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The Different

Definition 1

Let F/L be an extension of E/K with F/E finite and separable. Let p be
a prime divisor of E/K with valuation ring Op and integral closure O′p in
F. Let

Cp = tpO′p
be the complementary module over Op.

We define the different exponent of P/p by

d(P/p) = −υP(tp).

The different of F/E if defined by

Diff(F/E) =
∑

p∈P(E)

∑
P/p

d(P/p)P.
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The Different

Diff(F/E) =
∑

p∈P(E)

∑
P/p

d(P/p)P.

where d(P/p) = −υP(tp) and Cp = tpO′p.

Some remarks are in order:

As proved, υP(tp) does not depend on the choice of tp when writing
Cp = tpO′p. Thus, d(P/p) is well-defined.

We further proved that d(P/p) = 0 for almost all P/p and so
Diff(F/E) is a divisor.

υP(tp) ≤ 0 and so d(P/p) ≥ 0. Thus, Diff(F/E) ≥ 0.
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Claim 2

For all z ∈ F,

z ∈ Cp ⇐⇒ ∀P/p υP(z) ≥ −d(P/p).

Proof.

z ∈ Cp ⇐⇒ z

tp
∈ O′p =

⋂
P/p

OP

⇐⇒ ∀P/p υP

(
z

tp

)
≥ 0

⇐⇒ ∀P/p υP(z) ≥ υP(tp) = −d(P/p).
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Technical lemma

Lemma 3

Assume F/E is separable. Let p ∈ P(E) and P = P1, . . . ,Pr ∈ P(F) be
the prime divisors of F lying over p. Let

π : OP → FP

be the corresponding projective map (that can be extended to a place)
which extends the projection map π : Op → Ep.

Let FP,s be the separable closure of Ep in FP.

Let y ∈ O′p be s.t.

1 υPj (y) > 0 for j = 2, . . . , r ; and

2 π(y) ∈ FP,s .

Then,
π
(
TrF/E(y)

)
= e(P/p) · TrFP,s/Ep

(π(y)).
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Technical lemma

Proof.

Recall that, had F/E were Galois, the ramification index would have been
given by

e(P/p) =
[F : E]

[FP : Ep]i
· |I(P/p)|.

However, we are not guaranteed that F/E is Galois (we only assumed
F/E is separable).

To overcome this, let F̂ be the Galois closure of F/E. Let P̂ be a prime

divisor over P. We extend the projection map π to π : OP̂ → F̂P̂

We have that

TrF/E(y) =
n∑

i=1

σi (y)

where σ1, . . . , σn : F→ F̂ are the distinct E-embeddings of F into F̂.
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Technical lemma

Proof.

We extend each σi : F→ F̂ to an automorphism of F̂. Typically we will
have a freedom which automorphism to pick. We will choose an
automorphism arbitrarily but for the following rule: If there is an
extension in D(P̂/p) we will pick it.

We denote the extension of σi by σ̂i , and assume that σ1 = idF and that
σ̂1 = idF̂ (which is consistent with the rule above).
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Technical lemma

Proof.

Recall that the decomposition group of P̂ is given by

D(P̂/p) = {σ ∈ Gal(F̂/E) | σP̂ = P̂},

and the epimorphism

ψ : D(P̂/p)→ Aut(F̂P̂/Ep)

σ 7→ σ̄

where ∀x ∈ F̂ σ̄(πx) = π(σx).
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Technical lemma

Proof.

Note further that Aut(F̂P̂/Ep) = Gal(F̂P̂,s/Ep) as the extension F̂P̂/F̂P̂,s

is purely inseparable and so every automorphism of F̂P̂,s/Ep can be

uniquely extended to an automorphism of F̂P̂/Ep.

Of course, in our case, the restriction of ¯̂σi to F̂P̂,s is an Ep-embedding.

Thus, for every σ̂i ∈ D(P̂/p) we have that ¯̂σi is an embedding over Ep of

FP,s into F̂P̂. In particular,

{ ¯̂σi (π(y)) | σ̂i ∈ D(P̂/p)} ⊆ {α(π(y)) | Ep embedding α : FP,s → F̂P̂}.
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Technical lemma

Proof.

We turn to prove the other direction, namely,

{ ¯̂σi (π(y)) | σ̂i ∈ D(P̂/p)} ⊇ {α(π(y)) | Ep embedding α : FP,s → F̂P̂}.

Indeed, take α : FP,s → F̂P̂ an embedding over Ep, and extend it to an

automorphism α̂ of F̂P̂ over Ep (this is an automorphism as F̂P̂ is
normal).

Recall that the map ψ : D(P̂/p)→ Aut(F̂P̂/Ep) is onto. Thus, there

exists σ̂ ∈ D(P̂/p) ≤ Aut(F̂/E) such that ¯̂σ = ψ(σ̂) = α̂.

Had σ̂ = σ̂i for some i we would have been done. However, it is not
necessarily the case that σ̂ is one of the extensions of σi as there is
freedom in how to choose an extension σ̂i of σi .
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Technical lemma

Proof.

Nonetheless, we will show how to tweak σ̂ so to get the result. Indeed,

π(σ̂y) = ¯̂σ(π(y)) = α̂(π(y)).

Now, per our assumption, π(y) ∈ FP,s . As α̂ extends α from FP,s to F̂P̂,
we have that

π(σ̂y) = α(π(y)).
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Technical lemma

Proof.

Now, σ̂ restricted to F is some σi , namely,

σ̂|F = σi |F and so (σ̂−1σi )|F = idF.

Thus, σ̂−1σi = τ ∈ Aut(F̂/F). Namely, σ̂ = σiτ .

Since σ̂ ∈ D(P̂/p) extends σi it is also the case that σ̂i ∈ D(P̂/p) as by
our rule, if there is an extension of σi in D(P̂/p) then we pick such
extension.

As τ |F = idF we have that

π(σi (y)) = π(σi (τy)) = π((σiτ)y) = π(σ̂(y)) = σ̄(π(y)) = α(π(y)).
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Technical lemma

Proof.

Consider now the case that σ̂iP̂ 6= P̂ or, equivalently, σ̂i
−1P̂ 6= P̂. Let

P′ be the prime divisor of F that is under σ̂i
−1P. We claim that P′ 6= P.

Otherwise, there exists τ ∈ Aut(F̂/F) such that

τP̂ = P̂′ and so σ̂iτ ∈ D(P̂/P) ⊆ D(P̂/p).

But τ |F = idF and so σ̂iτ |F = σ̂i |F.

This stands in contradiction to our assumption σ̂iP̂ 6= P̂. Indeed, by our
rule and under this assumption, when choosing σ̂i as the extension of σi
there was no choice of an extension in D(P̂/p).

Since P′ 6= P we have, per our assumption, that υP′(y) > 0 and so
υσ̂i
−1P̂(y) > 0, and so

υP̂(σiy) = υσ̂i
−1P̂(y) > 0 =⇒ σ̂iy ∈ OP̂ and π(σ̂iy) = 0.
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Technical lemma

Proof.

Denote D̂ = D(P̂/p) and

A = {α : FP,s → F̂P̂ | α that is an Ep-embedding}.

Recall that for i such that σ̂i 6∈ D̂ we have that π(σ̂i (y)) = 0, and so

π(TrF/E(y)) =
n∑

i=1

π(σi (y)) =
n∑

i=1

π(σ̂i (y))

=
∑
σi∈D̂

π(σ̂i (y)) =
∑
σi∈D̂

( ¯̂σi (π(y)))

=
∑
α∈A

|{i | σ̂i ∈ D̂, ¯̂σi = α}| · α(π(y)).
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Technical lemma

Proof.

To summarize,

π(TrF/E(y)) =
∑
α∈A

|{i | σ̂i ∈ D̂, ¯̂σi = α}| · α(π(y)).

but
|{i | σ̂i ∈ D̂, ¯̂σi = α}| = e(P/p),

and so

π(TrF/E(y)) = e(P/p) ·
∑
α∈A

α(π(y)) = e(P/p) · TrFP,s/Ep
(π(y)).
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Dedekind Different Theorem

Theorem 4 (Dedekind Different Theorem)

Let F/L be a finite separable extension of E/K. Let p ∈ P(E) and
P ∈ P(F) lying over p. Then,

1 d(P/p) ≥ e(P/p)− 1; and

2 d(P/p) = e(P/p)− 1 ⇐⇒ char K - e(P/p).

Corollary 5

With the above notations,

d(P/p) = 0 ⇐⇒ e(P/p) = 1

In particular, for almost all p,P/p we have that e(P/p) = 1.

The proof of the corollary is straightforward.
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Dedekind Different Theorem

Proof.

Let P = P1, . . . ,Pn be all prime divisors lying over p. By the WAT
∃z ∈ F s.t.

∀i ∈ [n] υPi (z) = 1− e(Pi/p).

To prove the first item, it suffices to show that

z ∈ Cp = tpO′p = tp

n⋂
i=1

OPi .

Indeed, if this is the case then

1− e(Pi/p) = υPi (z) ≥ υPi (tp) = −d(Pi/p).

In particular, d(P/p) ≥ e(P/p)− 1.
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Proof.

Let F̂ be the Galois closure of F/E and L̂ be the algebraic closure of K in

F̂.

Denote n = [F : E] and let σ1, . . . , σn be the E-embeddings of F in F̂. n

such embeddings exist since F/E is separable and since F̂ is the Galois

closure of F/E. We extend each σi to an automorphism of F̂ over E.
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Dedekind Different Theorem

Proof.

Choose P̂ over P and consider the prime divisor σ−1
i P̂. As

σ−1
i ∈ Gal(F̂/E), σ−1

i P̂ lies over p. Let Pi ∈ P(F) be the prime divisor of

F between p and σ−1
i P̂.
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Dedekind Different Theorem

Proof.

Take x ∈ O′p and note that σi (x) ∈ O′p. Thus, υP̂(σi (x)) ≥ 0. Now,

υP̂(σi (zx)) = υP̂(σi (z)σi (x))

= υP̂(σi (z)) + υP̂(σi (x))

≥ υP̂(σi (z))

= υσ−1
i P̂(z).

As z ∈ F we have that

υσ−1
i P̂(z) = e(σ−1

i P̂/Pi )υPi (z)

= e(σ−1
i P̂/Pi )(1− e(Pi/p))

> −e(σ−1
i P̂/Pi ) · e(Pi/p)

= −e(σ−1
i P̂/p) = −e(P̂/p).
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Dedekind Different Theorem

Proof.

So far we have that

∀i υP̂(σi (zx)) > −e(P̂/p).

So,

e(P̂/p)υp(TrF/E(zx)) = υP̂(TrF/E(zx))

= υP̂

(
n∑

i=1

σi (zx)

)
≥ min

i
υP̂(σi (zx))

> −e(P̂/p).

Therefore, υp(TrF/E(zx)) > −1 or, equivalently, υp(TrF/E(zx)) ≥ 0 and
so TrF/E(zx) ∈ Op. Thus, by the definition of the complementary
module, z ∈ Cp.
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Dedekind Different Theorem

Proof.

We turn to prove the second item. Assume first that

charK - e(P/p) , e.

Since the first item implies that d(P/p) ≥ e − 1 and we wish to show
equality, it suffices to prove that d(P/p) < e.

As before let P = P1, . . . ,Pr be all the distinct prime divisors of F lying
over p. Denote ei = e(Pi/p).

Take tp ∈ F s.t. Cp = tpO′p. Then,

υPi (tp) = −d(Pi/p).
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Dedekind Different Theorem

Claim 6

∃y ∈ O′p s.t.

1 υP(y) = 0;

2 υPi (y) ≥ max (1, ei + υPi (tp)) for i = 2, . . . , r ; and

3 υp(TrF/E(y)) = 0.

Proof.

Let FP,s be the separable closure of Ep in FP. As FP,s/Ep is separable,

∃ȳ0 ∈ FP,s s.t. TrFP,s/Ep
(ȳ0) 6= 0.

As ȳ0 ∈ FP, ∃y0 ∈ OP s.t. π(y0) = ȳ0.

By WAT, ∃y ∈ F s.t. υP(y − y0) > 0 and for which Item 2 holds, namely,

υPi (y) ≥ max (1, ei + υPi (tp)) i = 2, . . . , r .
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Dedekind Different Theorem

Proof.

We turn to show that Item 1 holds. Indeed,

υP(y) = υP(y − y0 + y0).

Since υP(y − y0) > 0, showing that υP(y) = 0 would follow if
υP(y0) = 0.

To see that this is the case, if υP(y0) > 0 then

ȳ0 = π(y0) = 0,

and so
TrFP,s/Ep

(ȳ0) = 0,

in contradiction to our choice of ȳ0.
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Dedekind Different Theorem

Proof.

To conclude the proof, we prove Item 3, namely that

υp(TrF/E(y)) = 0.

To this end we wish to apply Lemma 3 and so we first make sure the
hypothesis of the lemma are satisfied.

Hypothesis 1 of Lemma 3 follows by Item 2.

Hypothesis 2 (π(y) ∈ FP,s) follows since υP(y − y0) > 0 and so

π(y) = π(y0) = ȳ0 ∈ FP,s .

The only thing left to show is that y ∈ O′p which follows since y ∈ OPi

for all i .
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Dedekind Different Theorem

Proof.

Applying Lemma 3 we conclude that

π
(
TrF/E(y)

)
= e · TrFP,s/Ep

(π(y)),

where note that the equation is over K.

Now, π(y) = π(y0) = ȳ0 and so

TrFP,s/Ep
(π(y)) = TrFP,s/Ep

(ȳ0) 6= 0.

As we assume charK - e, we have that e 6= 0 in K and so, overall,

π
(
TrF/E(y)

)
6= 0.

Hence,
υp(TrF/E(y)) = 0,

proving Claim 6.
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Dedekind Different Theorem

Proof.

Going back to the proof of Theorem 4, take x ∈ E s.t. υp(x) = −1 (and
so υPi (x) = −ei ).

Since we found in Claim 6 y ∈ F s.t.

1 υP(y) = 0;

2 υPi (y) ≥ max (1, ei + υPi (tp)) for i = 2, . . . , r ; and

3 υp(TrF/E(y)) = 0,

we get that

1 υP(xy) = υP(x) + υP(y) = −e;

2 For i = 2, . . . , r ,

υPi (xy) ≥ max (1, ei + υPi (tp))− ei ≥ υPi (tp) = −d(Pi/p);

3 υp(TrF/E(xy)) = υp(xTrF/E(y)) = υp(x) + υp(TrF/E(y)) = −1.
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Dedekind Different Theorem

Proof.

Denote y ′ = xy . Then,

1 υP(y ′) = −e;

2 υPi (y
′) ≥ υPi (tp) = −d(Pi/p) for i = 2, . . . , r ; and

3 υp(TrF/E(y ′)) = −1.

By (3), y ′ 6∈ Cp (as 1 ∈ O′p and for y ′ to be in Cp we must have
TrF/E(zy ′) ∈ Op for all z ∈ O′p.) Recall that

y ′ ∈ Cp = tpOp ⇐⇒ υPi (y
′) ≥ −d(Pi/p) for i = 1, 2, . . . , r .

By (2) we therefore must have

υP(y ′) < −d(P/p).

(1) then implies that e > d(P/p) which concludes the proof for

charK - e =⇒ d(P/p) = e(P/p)− 1.
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Dedekind Different Theorem

Proof.

To complete the proof we need to show that

char K | e =⇒ d(P/p) ≥ e(P/p).

To prove this we prove the following claim.

Claim 7

∃y ∈ O′p s.t. ∀z ∈ O′p the following holds:

1 υP(y) = 0;

2 υP(yz) ≥ 0;

3 υPi (yz) > 0 for i = 2, . . . , r ; and

4 υp(TrF/E(yz)) > 0.
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∃y ∈ O′p ∀z ∈ O′p
1 υP(y) = 0;

2 υP(yz) ≥ 0;

3 υPi (yz) > 0 for i = 2, . . . , r ; and

4 υp(TrF/E(yz)) > 0.

Proof.

By WAT, ∃y ∈ F s.t.

υP(y) = 0 and υPi (y) > 0 for i > 1.

In particular, y ∈ O′p and items 1,2, and 3 hold.

As for Item 4, denote
q = [FP : FP,s ].

Gil Cohen The Different



Dedekind Different Theorem

Proof.

By Lemma 3 applied to y ′ = (yz)q whose hypothesis holds, in particular,

π(y ′) = π((yz)q) = (π(yz))q ∈ FP,s ,

we have that

π(TrF/E((yz)q)) = e · TrFP,s/Ep
(π((yz)q)) = 0,

where the last equality holds since e = 0 in FP.

Thus,
υp((TrF/E(yz))q) = υp(TrF/E((yz)q)) > 0,

and so
υp(TrF/E(yz)) > 0.

Item 4 then follows, proving Claim 7.
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∃y ∈ O′p ∀z ∈ O′p
1 υP(y) = 0;

2 υP(yz) ≥ 0;

3 υPi (yz) > 0 for i = 2, . . . , r ; and

4 υp(TrF/E(yz)) > 0.

Proof.

Going back to the proof of Theorem 4, by multiplying y by x ∈ E with
υp(x) = −1 we get that for y ′ = xy and ∀z ∈ O′p it holds that

1 υP(y ′) = −e;

2 υP(y ′z) ≥ −e;

3 υPi (y
′z) > −ei for i = 2, . . . , r ; and

4 υp(TrF/E(y ′z)) ≥ 0.
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Proof.

For y ′ = xy and ∀z ∈ O′p it holds that

1 υP(y ′) = −e;

2 υP(y ′z) ≥ −e;

3 υPi (y
′z) > −ei for i = 2, . . . , r ; and

4 υp(TrF/E(y ′z)) ≥ 0.

By Item 4, y ′ ∈ Cp and so

υP(y ′) ≥ −d(P/p).

The proof then follows by Item 1.
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