Cauchy's interlacing theorem

Following Godsil-Royle, Chapters 8.13, 9.1, 13.6

Gil Cohen

November 9, 2020

Overview

1 Some more linear algebra background

2 The resolvent

3 Cauchy's interlacing theorem

4 Applications to the Laplacian

5 Eigenvectors from eigenvalues

Cofactor, adjugate and the determinant

Let \mathbf{A} be an $n \times n$ real matrix. We denote by $\mathbf{A}_{(i, j)}$ the submatrix of A obtained by deleting the $i^{\text {th }}$ row and $j^{\text {th }}$ column. The (i, j)-minor of A is defined by $\mathbf{M}_{i, j}=\operatorname{det} \mathbf{A}_{(i, j)}$.
The cofactor matrix of \mathbf{A} is the $n \times n$ matrix with (i, j)-entry

$$
\mathbf{C}_{i, j}=(-1)^{i+j} \mathbf{M}_{i, j}
$$

The adjugate of \mathbf{A} is $\operatorname{adj}(\mathbf{A})=\mathbf{C}^{T}$.

Proposition

Let \mathbf{A} be a square matrix. Then,

$$
\mathbf{A a d j}(\mathbf{A})=\operatorname{adj}(\mathbf{A}) \mathbf{A}=\operatorname{det}(\mathbf{A}) \boldsymbol{I}
$$

Corollary

Let A be an invertible matrix. Then,

$$
\operatorname{adj}(\mathbf{A})=\operatorname{det}(\mathbf{A}) \mathbf{A}^{-1}
$$

The resolvent

Definition

Let \mathbf{A} be a real symmetric $n \times n$ matrix. The resolvent of \mathbf{A} is defined by $(x I-\mathbf{A})^{-1}$.

Claim

Let \mathbf{A} be a real symmetric $n \times n$ matrix. If μ_{1}, \ldots, μ_{n} are the eigenvalues of a \mathbf{A} with corresponding eigenvectors $\boldsymbol{\psi}_{1}, \ldots, \boldsymbol{\psi}_{n}$ then

$$
(x I-\mathbf{A})^{-1}=\sum_{i=1}^{n} \frac{1}{x-\mu_{i}} \boldsymbol{\psi}_{i} \boldsymbol{\psi}_{i}^{T}
$$

The resolvent

Claim

Let \mathbf{M} be a real symmetric $n \times n$ matrix, and \mathbf{N} a matrix obtained by deleting the $i^{\text {th }}$ row and column of \mathbf{M}. Then,

$$
\frac{\phi_{\mathbf{N}}(x)}{\phi_{\mathbf{M}}(x)}=e(i)^{T}(x \boldsymbol{I}-\mathbf{M})^{-1} e(i)
$$

Extra space for the proof

Combinatorial meaning of the derivative of ϕ_{G}

For an undirected graph $G=(V, E)$, we denote by $G-v$ the graph obtained by deleting v from G. Let ϕ_{G} denote the characteristic polynomial of \mathbf{M}_{G}.

You will be asked to prove in the problem set that

Lemma

For every an undirected graph $G=(V, E)$,

$$
\phi_{G}^{\prime}(x)=\sum_{v \in V} \phi_{G-v}(x) .
$$

Overview

1 Some more linear algebra background

2 The resolvent

3 Cauchy's interlacing theorem

4 Applications to the Laplacian

5 Eigenvectors from eigenvalues

Cauchy's interlacing theorem

Claim

Let \mathbf{M} be a real symmetric $n \times n$ matrix, and $\boldsymbol{b} \in \mathbb{R}^{n}$. Define

$$
\psi(x)=\boldsymbol{b}^{T}(x \mathcal{I}-\mathbf{M})^{-1} \boldsymbol{b}
$$

Then,
1 All zeros and poles of ψ are simple.
$2 \psi^{\prime}$ is negative whenever it is defined.
3 If $p_{1}<p_{2}$ are two consecutive poles of ψ, the closed interval [p_{1}, p_{2}] contains exactly one zero of ψ.

Example

Figure: Plot of $\frac{1}{x-1}+\frac{2}{x-3}+\frac{3}{x-7}$.

Cauchy's interlacing theorem

Theorem

Let \mathbf{A} be an $n \times n$ real symmetric matrix with eigenvalues $\alpha_{1} \geq \cdots \geq \alpha_{n}$. Let \mathbf{B} a principal submatrix of \mathbf{A} of dimension $n-1$ with eigenvalues $\beta_{1} \geq \cdots \geq \beta_{n-1}$. Then,

$$
\alpha_{1} \geq \beta_{1} \geq \alpha_{2} \geq \beta_{2} \geq \cdots \geq \alpha_{n-1} \geq \beta_{n-1} \geq \alpha_{n}
$$

Extra space for the proof

Applications to the Laplacian

Proposition

Let G be an undirected graph and H obtained by adding an edge to G. Then, for every $1 \leq i<n$,

$$
\lambda_{i}(G) \leq \lambda_{i}(H) \leq \lambda_{i+1}(G)
$$

Extra space for the proof

Applications to the Laplacian

Proposition

Let G be an undirected graph and H obtained by adding an edge to G. Then,

$$
\lambda_{2}(G) \leq \lambda_{2}(H) \leq \lambda_{2}(G)+2
$$

This will probably be left for you to prove on the problem set, also investigating when the right inequality is tight.

A final remark on eigenvectors from eigenvalues

These are "bonus" slides for those who took complex analysis. Recall

$$
(z l-\mathbf{A})^{-1}=\sum_{i=1}^{n} \frac{1}{z-\mu_{i}} \boldsymbol{\psi}_{i} \boldsymbol{\psi}_{i}^{T}
$$

Using Cauchy residue formula, if μ_{k} is isolated and γ a contour that goes only around μ_{k} we get

$$
\oint_{\gamma}(z \mathcal{I}-\mathbf{A})^{-1} d z=2 \pi i \psi_{k} \boldsymbol{\psi}_{k}^{T} .
$$

So perhaps it is not so surprising that knowing the spectrum of \mathbf{A} allows us, in principle, to obtain information about the eigenvectors.

L Eigenvectors from eigenvalues

A final remark on eigenvectors from eigenvalues

By a slight tweak,

$$
\oint_{\gamma}(z \mathcal{I}-\mathbf{A})^{-1} z d z=2 \pi i \mu_{k} \boldsymbol{\psi}_{k} \boldsymbol{\psi}_{k}^{T} .
$$

Hence,

$$
\frac{1}{2 \pi i} \oint_{\gamma} \operatorname{Tr}\left((z \boldsymbol{\mathcal { I }}-\mathbf{A})^{-1} z\right) d z=\mu_{k}
$$

