Algebraic Geometric Codes

Recitation 13

Shir Peleg
Tel Aviv University
June 1, 2022

Remainder - Riemann Hurwitz Genus Formula

Theorem 1

Let F / L be a separable finite extension of E / K. Denote by g_{F}, g_{E} their respective genus. Then,

$$
2 g_{F}-2=\frac{[F: E]}{[L: K]}\left(2 g_{E}-2\right)+\operatorname{deg} \operatorname{Diff}(F / E) .
$$

Remainder - Riemann Hurwitz Genus Formula

Theorem 1

Let F / L be a separable finite extension of E / K. Denote by g_{F}, g_{E} their respective genus. Then,

$$
2 g_{F}-2=\frac{[F: E]}{[L: K]}\left(2 g_{E}-2\right)+\operatorname{deg} \operatorname{Diff}(F / E) .
$$

Corollary 2

Let F / L be a separable finite extension of E / K. Denote by g_{F}, g_{E} their respective genus. Then, $g_{F} \geq g_{E}$.

Remainder - Riemann Hurwitz Genus Formula

Theorem 1

Let F / L be a separable finite extension of E / K. Denote by g_{F}, g_{E} their respective genus. Then,

$$
2 g_{F}-2=\frac{[F: E]}{[L: K]}\left(2 g_{E}-2\right)+\operatorname{deg} \operatorname{Diff}(F / E) .
$$

Corollary 2

Let F / L be a separable finite extension of E / K. Denote by g_{F}, g_{E} their respective genus. Then, $g_{F} \geq g_{E}$.

Proof.

We have $[L: K]=[L E: E]$, and $E \subseteq L E \subseteq F$ and thus $\frac{[F: E]}{[L: K]}=[F: L E] \geq 1$.

Remainder - Riemann Hurwitz Genus Formula

Theorem 1

Let F / L be a separable finite extension of E / K. Denote by g_{F}, g_{E} their respective genus. Then,

$$
2 g_{F}-2=\frac{[F: E]}{[L: K]}\left(2 g_{E}-2\right)+\operatorname{deg} \operatorname{Diff}(F / E) .
$$

Corollary 2

Let F / L be a separable finite extension of E / K. Denote by g_{F}, g_{E} their respective genus. Then, $g_{F} \geq g_{E}$.

Proof.

We have $[L: K]=[L E: E]$, and $E \subseteq L E \subseteq F$ and thus $\frac{[F: E]}{[L: K]}=[F: L E] \geq 1$.From Hurwitz thm $\operatorname{Diff}(F / E) \geq 0$ and so $\operatorname{deg} \operatorname{Diff}(F / E) \geq 0$.

Luroth Theorem

Theorem 3

Let F / K be a rational function field and let $K \nsubseteq E \nsubseteq F$, then E is a rational function field.

Luroth Theorem

Theorem 3

Let F / K be a rational function field and let $K \nsubseteq E \nsubseteq F$, then E is a rational function field.

Proof.

We proved that $g_{F}=0$. If F / E is separable, using Corollary 2 we get that $g_{E}=0$.

Luroth Theorem

Theorem 3

Let F / K be a rational function field and let $K \nsubseteq E \nsubseteq F$, then E is a rational function field.

Proof.

We proved that $g_{F}=0$. If F / E is separable, using Corollary 2 we get that $g_{E}=0$. Thus, from a previous characterization, we either have that E is a rational function field, or a degree 2 extension of such. How can we differ?

Luroth Theorem

Theorem 3

Let F / K be a rational function field and let $K \nsubseteq E \nsubseteq F$, then E is a rational function field.

Proof.

We proved that $g_{F}=0$. If F / E is separable, using Corollary 2 we get that $g_{E}=0$. Thus, from a previous characterization, we either have that E is a rational function field, or a degree 2 extension of such. How can we differ? If E has a degree 1 place then it must be a rational function field.

Luroth Theorem

Theorem 3

Let F / K be a rational function field and let $K \nsubseteq E \nsubseteq F$, then E is a rational function field.

Proof.

We proved that $g_{F}=0$. If F / E is separable, using Corollary 2 we get that $g_{E}=0$. Thus, from a previous characterization, we either have that E is a rational function field, or a degree 2 extension of such. How can we differ? If E has a degree 1 place then it must be a rational function field. But F has a degree one place, \mathfrak{P}_{∞}, and thus the place that sits under it must have degree one.

Luroth Theorem

Theorem 3

Let F / K be a rational function field and let $K \nsubseteq E \nsubseteq F$, then E is a rational function field.

Proof.

We proved that $g_{F}=0$. If F / E is separable, using Corollary 2 we get that $g_{E}=0$. Thus, from a previous characterization, we either have that E is a rational function field, or a degree 2 extension of such. How can we differ? If E has a degree 1 place then it must be a rational function field. But F has a degree one place, \mathfrak{P}_{∞}, and thus the place that sits under it must have degree one.
If F / E is not separable, we can assume that F / E is purely inseparable (As, we can use $E=E_{s}$ and then $F=E_{s}$). As $F=K(t)$ for some t, it holds that $E=K\left(t^{q}\right)$ for some q.

Fermat's Theorem for Polynomials

Theorem 4

Let K be a field and let $n \geq 3$ s.t. n, char(K) are coprime. Then there are no polynomials $0 \neq f, g, h \in K[Z]$, s.t.

$$
f^{n}+g^{n}=h^{n},
$$

unless $f / h, g / h \in K^{\times}$.

Fermat's Theorem for Polynomials

Theorem 4

Let K be a field and let $n \geq 3$ s.t. n, char (K) are coprime. Then there are no polynomials $0 \neq f, g, h \in K[Z]$, s.t.

$$
f^{n}+g^{n}=h^{n},
$$

unless $f / h, g / h \in K^{\times}$.

Proof

Assume w.l.o.g K is algebraically closed.

Fermat's Theorem for Polynomials

Theorem 4

Let K be a field and let $n \geq 3$ s.t. n, char (K) are coprime. Then there are no polynomials $0 \neq f, g, h \in K[Z]$, s.t.

$$
f^{n}+g^{n}=h^{n},
$$

unless $f / h, g / h \in K^{\times}$.

Proof

Assume w.l.o.g K is algebraically closed. Consider the algebraic function field $F=K(x, y)$ where $x^{n}+y^{n}=1$.

Fermat's Theorem for Polynomials

Theorem 4

Let K be a field and let $n \geq 3$ s.t. n, char (K) are coprime. Then there are no polynomials $0 \neq f, g, h \in K[Z]$, s.t.

$$
f^{n}+g^{n}=h^{n},
$$

unless $f / h, g / h \in K^{\times}$.

Proof

Assume w.l.o.g K is algebraically closed. Consider the algebraic function field $F=K(x, y)$ where $x^{n}+y^{n}=1$. Denote by ζ_{n} the $n^{\prime} s$ primitive root of unity in K^{\times}.

Fermat's Theorem for Polynomials

Claim 4.1

It holds that $[F: K(x)]=n$, and the places corresponding to the valuations $v_{x-\zeta_{n}^{i}}$, denoted by $\mathfrak{p}_{\zeta_{n}^{i}}$, are fully ramified in F. i.e. there is a unique F - place $\mathfrak{P}_{\zeta_{n}^{i}}$ s.t. $e\left(\mathfrak{P}_{\zeta_{n}^{i}} / \mathfrak{p}_{\zeta_{n}^{i}}\right)=n$.

Fermat's Theorem for Polynomials

Claim 4.1

It holds that $[F: K(x)]=n$, and the places corresponding to the valuations $v_{x-\zeta_{n}^{i}}$, denoted by $\mathfrak{p}_{\zeta_{n}}$, are fully ramified in F. i.e. there is a unique F - place $\mathfrak{P}_{\zeta_{n}^{i}}$ s.t. $e\left(\mathfrak{P}_{\zeta_{n}^{i}} / \mathfrak{p}_{\zeta_{n}^{i}}\right)=n$.

Proof.

First note that $v_{x-\zeta_{n}^{i}}\left(x-\zeta_{n}^{j}\right)=\delta_{i j}$.

Fermat's Theorem for Polynomials

Claim 4.1

It holds that $[F: K(x)]=n$, and the places corresponding to the valuations $v_{x-\zeta_{n}^{i}}$, denoted by $\mathfrak{p}_{\zeta_{n}^{i}}$, are fully ramified in F. i.e. there is a unique F - place $\mathfrak{P}_{\zeta_{n}^{i}}$ s.t. $e\left(\mathfrak{P}_{\zeta_{n}^{i}} / \mathfrak{p}_{\zeta_{n}^{i}}\right)=n$.

Proof.

First note that $v_{x-\zeta_{n}^{j}}\left(x-\zeta_{n}^{j}\right)=\delta_{i j}$. Thus,

$$
v_{x-\zeta_{n}^{j}}\left(x^{n}-1\right)=v_{x-\zeta_{n}^{i}}\left(\prod_{j=1}^{n}\left(x-\zeta_{n}^{j}\right)\right)=1 .
$$

Fermat's Theorem for Polynomials

Claim 4.1

It holds that $[F: K(x)]=n$, and the places corresponding to the valuations $v_{x-\zeta_{n}^{i}}$, denoted by $\mathfrak{p}_{\zeta_{n}^{i}}$, are fully ramified in F. i.e. there is a unique F - place $\mathfrak{P}_{\zeta_{n}^{i}}$ s.t. $e\left(\mathfrak{P}_{\zeta_{n}^{i}} / \mathfrak{p}_{\zeta_{n}^{i}}\right)=n$.

Proof.

First note that $v_{x-\zeta_{n}^{j}}\left(x-\zeta_{n}^{j}\right)=\delta_{i j}$. Thus,

$$
v_{x-\zeta_{n}^{i}}\left(x^{n}-1\right)=v_{x-\zeta_{n}^{i}}\left(\prod_{j=1}^{n}\left(x-\zeta_{n}^{j}\right)\right)=1 .
$$

It follows that for an extension $v_{\mathfrak{F}}$ of $v_{x-\zeta_{n}^{i}}$, we have that $v_{\mathfrak{P}}\left(x^{n}-1\right)=e\left(\mathfrak{P} / \mathfrak{p}_{\zeta_{n}^{i}}\right) \cdot 1$.

Fermat's Theorem for Polynomials

Claim 4.1

It holds that $[F: K(x)]=n$, and the places corresponding to the valuations $v_{x-\zeta_{n}^{i}}$, denoted by $\mathfrak{p}_{\zeta_{n}^{i}}$, are fully ramified in F. i.e. there is a unique F - place $\mathfrak{P}_{\zeta_{n}^{i}}$ s.t. $e\left(\mathfrak{P}_{\zeta_{n}^{i}} / \mathfrak{p}_{\zeta_{n}^{i}}\right)=n$.

Proof.

First note that $v_{x-\zeta_{n}^{j}}\left(x-\zeta_{n}^{j}\right)=\delta_{i j}$. Thus,

$$
v_{x-\zeta_{n}^{i}}\left(x^{n}-1\right)=v_{x-\zeta_{n}^{i}}\left(\prod_{j=1}^{n}\left(x-\zeta_{n}^{j}\right)\right)=1 .
$$

It follows that for an extension $v_{\mathfrak{F}}$ of $v_{x-\zeta_{n}^{i}}$, we have that $v_{\mathfrak{P}}\left(x^{n}-1\right)=e\left(\mathfrak{P} / \mathfrak{p}_{\zeta_{n}^{i}}\right) \cdot 1$. On the other hand

$$
n \leq n v_{\mathfrak{P}}(y)=v_{\mathfrak{P}}\left(x^{n}-1\right)=e\left(\mathfrak{P} / \mathfrak{p}_{\zeta_{n}^{i}}\right) \leq[F: K(x)] \leq n
$$

Fermat's Theorem for Polynomials

Claim 4.1

It holds that $[F: K(x)]=n$, and the places corresponding to the valuations $v_{x-\zeta_{n}^{i}}$, denoted by $\mathfrak{p}_{\zeta_{n}^{i}}$, are fully ramified in F. i.e. there is a unique F - place $\mathfrak{P}_{\zeta_{n}^{i}}$ s.t. $e\left(\mathfrak{P}_{\zeta_{n}^{i}} / \mathfrak{p}_{\zeta_{n}^{i}}\right)=n$.

Proof.

First note that $v_{x-\zeta_{n}^{j}}\left(x-\zeta_{n}^{j}\right)=\delta_{i j}$. Thus,

$$
v_{x-\zeta_{n}^{i}}\left(x^{n}-1\right)=v_{x-\zeta_{n}^{i}}\left(\prod_{j=1}^{n}\left(x-\zeta_{n}^{j}\right)\right)=1 .
$$

It follows that for an extension $v_{\mathfrak{P}}$ of $v_{x-\zeta_{n}^{i}}$, we have that $v_{\mathfrak{P}}\left(x^{n}-1\right)=e\left(\mathfrak{P} / \mathfrak{p}_{\zeta_{n}^{i}}\right) \cdot 1$. On the other hand

$$
n \leq n v_{\mathfrak{P}}(y)=v_{\mathfrak{P}}\left(x^{n}-1\right)=e\left(\mathfrak{P} / \mathfrak{p}_{\zeta_{n}^{i}}\right) \leq[F: K(x)] \leq n
$$

Thus $e\left(\mathfrak{P} / \mathfrak{p}_{\zeta_{n}^{i}}\right)=[F: K(x)]=n$ and from the fundamental inequality, it follows that $\mathfrak{P}_{\zeta_{n}^{i}}:=\mathfrak{P}$ is unique and $\mathfrak{p}_{\zeta_{n}^{i}}$ is fully ramified.

Fermat's Theorem for Polynomials

Claim 4.2
Let $f, g, h \in K[Z]$ as in the theorem. Write $f_{0}=\frac{f}{h}, g_{0}=\frac{g}{h}$. Then,

$$
F \cong K\left(f_{0}, g_{0}\right) .
$$

Fermat's Theorem for Polynomials

Claim 4.2
Let $f, g, h \in K[Z]$ as in the theorem. Write $f_{0}=\frac{f}{h}, g_{0}=\frac{g}{h}$. Then,

$$
F \cong K\left(f_{0}, g_{0}\right) .
$$

Proof.

First note that $K(x) \rightarrow K\left(f_{0}\right): x \rightarrow f_{0}$ is a field isomorphism.

Fermat's Theorem for Polynomials

Claim 4.2

Let $f, g, h \in K[Z]$ as in the theorem. Write $f_{0}=\frac{f}{h}, g_{0}=\frac{g}{h}$. Then,

$$
F \cong K\left(f_{0}, g_{0}\right) .
$$

Proof.

First note that $K(x) \rightarrow K\left(f_{0}\right): x \rightarrow f_{0}$ is a field isomorphism. Now, from the previous claim,

$$
Y^{n}+x^{n}-1 \in K(x)[Y],
$$

is the minimal polynomial of y over $K(x)$.

Fermat's Theorem for Polynomials

Claim 4.2

Let $f, g, h \in K[Z]$ as in the theorem. Write $f_{0}=\frac{f}{h}, g_{0}=\frac{g}{h}$. Then,

$$
F \cong K\left(f_{0}, g_{0}\right) .
$$

Proof.

First note that $K(x) \rightarrow K\left(f_{0}\right): x \rightarrow f_{0}$ is a field isomorphism. Now, from the previous claim,

$$
Y^{n}+x^{n}-1 \in K(x)[Y],
$$

is the minimal polynomial of y over $K(x)$. It follows that $T^{n}+f_{0}^{n}-1$ is irreducible over $K\left(f_{0}\right)$, and therefore is the minimal polynomial of g_{0} over $K\left(f_{0}\right)$.

Fermat's Theorem for Polynomials

Claim 4.2

Let $f, g, h \in K[Z]$ as in the theorem. Write $f_{0}=\frac{f}{h}, g_{0}=\frac{g}{h}$. Then,

$$
F \cong K\left(f_{0}, g_{0}\right) .
$$

Proof.

First note that $K(x) \rightarrow K\left(f_{0}\right): x \rightarrow f_{0}$ is a field isomorphism. Now, from the previous claim,

$$
Y^{n}+x^{n}-1 \in K(x)[Y],
$$

is the minimal polynomial of y over $K(x)$. It follows that $T^{n}+f_{0}^{n}-1$ is irreducible over $K\left(f_{0}\right)$, and therefore is the minimal polynomial of g_{0} over $K\left(f_{0}\right)$. This implies that

$$
F \cong K\left(f_{0}, g_{0}\right) \text { via } x \rightarrow f_{0}, y \rightarrow g_{0} .
$$

Fermat's Theorem for Polynomials

Proof of Theorem 4.

From corollary 2 we get that $g_{F}=0$. Apply the Riemann Hurwiz formula for $E=K(x)$ and F to obtain:

Fermat's Theorem for Polynomials

Proof of Theorem 4.

From corollary 2 we get that $g_{F}=0$. Apply the Riemann Hurwiz formula for $E=K(x)$ and F to obtain:

$$
2 g_{F}-2=[F: E]\left(2 g_{E}-2\right)+\operatorname{deg} \operatorname{Diff}(F / E)
$$

From Hurwiz genus different theorem we get that $d(\mathfrak{P} / \mathfrak{p})=e(\mathfrak{P} / \mathfrak{p})-1$, thus for the n places mentioned in Claim 4.1, we have that $d\left(\mathfrak{P}_{\zeta_{n}^{i}} / \mathfrak{p}_{\zeta_{n}^{i}}\right)=n-1$ and therefore,

Fermat's Theorem for Polynomials

Proof of Theorem 4.

From corollary 2 we get that $g_{F}=0$. Apply the Riemann Hurwiz formula for $E=K(x)$ and F to obtain:

$$
-2=-2 n+\operatorname{deg} \operatorname{Diff}(F / E)
$$

From Hurwiz genus different theorem we get that $d(\mathfrak{P} / \mathfrak{p})=e(\mathfrak{P} / \mathfrak{p})-1$, thus for the n places mentioned in Claim 4.1, we have that $d\left(\mathfrak{P}_{\zeta_{n}^{i}} / \mathfrak{p}_{\zeta_{n}^{i}}\right)=n-1$ and therefore,

$$
-2=-2 n+\operatorname{deg} \operatorname{Diff}(F / E) \geq-2 n+n(n-1),
$$

Fermat's Theorem for Polynomials

Proof of Theorem 4.

From corollary 2 we get that $g_{F}=0$. Apply the Riemann Hurwiz formula for $E=K(x)$ and F to obtain:

$$
-2=-2 n+\operatorname{deg} \operatorname{Diff}(F / E)
$$

From Hurwiz genus different theorem we get that $d(\mathfrak{P} / \mathfrak{p})=e(\mathfrak{P} / \mathfrak{p})-1$, thus for the n places mentioned in Claim 4.1, we have that $d\left(\mathfrak{P}_{\zeta_{n}^{i}} / \mathfrak{p}_{\zeta_{n}^{i}}\right)=n-1$ and therefore,

$$
-2=-2 n+\operatorname{deg} \operatorname{Diff}(F / E) \geq-2 n+n(n-1),
$$

and

$$
n^{2}-3 n+2=(n-2)(n-1) \leq 0
$$

Which is a implies that $n \leq 2$ as we wanted.

Hurwiz Theorem

Theorem 5

Let F be a function field, over an algebraically closed field K, with genus $g \geq 2$. Let $G \leq \operatorname{Aut}(F / K)$ be a finite subgroup of automorphisms of F over K. Assume further that $\operatorname{char}(K)$ and $|G|$ are coprime. Then, $|G| \leq 84(g-1)$

Proof.

Let $E=F^{G}$ be the fixed field of G. From Galois theorem we know that F / E is Galois and $[F: E]=|G|:=n$.

Hurwiz Theorem

Theorem 5

Let F be a function field, over an algebraically closed field K, with genus $g \geq 2$. Let $G \leq \operatorname{Aut}(F / K)$ be a finite subgroup of automorphisms of F over K. Assume further that char (K) and $|G|$ are coprime. Then, $|G| \leq 84(g-1)$

Proof.

Let $E=F^{G}$ be the fixed field of G. From Galois theorem we know that F / E is Galois and $[F: E]=|G|:=n$. Furthermore, E / K is
transcendental and is a function field over K. In class we saw that in these settings, there is only finitely many divisors in E that are ramified in F. Denote then by $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{k}$.

Hurwiz Theorem

Proof.

As $[F: E]$ is normal, we have that over \mathfrak{p}_{i} there are r_{i} places, that have ramification of $e_{i} \geq 2$. The degree is always $f_{i}=1$ as K is algebraically closed.

Hurwiz Theorem

Proof.

As $[F: E]$ is normal, we have that over \mathfrak{p}_{i} there are r_{i} places, that have ramification of $e_{i} \geq 2$. The degree is always $f_{i}=1$ as K is algebraically closed. We have,

$$
e_{i} f_{i} r_{i}=[F: E] \Rightarrow r_{i}=\frac{|G|}{e_{i}} .
$$

Hurwiz Theorem

Proof.

As $[F: E]$ is normal, we have that over \mathfrak{p}_{i} there are r_{i} places, that have ramification of $e_{i} \geq 2$. The degree is always $f_{i}=1$ as K is algebraically closed. We have,

$$
e_{i} f_{i} r_{i}=[F: E] \Rightarrow r_{i}=\frac{|G|}{e_{i}} .
$$

As $e_{i}| | G \mid$, we get that e_{i}, $\operatorname{char}(K)$ are coprime, so we can use Dedekind different theorem to deduce that for each $\mathfrak{P}_{i, j}$ over \mathfrak{p}_{i},

$$
d\left(\mathfrak{P}_{i, j} / \mathfrak{p}_{i}\right)=e_{i}-1 .
$$

Hurwiz Theorem

Proof.

$$
\begin{aligned}
& \text { Apply the genus formula to deduce: } \\
& \begin{aligned}
2(g-1) & =[F: E] 2\left(g_{E}-1\right)+\sum_{i=1}^{k} \sum_{j=1}^{r_{i}}\left(e_{i}-1\right) \\
2(g-1) & =|G| 2\left(g_{E}-1\right)+\sum_{i=1}^{k} \frac{|G|}{e_{i}}\left(e_{i}-1\right) \\
2(g-1) & =|G|\left(2\left(g_{E}-1\right)+\sum_{i=1}^{k}\left(1-\frac{1}{e_{i}}\right)\right)
\end{aligned}
\end{aligned}
$$

Hurwiz Theorem

Proof.

$$
\begin{aligned}
& \text { Apply the genus formula to deduce: } \\
& \qquad \begin{aligned}
2(g-1) & =[F: E] 2\left(g_{E}-1\right)+\sum_{i=1}^{k} \sum_{j=1}^{r_{i}}\left(e_{i}-1\right) \\
2(g-1) & =|G| 2\left(g_{E}-1\right)+\sum_{i=1}^{k} \frac{|G|}{e_{i}}\left(e_{i}-1\right) \\
2(g-1) & =|G|\left(2\left(g_{E}-1\right)+\sum_{i=1}^{k}\left(1-\frac{1}{e_{i}}\right)\right) \\
|G| & =\frac{2(g-1)^{2}}{2\left(g_{E}-1\right)+\sum_{i=1}^{k}\left(1-\frac{1}{e_{i}}\right)}
\end{aligned}
\end{aligned}
$$

We get that

Hurwiz Theorem

Proof.

$$
|G|=\frac{2(g-1)}{2\left(g_{E}-1\right)+\sum_{i=1}^{k}\left(1-\frac{1}{e_{i}}\right)} .
$$

Thus, we need to show that $\frac{2}{2\left(g_{E}-1\right)+\sum_{i=1}^{k}\left(1-\frac{1}{e_{i}}\right)} \leq 84$ or equivalently,

Hurwiz Theorem

Proof.

$$
|G|=\frac{2(g-1)}{2\left(g_{E}-1\right)+\sum_{i=1}^{k}\left(1-\frac{1}{e_{i}}\right)} .
$$

Thus, we need to show that $\frac{2}{2\left(g_{E}-1\right)+\sum_{i=1}^{k}\left(1-\frac{1}{e_{i}}\right)} \leq 84$ or equivalently,

$$
R:=2\left(g_{E}-1\right)+\sum_{i=1}^{k}\left(1-\frac{1}{e_{i}}\right) \geq \frac{1}{41}
$$

Hurwiz Theorem

Proof.

$$
|G|=\frac{2(g-1)}{2\left(g_{E}-1\right)+\sum_{i=1}^{k}\left(1-\frac{1}{e_{i}}\right)} .
$$

Thus, we need to show that $\frac{2}{2\left(g_{E}-1\right)+\sum_{i=1}^{k}\left(1-\frac{1}{\varepsilon_{i}}\right)} \leq 84$ or equivalently,

$$
R:=2\left(g_{E}-1\right)+\sum_{i=1}^{k}\left(1-\frac{1}{e_{i}}\right) \geq \frac{1}{41}
$$

Note that $R>0$ as $g \geq 2$.

Hurwiz Theorem

Proof.

$$
|G|=\frac{2(g-1)}{2\left(g_{E}-1\right)+\sum_{i=1}^{k}\left(1-\frac{1}{e_{i}}\right)} .
$$

Thus, we need to show that $\frac{2}{2\left(g_{E}-1\right)+\sum_{i=1}^{k}\left(1-\frac{1}{\varepsilon_{i}}\right)} \leq 84$ or equivalently,

$$
R:=2\left(g_{E}-1\right)+\sum_{i=1}^{k}\left(1-\frac{1}{e_{i}}\right) \geq \frac{1}{41}
$$

Note that $R>0$ as $g \geq 2$. Note that, $1-\frac{1}{e_{i}} \in\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5} \ldots\right\}$

Hurwiz Theorem

Proof.

$$
|G|=\frac{2(g-1)}{2\left(g_{E}-1\right)+\sum_{i=1}^{k}\left(1-\frac{1}{e_{i}}\right)} .
$$

Thus, we need to show that $\frac{2}{2\left(g_{E}-1\right)+\sum_{i=1}^{k}\left(1-\frac{1}{e_{i}}\right)} \leq 84$ or equivalently,

$$
R:=2\left(g_{E}-1\right)+\sum_{i=1}^{k}\left(1-\frac{1}{e_{i}}\right) \geq \frac{1}{41}
$$

Note that $R>0$ as $g \geq 2$. Note that, $1-\frac{1}{e_{i}} \in\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5} \ldots\right\}$, Finally if $g_{E} \geq 2$ then $R \geq 2$. Thus, we should only consider the possibilities of $g_{E}=1, g_{E}=0$.

Hurwiz Theorem

Proof.

$$
|G|=\frac{2(g-1)}{2\left(g_{E}-1\right)+\sum_{i=1}^{k}\left(1-\frac{1}{e_{i}}\right)} .
$$

Thus, we need to show that $\frac{2}{2\left(g_{E}-1\right)+\sum_{i=1}^{k}\left(1-\frac{1}{e_{i}}\right)} \leq 84$ or equivalently,

$$
R:=2\left(g_{E}-1\right)+\sum_{i=1}^{k}\left(1-\frac{1}{e_{i}}\right) \geq \frac{1}{41}
$$

Note that $R>0$ as $g \geq 2$. Note that, $1-\frac{1}{e_{i}} \in\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5} \ldots\right\}$, Finally if $g_{E} \geq 2$ then $R \geq 2$. Thus, we should only consider the possibilities of $g_{E}=1, g_{E}=0$.
Case analysis on board.

