathfrak{V}}}(\sigma_i(x)) \geq 0$. Now,

$$egin{aligned} &v_{\widehat{\mathfrak{P}}}(\sigma_i(zx)) = v_{\widehat{\mathfrak{P}}}(\sigma_i(z)\sigma_i(x)) \ &= v_{\widehat{\mathfrak{P}}}(\sigma_i(z)) + v_{\widehat{\mathfrak{P}}}(\sigma_i(x)) \ &\geq v_{\widehat{\mathfrak{P}}}(\sigma_i(z)) \ &= v_{\sigma_i^{-1}\widehat{\mathfrak{P}}}(z). \end{aligned}$$

As $z \in F$ we have that

$$egin{aligned} & \psi_{\sigma_i^{-1}\widehat{\mathfrak{P}}}(z) = e(\sigma_i^{-1}\widehat{\mathfrak{P}}/\mathfrak{P}_i) \psi_{\mathfrak{P}_i}(z) \ &= e(\sigma_i^{-1}\widehat{\mathfrak{P}}/\mathfrak{P}_i)(1-e(\mathfrak{P}_i/\mathfrak{p})) \ &> -e(\sigma_i^{-1}\widehat{\mathfrak{P}}/\mathfrak{P}_i) \cdot e(\mathfrak{P}_i/\mathfrak{p}) \ &= -e(\sigma_i^{-1}\widehat{\mathfrak{P}}/\mathfrak{p}) = -e(\widehat{\mathfrak{P}}/\mathfrak{p}). \end{aligned}$$

<ロ> <四> <四> <四> <四> <四</p>

Proof.

So far we have that

$$orall i \quad v_{\widehat{\mathfrak{P}}}(\sigma_i(zx)) > -e(\widehat{\mathfrak{P}}/\mathfrak{p}).$$

So,

$$\begin{aligned} \mathsf{e}(\widehat{\mathfrak{P}}/\mathfrak{p})\upsilon_{\mathfrak{p}}(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(zx)) &= \upsilon_{\widehat{\mathfrak{P}}}(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(zx)) \\ &= \upsilon_{\widehat{\mathfrak{P}}}\left(\sum_{i=1}^{n} \sigma_{i}(zx)\right) \\ &\geq \min_{i} \upsilon_{\widehat{\mathfrak{P}}}(\sigma_{i}(zx)) \\ &> -\mathsf{e}(\widehat{\mathfrak{P}}/\mathfrak{p}). \end{aligned}$$

Therefore, $\upsilon_{\mathfrak{p}}(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(zx)) > -1$ or, equivalently, $\upsilon_{\mathfrak{p}}(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(zx)) \geq 0$ and so $\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(zx) \in \mathcal{O}_{\mathfrak{p}}$. Thus, by the definition of the complementary module, $z \in \mathsf{C}_{\mathfrak{p}}$.

イロン イボン イヨン トヨ

We turn to prove the second item. Assume first that

charK
$$\nmid e(\mathfrak{P}/\mathfrak{p}) \triangleq e$$
.

Since the first item implies that $d(\mathfrak{P}/\mathfrak{p}) \ge e-1$ and we wish to show equality, it suffices to prove that $d(\mathfrak{P}/\mathfrak{p}) < e$.

As before let $\mathfrak{P} = \mathfrak{P}_1, \ldots, \mathfrak{P}_r$ be all the distinct prime divisors of F lying over \mathfrak{p} . Denote $e_i = e(\mathfrak{P}_i/\mathfrak{p})$.

Take $t_{\mathfrak{p}} \in \mathsf{F}$ s.t. $\mathsf{C}_{\mathfrak{p}} = t_{\mathfrak{p}}\mathcal{O}'_{\mathfrak{p}}$. Then,

$$v_{\mathfrak{P}_i}(t_{\mathfrak{p}}) = -d(\mathfrak{P}_i/\mathfrak{p}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Claim 6

$$\exists y \in \mathcal{O}'_{\mathfrak{p}} \text{ s.t.}$$

$$v_{\mathfrak{P}}(y) = 0;$$

$$v_{\mathfrak{P}_i}(y) \ge \max\left(1, e_i + v_{\mathfrak{P}_i}(t_{\mathfrak{p}})\right) \text{ for } i = 2, \dots, r; \text{ and}$$

$$v_{\mathfrak{p}}(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(y)) = 0.$$

Proof.

Let $F_{\mathfrak{P},s}$ be the separable closure of $\mathsf{E}_\mathfrak{p}$ in $F_\mathfrak{P}.$ As $F_{\mathfrak{P},s}/\mathsf{E}_\mathfrak{p}$ is separable,

$$\exists \bar{y}_0 \in \mathsf{F}_{\mathfrak{P},\mathfrak{s}} \quad \text{ s.t. } \quad \mathsf{Tr}_{\mathsf{F}_{\mathfrak{P},\mathfrak{s}}/\mathsf{E}_\mathfrak{p}}(\bar{y}_0) \neq 0.$$

As $\bar{y}_0 \in F_{\mathfrak{P}}$, $\exists y_0 \in \mathcal{O}_{\mathfrak{P}}$ s.t. $\pi(y_0) = \bar{y}_0$. By WAT, $\exists y \in F$ s.t. $v_{\mathfrak{P}}(y - y_0) > 0$ and for which Item 2 holds, namely, $v_{\mathfrak{P}_i}(y) \ge \max(1, e_i + v_{\mathfrak{P}_i}(t_\mathfrak{p}))$ i = 2, ..., r.

イロン イロン イヨン イヨン 三日

We turn to show that Item 1 holds. Indeed,

$$v_{\mathfrak{P}}(y) = v_{\mathfrak{P}}(y - y_0 + y_0).$$

Since $v_{\mathfrak{P}}(y - y_0) > 0$, showing that $v_{\mathfrak{P}}(y) = 0$ would follow if $v_{\mathfrak{P}}(y_0) = 0$.

To see that this is the case, if $v_{\mathfrak{P}}(y_0) > 0$ then

$$\bar{y}_0=\pi(y_0)=0,$$

and so

$$\operatorname{Tr}_{\mathsf{F}_{\mathfrak{P},\mathfrak{s}}/\mathsf{E}_{\mathfrak{p}}}(\bar{y}_{0})=0,$$

in contradiction to our choice of \bar{y}_0 .

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

To conclude the proof, we prove Item 3, namely that

$$\upsilon_{\mathfrak{p}}(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(y))=0.$$

To this end we wish to apply Lemma 3 and so we first make sure the hypothesis of the lemma are satisfied.

Hypothesis 1 of Lemma 3 follows by Item 2.

Hypothesis 2 $(\pi(y) \in \mathsf{F}_{\mathfrak{P},s})$ follows since $v_{\mathfrak{P}}(y - y_0) > 0$ and so

$$\pi(y) = \pi(y_0) = \bar{y}_0 \in \mathsf{F}_{\mathfrak{P},s}.$$

The only thing left to show is that $y \in \mathcal{O}'_{\mathfrak{p}}$ which follows since $y \in \mathcal{O}_{\mathfrak{P}_i}$ for all *i*.

イロン 不同 とくほう イヨン しほう

Proof.

Applying Lemma 3 we conclude that

$$\pi\left(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(y)\right) = e \cdot \mathsf{Tr}_{\mathsf{F}_{\mathfrak{P},\mathfrak{s}}/\mathsf{E}_{\mathfrak{p}}}(\pi(y)),$$

where note that the equation is over K.

Now, $\pi(y) = \pi(y_0) = \bar{y}_0$ and so

$$\mathsf{Tr}_{\mathsf{F}_{\mathfrak{P},s}/\mathsf{E}_{\mathfrak{p}}}(\pi(y))=\mathsf{Tr}_{\mathsf{F}_{\mathfrak{P},s}/\mathsf{E}_{\mathfrak{p}}}(\bar{y}_{0})\neq 0.$$

As we assume charK $\nmid e$, we have that $e \neq 0$ in K and so, overall,

 $\pi\left(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(y)\right) \neq 0.$

Hence,

$$v_{\mathfrak{p}}(\mathrm{Tr}_{\mathsf{F}/\mathsf{E}}(y)) = 0,$$

proving Claim 6.

イロト イヨト イヨト イヨト

Proof.

Going back to the proof of Theorem 4, take $x \in E$ s.t. $v_p(x) = -1$ (and so $v_{\mathfrak{P}_i}(x) = -e_i$).

Since we found in Claim 6 $y \in F$ s.t.

• $v_{\mathfrak{P}}(y) = 0;$ • $v_{\mathfrak{P}_i}(y) \ge \max(1, e_i + v_{\mathfrak{P}_i}(t_{\mathfrak{p}})) \text{ for } i = 2, \dots, r; \text{ and}$

we get that

э

Proof.

Denote
$$y' = xy$$
. Then,
• $v_{\mathfrak{P}}(y') = -e;$
• $v_{\mathfrak{P}_i}(y') \ge v_{\mathfrak{P}_i}(t_{\mathfrak{p}}) = -d(\mathfrak{P}_i/\mathfrak{p}) \text{ for } i = 2, \dots, r; \text{ and}$
• $v_{\mathfrak{p}}(\operatorname{Tr}_{\mathsf{F}/\mathsf{E}}(y')) = -1.$
By (3), $y' \notin C_{\mathfrak{p}}$ (as $1 \in \mathcal{O}'_{\mathfrak{p}}$ and for y' to be in $C_{\mathfrak{p}}$ we must have
 $\operatorname{Tr}_{\mathsf{F}/\mathsf{E}}(zy') \in \mathcal{O}_{\mathfrak{p}}$ for all $z \in \mathcal{O}'_{\mathfrak{p}}.$) Recall that
 $y' \in C_{\mathfrak{p}} = t_{\mathfrak{p}}\mathcal{O}_{\mathfrak{p}} \iff v_{\mathfrak{P}_i}(y') \ge -d(\mathfrak{P}_i/\mathfrak{p}) \text{ for } i = 1, 2, \dots, r.$
By (2) we therefore must have

e therefore must have

$$v_{\mathfrak{P}}(y') < -d(\mathfrak{P}/\mathfrak{p}).$$

(1) then implies that $e > d(\mathfrak{P}/\mathfrak{p})$ which concludes the proof for

 $\mathsf{char}\mathsf{K}
e \implies d(\mathfrak{P}/\mathfrak{p}) = e(\mathfrak{P}/\mathfrak{p}) - 1.$

To complete the proof we need to show that

$$\operatorname{char} \mathsf{K} \mid e \implies d(\mathfrak{P}/\mathfrak{p}) \geq e(\mathfrak{P}/\mathfrak{p}).$$

To prove this we prove the following claim.

Claim 7

 $\exists y \in \mathcal{O}'_{\mathfrak{p}} \text{ s.t. } \forall z \in \mathcal{O}'_{\mathfrak{p}} \text{ the following holds:}$

•
$$v_{\mathfrak{P}}(y) = 0;$$

2
$$v_{\mathfrak{P}}(yz) \geq 0;$$

3
$$v_{\mathfrak{P}_i}(yz) > 0$$
 for $i = 2, \ldots, r$; and

 $u_{\mathfrak{p}}(\mathrm{Tr}_{\mathsf{F}/\mathsf{E}}(yz)) > 0.$

э

Proof.

By WAT, $\exists y \in F$ s.t.

$$v_{\mathfrak{P}}(y) = 0$$
 and $v_{\mathfrak{P}_i}(y) > 0$ for $i > 1$.

In particular, $y \in \mathcal{O}'_{\mathfrak{p}}$ and items 1,2, and 3 hold.

As for Item 4, denote

$$q = [\mathsf{F}_{\mathfrak{P}} : \mathsf{F}_{\mathfrak{P},s}].$$

<ロ> <四> <四> <四> <三</p>

By Lemma 3 applied to $y' = (yz)^q$ whose hypothesis holds, in particular,

$$\pi(y') = \pi((yz)^q) = (\pi(yz))^q \in \mathsf{F}_{\mathfrak{P},s},$$

we have that

$$\pi(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}((yz)^q)) = e \cdot \mathsf{Tr}_{\mathsf{F}_{\mathfrak{P},\mathfrak{s}}/\mathsf{E}_\mathfrak{p}}(\pi((yz)^q)) = 0,$$

where the last equality holds since e = 0 in $F_{\mathfrak{P}}$.

Thus,

$$\upsilon_{\mathfrak{p}}((\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(yz))^q) = \upsilon_{\mathfrak{p}}(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}((yz)^q)) > 0,$$

and so

$$\upsilon_{\mathfrak{p}}(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(yz)) > 0.$$

Item 4 then follows, proving Claim 7.

イロト 不得 トイヨト イヨト

э

$$\exists y \in \mathcal{O}'_{\mathfrak{p}} \quad \forall z \in \mathcal{O}'_{\mathfrak{p}}$$

1
$$v_{\mathfrak{P}}(y) = 0;$$

2
$$v_{\mathfrak{P}}(yz) \geq 0;$$

•
$$v_{\mathfrak{P}_i}(yz) > 0$$
 for $i = 2, ..., r$; and

•
$$v_{\mathfrak{p}}(\operatorname{Tr}_{\mathsf{F}/\mathsf{E}}(yz)) > 0.$$

Proof.

Going back to the proof of Theorem 4, by multiplying y by $x \in E$ with $v_p(x) = -1$ we get that for y' = xy and $\forall z \in \mathcal{O}'_p$ it holds that

•
$$v_{\mathfrak{P}}(y') = -e;$$

• $v_{\mathfrak{P}}(y'z) \ge -e;$
• $v_{\mathfrak{P}_i}(y'z) > -e_i \text{ for } i = 2, \dots, r; \text{ and}$
• $v_{\mathfrak{P}}(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(y'z)) \ge 0.$

<ロ> <四> <四> <四> <三</p>

For y' = xy and $\forall z \in \mathcal{O}'_{\mathfrak{p}}$ it holds that • $v_{\mathfrak{P}}(y') = -e;$ • $v_{\mathfrak{P}}(y'z) \ge -e;$ • $v_{\mathfrak{P}_i}(y'z) > -e_i$ for $i = 2, \dots, r;$ and • $v_{\mathfrak{p}_i}(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(y'z)) \ge 0.$ By Item 4, $y' \in \mathsf{C}_{\mathfrak{p}}$ and so

$$v_{\mathfrak{P}}(y') \geq -d(\mathfrak{P}/\mathfrak{p}).$$

The proof then follows by Item 1.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □