Algebraic Geometric Codes

Recitation 13

Shir Peleg

Tel Aviv University

June 1, 2022

Remainder - Riemann Hurwitz Genus Formula

Theorem 1

Let F/L be a separable finite extension of E/K. Denote by g_F, g_E their respective genus. Then,

$$2g_F - 2 = \frac{[F:E]}{[L:K]}(2g_E - 2) + \deg Diff(F/E).$$

Let F/L be a separable finite extension of E/K. Denote by g_F, g_E their respective genus. Then,

$$2g_F - 2 = \frac{[F:E]}{[L:K]}(2g_E - 2) + \operatorname{deg} Diff(F/E).$$

Corollary 2

Let F/L be a separable finite extension of E/K. Denote by g_F, g_E their respective genus. Then, $g_F \ge g_E$.

Let F/L be a separable finite extension of E/K. Denote by g_F, g_E their respective genus. Then,

$$2g_F - 2 = \frac{[F:E]}{[L:K]}(2g_E - 2) + \operatorname{deg} Diff(F/E).$$

Corollary 2

Let F/L be a separable finite extension of E/K. Denote by g_F, g_E their respective genus. Then, $g_F \ge g_E$.

Proof.

We have
$$[L:K] = [LE:E]$$
, and $E \subseteq LE \subseteq F$ and thus $\frac{[F:E]}{[L:K]} = [F:LE] \ge 1$.

Let F/L be a separable finite extension of E/K. Denote by g_F, g_E their respective genus. Then,

$$2g_F - 2 = \frac{[F:E]}{[L:K]}(2g_E - 2) + \operatorname{deg} Diff(F/E).$$

Corollary 2

Let F/L be a separable finite extension of E/K. Denote by g_F, g_E their respective genus. Then, $g_F \ge g_E$.

Proof.

We have [L:K] = [LE:E], and $E \subseteq LE \subseteq F$ and thus $\frac{[F:E]}{[L:K]} = [F:LE] \ge 1.$ From Hurwitz thm Diff $(F/E) \ge 0$ and so deg Diff $(F/E) \ge 0$.

Let F/K be a rational function field and let $K \not\subseteq E \not\subseteq F$, then E is a rational function field.

Let F/K be a rational function field and let $K \not\subseteq E \not\subseteq F$, then E is a rational function field.

Proof.

We proved that $g_F = 0$. If F/E is separable, using Corollary 2 we get that $g_E = 0$.

Let F/K be a rational function field and let $K \not\subseteq E \not\subseteq F$, then E is a rational function field.

Proof.

We proved that $g_F = 0$. If F/E is separable, using Corollary 2 we get that $g_E = 0$. Thus, from a previous characterization, we either have that E is a rational function field, or a degree 2 extension of such. How can we differ?

Let F/K be a rational function field and let $K \not\subseteq E \not\subseteq F$, then E is a rational function field.

Proof.

We proved that $g_F = 0$. If F/E is separable, using Corollary 2 we get that $g_E = 0$. Thus, from a previous characterization, we either have that E is a rational function field, or a degree 2 extension of such. How can we differ? If E has a degree 1 place then it must be a rational function field.

Let F/K be a rational function field and let $K \not\subseteq E \not\subseteq F$, then E is a rational function field.

Proof.

We proved that $g_F = 0$. If F/E is separable, using Corollary 2 we get that $g_E = 0$. Thus, from a previous characterization, we either have that E is a rational function field, or a degree 2 extension of such. How can we differ? If E has a degree 1 place then it must be a rational function field. But F has a degree one place, \mathfrak{P}_{∞} , and thus the place that sits under it must have degree one.

Let F/K be a rational function field and let $K \not\subseteq E \not\subseteq F$, then E is a rational function field.

Proof.

We proved that $g_F = 0$. If F/E is separable, using Corollary 2 we get that $g_E = 0$. Thus, from a previous characterization, we either have that E is a rational function field, or a degree 2 extension of such. How can we differ? If E has a degree 1 place then it must be a rational function field. But F has a degree one place, \mathfrak{P}_{∞} , and thus the place that sits under it must have degree one. If F/E is not separable, we can assume that F/E is purely inseparable (As, we can use $E = E_s$ and then $F = E_s$). As F = K(t) for some t, it

holds that $E = K(t^q)$ for some q.

Let K be a field and let $n \ge 3$ s.t. n, char(K) are coprime. Then there are no polynomials $0 \ne f, g, h \in K[Z]$, s.t.

$$f^n+g^n=h^n,$$

unless $f/h, g/h \in K^{\times}$.

Let K be a field and let $n \ge 3$ s.t. n, char(K) are coprime. Then there are no polynomials $0 \ne f, g, h \in K[Z]$, s.t.

$$f^n+g^n=h^n,$$

unless $f/h, g/h \in K^{\times}$.

Proof

Assume w.l.o.g K is algebraically closed.

Let K be a field and let $n \ge 3$ s.t. n, char(K) are coprime. Then there are no polynomials $0 \ne f, g, h \in K[Z]$, s.t.

$$f^n+g^n=h^n,$$

unless $f/h, g/h \in K^{\times}$.

Proof

Assume w.l.o.g K is algebraically closed. Consider the algebraic function field F = K(x, y) where $x^n + y^n = 1$.

Let K be a field and let $n \ge 3$ s.t. n, char(K) are coprime. Then there are no polynomials $0 \ne f, g, h \in K[Z]$, s.t.

$$f^n+g^n=h^n,$$

unless $f/h, g/h \in K^{\times}$.

Proof

Assume w.l.o.g K is algebraically closed. Consider the algebraic function field F = K(x, y) where $x^n + y^n = 1$. Denote by ζ_n the *n*'s primitive root of unity in K^{\times} .

Claim 4.1

It holds that [F : K(x)] = n, and the places corresponding to the valuations $v_{x-\zeta_n^i}$, denoted by $\mathfrak{p}_{\zeta_n^i}$, are fully ramified in F. i.e. there is a unique F- place $\mathfrak{P}_{\zeta_n^i}$ s.t. $e(\mathfrak{P}_{\zeta_n^i}/\mathfrak{p}_{\zeta_n^i}) = n$.

Claim 4.1

It holds that [F : K(x)] = n, and the places corresponding to the valuations $v_{x-\zeta_n^i}$, denoted by $\mathfrak{p}_{\zeta_n^i}$, are fully ramified in F. i.e. there is a unique F- place $\mathfrak{P}_{\zeta_n^i}$ s.t. $e(\mathfrak{P}_{\zeta_n^i}/\mathfrak{p}_{\zeta_n^i}) = n$.

Proof.

First note that $v_{x-\zeta_n^i}(x-\zeta_n^j)=\delta_{ij}$.

Claim 4.1

It holds that [F : K(x)] = n, and the places corresponding to the valuations $v_{x-\zeta_n^i}$, denoted by $\mathfrak{p}_{\zeta_n^i}$, are fully ramified in F. i.e. there is a unique F- place $\mathfrak{P}_{\zeta_n^i}$ s.t. $e(\mathfrak{P}_{\zeta_n^i}/\mathfrak{p}_{\zeta_n^i}) = n$.

Proof.

First note that $v_{x-\zeta_n^i}(x-\zeta_n^j)=\delta_{ij}$. Thus,

$$v_{x-\zeta_n^i}(x^n-1)=v_{x-\zeta_n^i}\left(\prod_{j=1}^n(x-\zeta_n^j)\right)=1.$$

Claim 4.1

It holds that [F : K(x)] = n, and the places corresponding to the valuations $v_{x-\zeta_n^i}$, denoted by $\mathfrak{p}_{\zeta_n^i}$, are fully ramified in F. i.e. there is a unique F- place $\mathfrak{P}_{\zeta_n^i}$ s.t. $e(\mathfrak{P}_{\zeta_n^i}/\mathfrak{p}_{\zeta_n^i}) = n$.

Proof.

First note that $v_{x-\zeta_n^i}(x-\zeta_n^j)=\delta_{ij}$. Thus,

$$\mathsf{v}_{\mathsf{x}-\zeta_n^i}(\mathsf{x}^n-1)=\mathsf{v}_{\mathsf{x}-\zeta_n^i}\left(\prod_{j=1}^n(\mathsf{x}-\zeta_n^j)
ight)=1.$$

It follows that for an extension $v_{\mathfrak{P}}$ of $v_{x-\zeta_n^i}$, we have that $v_{\mathfrak{P}}(x^n-1) = e(\mathfrak{P}/\mathfrak{p}_{\zeta_n^i}) \cdot 1.$

Claim 4.1

It holds that [F : K(x)] = n, and the places corresponding to the valuations $v_{x-\zeta_n^i}$, denoted by $\mathfrak{p}_{\zeta_n^i}$, are fully ramified in F. i.e. there is a unique F- place $\mathfrak{P}_{\zeta_n^i}$ s.t. $e(\mathfrak{P}_{\zeta_n^i}/\mathfrak{p}_{\zeta_n^i}) = n$.

Proof.

First note that
$$v_{x-\zeta_n^i}(x-\zeta_n^j)=\delta_{ij}$$
. Thus,

$$v_{x-\zeta_n^i}(x^n-1)=v_{x-\zeta_n^i}\left(\prod_{j=1}^n(x-\zeta_n^j)
ight)=1.$$

It follows that for an extension $v_{\mathfrak{P}}$ of $v_{x-\zeta_n^i}$, we have that $v_{\mathfrak{P}}(x^n-1) = e(\mathfrak{P}/\mathfrak{p}_{\zeta_n^i}) \cdot 1$. On the other hand

$$n \leq n v_{\mathfrak{P}}(y) = v_{\mathfrak{P}}(x^n - 1) = e(\mathfrak{P}/\mathfrak{p}_{\zeta_n^i}) \leq [F : K(x)] \leq n$$

Claim 4.1

It holds that [F : K(x)] = n, and the places corresponding to the valuations $v_{x-\zeta_n^i}$, denoted by $\mathfrak{p}_{\zeta_n^i}$, are fully ramified in F. i.e. there is a unique F- place $\mathfrak{P}_{\zeta_n^i}$ s.t. $e(\mathfrak{P}_{\zeta_n^i}/\mathfrak{p}_{\zeta_n^i}) = n$.

Proof.

First note that
$$v_{x-\zeta_n^j}(x-\zeta_n^j)=\delta_{ij}$$
. Thus,

$$v_{x-\zeta_n^i}(x^n-1)=v_{x-\zeta_n^i}\left(\prod_{j=1}^n(x-\zeta_n^j)\right)=1.$$

It follows that for an extension $v_{\mathfrak{P}}$ of $v_{x-\zeta_n^i}$, we have that $v_{\mathfrak{P}}(x^n-1) = e(\mathfrak{P}/\mathfrak{p}_{\zeta_n^i}) \cdot 1$. On the other hand

$$n \leq n v_{\mathfrak{P}}(y) = v_{\mathfrak{P}}(x^n - 1) = e(\mathfrak{P}/\mathfrak{p}_{\zeta_n^i}) \leq [F : K(x)] \leq n$$

Thus $e(\mathfrak{P}/\mathfrak{p}_{\zeta_n^i}) = [F : K(x)] = n$ and from the fundamental inequality, it follows that $\mathfrak{P}_{\zeta_n^i} := \mathfrak{P}$ is unique and $\mathfrak{p}_{\zeta_n^i}$ is fully ramified.

Claim 4.2

Let $f, g, h \in K[Z]$ as in the theorem. Write $f_0 = \frac{f}{h}, g_0 = \frac{g}{h}$. Then,

 $F \cong K(f_0, g_0).$

Claim 4.2

Let
$$f, g, h \in K[Z]$$
 as in the theorem. Write $f_0 = \frac{f}{h}, g_0 = \frac{g}{h}$. Then,

 $F \cong K(f_0, g_0).$

Proof.

First note that $K(x) \rightarrow K(f_0) : x \rightarrow f_0$ is a field isomorphism.

Claim 4.2

Let
$$f, g, h \in K[Z]$$
 as in the theorem. Write $f_0 = \frac{f}{h}, g_0 = \frac{g}{h}$. Then,

 $F \cong K(f_0, g_0).$

Proof.

First note that $K(x) \to K(f_0) : x \to f_0$ is a field isomorphism. Now, from the previous claim,

 $Y^n + x^n - 1 \in K(x)[Y],$

is the minimal polynomial of y over K(x).

Claim 4.2

Let
$$f, g, h \in K[Z]$$
 as in the theorem. Write $f_0 = \frac{f}{h}, g_0 = \frac{g}{h}$. Then,

 $F \cong K(f_0, g_0).$

Proof.

First note that $K(x) \rightarrow K(f_0) : x \rightarrow f_0$ is a field isomorphism. Now, from the previous claim,

 $Y^n + x^n - 1 \in K(x)[Y],$

is the minimal polynomial of y over K(x). It follows that $T^n + f_0^n - 1$ is irreducible over $K(f_0)$, and therefore is the minimal polynomial of g_0 over $K(f_0)$.

Claim 4.2

Let
$$f, g, h \in K[Z]$$
 as in the theorem. Write $f_0 = \frac{f}{h}, g_0 = \frac{g}{h}$. Then,

 $F \cong K(f_0, g_0).$

Proof.

First note that $K(x) \to K(f_0) : x \to f_0$ is a field isomorphism. Now, from the previous claim,

$$Y^n + x^n - 1 \in K(x)[Y],$$

is the minimal polynomial of y over K(x). It follows that $T^n + f_0^n - 1$ is irreducible over $K(f_0)$, and therefore is the minimal polynomial of g_0 over $K(f_0)$. This implies that

$$F \cong K(f_0, g_0)$$
 via $x \to f_0, y \to g_0$.

From corollary 2 we get that $g_F = 0$. Apply the Riemann Hurwiz formula for E = K(x) and F to obtain:

From corollary 2 we get that $g_F = 0$. Apply the Riemann Hurwiz formula for E = K(x) and F to obtain:

$$2g_F - 2 = [F:E](2g_E - 2) + \operatorname{deg} \operatorname{Diff}(F/E)$$

From Hurwiz genus different theorem we get that $d(\mathfrak{P}/\mathfrak{p}) = e(\mathfrak{P}/\mathfrak{p}) - 1$, thus for the *n* places mentioned in Claim 4.1, we have that $d(\mathfrak{P}_{\zeta_n^i}/\mathfrak{p}_{\zeta_n^i}) = n - 1$ and therefore,

From corollary 2 we get that $g_F = 0$. Apply the Riemann Hurwiz formula for E = K(x) and F to obtain:

$$-2 = -2n + \deg \operatorname{Diff}(F/E)$$

From Hurwiz genus different theorem we get that $d(\mathfrak{P}/\mathfrak{p}) = e(\mathfrak{P}/\mathfrak{p}) - 1$, thus for the *n* places mentioned in Claim 4.1, we have that $d(\mathfrak{P}_{\zeta_n^i}/\mathfrak{p}_{\zeta_n^i}) = n - 1$ and therefore,

$$-2 = -2n + \deg \operatorname{Diff}(F/E) \geq -2n + n(n-1),$$

From corollary 2 we get that $g_F = 0$. Apply the Riemann Hurwiz formula for E = K(x) and F to obtain:

$$-2 = -2n + \deg \operatorname{Diff}(F/E)$$

From Hurwiz genus different theorem we get that $d(\mathfrak{P}/\mathfrak{p}) = e(\mathfrak{P}/\mathfrak{p}) - 1$, thus for the *n* places mentioned in Claim 4.1, we have that $d(\mathfrak{P}_{\zeta_n^i}/\mathfrak{p}_{\zeta_n^i}) = n - 1$ and therefore,

$$-2 = -2n + \deg \operatorname{Diff}(F/E) \geq -2n + n(n-1),$$

and

$$n^2 - 3n + 2 = (n - 2)(n - 1) \le 0$$

Which is a implies that $n \leq 2$ as we wanted.

Let F be a function field, over an algebraically closed field K, with genus $g \ge 2$. Let $G \le Aut(F/K)$ be a finite subgroup of automorphisms of F over K. Assume further that char(K) and |G| are coprime. Then, $|G| \le 84(g-1)$

Proof.

Let $E = F^G$ be the fixed field of G. From Galois theorem we know that F/E is Galois and [F : E] = |G| := n.

Let F be a function field, over an algebraically closed field K, with genus $g \ge 2$. Let $G \le Aut(F/K)$ be a finite subgroup of automorphisms of F over K. Assume further that char(K) and |G| are coprime. Then, $|G| \le 84(g-1)$

Proof.

Let $E = F^G$ be the fixed field of G. From Galois theorem we know that F/E is Galois and [F : E] = |G| := n. Furthermore, E/K is transcendental and is a function field over K. In class we saw that in these settings, there is only finitely many divisors in E that are ramified in F. Denote then by $\mathfrak{p}_1, \ldots, \mathfrak{p}_k$.

As [F : E] is normal, we have that over p_i there are r_i places, that have ramification of $e_i \ge 2$. The degree is always $f_i = 1$ as K is algebraically closed.

As [F : E] is normal, we have that over \mathfrak{p}_i there are r_i places, that have ramification of $e_i \ge 2$. The degree is always $f_i = 1$ as K is algebraically closed. We have,

$$e_i f_i r_i = [F:E] \Rightarrow r_i = \frac{|G|}{e_i}.$$

As [F : E] is normal, we have that over p_i there are r_i places, that have ramification of $e_i \ge 2$. The degree is always $f_i = 1$ as K is algebraically closed. We have,

$$e_i f_i r_i = [F:E] \Rightarrow r_i = \frac{|G|}{e_i}.$$

As $e_i \mid |G|$, we get that e_i , char(K) are coprime, so we can use Dedekind different theorem to deduce that for each $\mathfrak{P}_{i,j}$ over \mathfrak{p}_i ,

$$d(\mathfrak{P}_{i,j}/\mathfrak{p}_i)=e_i-1.$$

Apply the genus formula to deduce:

$$2(g-1) = [F:E]2(g_E-1) + \sum_{i=1}^{k} \sum_{j=1}^{r_i} (e_i-1)$$

$$2(g-1) = |G|2(g_E-1) + \sum_{i=1}^{k} \frac{|G|}{e_i}(e_i-1)$$

$$2(g-1) = |G|\left(2(g_E-1) + \sum_{i=1}^{k} \left(1 - \frac{1}{e_i}\right)\right)$$

Apply the genus formula to deduce:

$$2(g-1) = [F:E]2(g_E-1) + \sum_{i=1}^{k} \sum_{j=1}^{r_i} (e_i - 1)$$

$$2(g-1) = |G|2(g_E-1) + \sum_{i=1}^{k} \frac{|G|}{e_i}(e_i - 1)$$

$$2(g-1) = |G|\left(2(g_E-1) + \sum_{i=1}^{k} \left(1 - \frac{1}{e_i}\right)\right)$$

$$|G| = \frac{2(g-1)^{i=1}}{2(g_E-1) + \sum_{i=1}^{k} \left(1 - \frac{1}{e_i}\right)}$$
We get that

$$|G| = rac{2(g-1)}{2(g_E-1) + \sum_{i=1}^k \left(1 - rac{1}{e_i}
ight)}.$$

Thus, we need to show that $\frac{2}{2(g_E-1)+\sum_{i=1}^k \left(1-\frac{1}{e_i}\right)} \leq 84$ or equivalently,

$$|\mathcal{G}| = rac{2(g-1)}{2(g_E-1)+\sum_{i=1}^k \left(1-rac{1}{e_i}
ight)}.$$

Thus, we need to show that $\frac{2}{2(g_E-1)+\sum_{i=1}^k \left(1-\frac{\mathbf{1}}{e_i}\right)} \leq 84$ or equivalently,

$$R:=2(g_{\mathcal{E}}-1)+\sum_{i=1}^k\left(1-rac{1}{e_i}
ight)\geq rac{1}{41}$$

$$|G| = rac{2(g-1)}{2(g_E-1) + \sum_{i=1}^k \left(1 - rac{1}{e_i}
ight)}.$$

Thus, we need to show that $\frac{2}{2(g_E-1)+\sum_{i=1}^k \left(1-\frac{\mathbf{1}}{e_i}\right)} \leq 84$ or equivalently,

$${\mathsf R}:=2(g_{\mathsf E}-1)+\sum_{i=1}^k\left(1-rac{1}{e_i}
ight)\geq rac{1}{41}$$

Note that R > 0 as $g \ge 2$.

$$|\mathcal{G}| = rac{2(g-1)}{2(g_E-1)+\sum_{i=1}^k \left(1-rac{1}{e_i}
ight)}.$$

Thus, we need to show that $\frac{2}{2(g_E-1)+\sum_{i=1}^k \left(1-\frac{1}{e_i}\right)} \leq 84$ or equivalently,

$$R := 2(g_E - 1) + \sum_{i=1}^k \left(1 - rac{1}{e_i}
ight) \geq rac{1}{41}$$

Note that R > 0 as $g \ge 2$. Note that, $1 - \frac{1}{e_i} \in \{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}...\}$

$$|G| = rac{2(g-1)}{2(g_E-1) + \sum_{i=1}^k \left(1 - rac{1}{e_i}
ight)}.$$

Thus, we need to show that $\frac{2}{2(g_E-1)+\sum_{i=1}^k \left(1-\frac{\mathbf{1}}{e_i}\right)} \leq 84$ or equivalently,

$$R := 2(g_E - 1) + \sum_{i=1}^k \left(1 - rac{1}{e_i}
ight) \geq rac{1}{41}$$

Note that R > 0 as $g \ge 2$. Note that, $1 - \frac{1}{e_i} \in \{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}...\}$, Finally if $g_E \ge 2$ then $R \ge 2$. Thus, we should only consider the possibilities of $g_E = 1, g_E = 0$.

$$|G| = rac{2(g-1)}{2(g_E-1) + \sum_{i=1}^k \left(1 - rac{1}{e_i}
ight)}.$$

Thus, we need to show that $\frac{2}{2(g_E-1)+\sum_{i=1}^k \left(1-\frac{1}{e_i}\right)} \leq 84$ or equivalently,

$$R := 2(g_E - 1) + \sum_{i=1}^k \left(1 - rac{1}{e_i}
ight) \geq rac{1}{41}$$

Note that R > 0 as $g \ge 2$. Note that, $1 - \frac{1}{e_i} \in \{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}...\}$, Finally if $g_E \ge 2$ then $R \ge 2$. Thus, we should only consider the possibilities of $g_E = 1, g_E = 0$. Case analysis on board.