
y 2 = x3 − x over F5 in more depth
Unit 18

Gil Cohen

January 4, 2025

Gil Cohen y2 = x3 − x over F5 in more depth



Overview

1 A second floor

2 Hurwitz Genus Formula & Dedekind Different Theorem

3 The genus & Weierstrass gaps of the second floor

4 Some principal divisors

5 Back to the genus calculation

6 More floors

7 A much better tower

Gil Cohen y2 = x3 − x over F5 in more depth



A second floor

In the previous unit we analyzed F1/F0 where

F0 = F5(x),

F1 = F5(x , y) y2 = x3 − x .

We now further extend by considering

F2 = F1(z) = F5(x , y , z) z2 = y3 − y .
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A second floor

Note that we could have extended F2/F5(x) directly. Indeed,

z2 = y3 − y = y(y2 − 1) = y(x3 − x − 1),

and so
z4 = y2(x3 − x − 1)2 = (x3 − x)(x3 − x − 1)2.

So we could have defined F2 = F5(x , z) with

z4 = (x3 − x)(x3 − x − 1)2.

However, it is more convenient to study F2/F0 by considering F1.

More generally, by the primitive element theorem, as F2/F5(x) is finite &
separable ∃w ∈ F2 s.t. F2 = F5(x ,w) (in fact all but finitely many w -s
would work). So, the geometric interpretation of the primitive element
theorem (in our context) is that every function field can be associated
with a plane curve!
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A second floor - the rational prime divisors

Let’s start with P∞. Recall that υP∞(y) = −3. If q ∈ P(F2) lies over
P∞ then

2 · υq(z) = υq(z2) = e(q/P∞) · υP∞(y3 − y) = e(q/P∞) ·min(−9,−3).

Thus, e(q/P∞) = 2 and υq(z) = −9. In particular, P∞ totally ramifies.
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A second floor - the rational prime divisors

As
(y)F1 = P0,0 + P1,0 + P−1,0 − 3P∞,

the same holds for P0,0,P1,0,P−1,0. E.g., if q/P0,0 then

2 · υq(z) = υq(z2) = e(q/P0,0) · υP0,0 (y3 − y) = e(q/P0,0) ·min(3, 1),

and so e(q/P0,0) = 2 and υq(z) = 1, namely, z is a local parameter for q.

What is a local parameter for the prime divisor q∞ lying over P∞? We
know that

υq∞(z) = −9,

υq∞(y) = e(q∞/P∞) · υP∞(y) = 2 · (−3) = −6,

υq∞(x) = e(q∞/P∞) · υP∞(x) = 2 · (−2) = −4,

and so

υq∞

(
z

xy

)
= 1.
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A second floor - the rational prime divisors
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A second floor - the rational prime divisors

Consider now P−2,2. Since z2 = y3 − y and y3 − y ∈ OP−2,2 we have
that z ∈ O′P−2,2

. Indeed,

ϕ(T ) = T 2 − (y3 − y) ∈ OP−2,2 [T ]

is a monic polynomial that vanishes at z .

Since F2/F1 is finite and separable, we can apply Kummer’s Theorem.

We have the projection

ϕ−2,2(T ) = T 2 − (23 − 2) = T 2 − 1 = (T + 1)(T − 1).

Hence, by Kummer’s Theorem, there are two prime divisors lying over
P−2,2. One q−2,2,−1 for which z + 1 ∈ mq−2,2,−1 , and the other, q−2,2,1,
satisfies z − 1 ∈ mq−2,2,1 .

I leave it for you to verify that these are local parameters.
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A second floor - the rational prime divisors

Consider now P−2,−2.

ϕ(T ) = T 2 − (y3 − y) ∈ OP−2,−2 [T ]

is a monic polynomial that vanishes at z . We have the projection

ϕ−2,−2(T ) = T 2 − ((−2)3 − (−2))

= T 2 + 1 = (T + 2)(T − 2).

Hence, by Kummer’s Theorem, there are two prime divisors lying over
P−2,−2.

I leave it for you to verify that these are local parameters.
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A second floor - the rational prime divisors
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A second floor - the rational prime divisors

Consider now P2,1.

ϕ(T ) = T 2 − (y3 − y) ∈ OP2,1 [T ]

is a monic polynomial that vanishes at z . We have the projection

ϕ2,1(T ) = T 2 − (13 − 1) = T 2.

Hence, Kummer’s Theorem does not apply.

However, we can still prove that P2,1 totally ramifies using the
fundamental equality trick.
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A second floor - the rational prime divisors

Let q/P2,1. We have that

2 · υq(z) = υq(z2) = υq(y3 − y) = e(q/P2,1) · υP2,1 (y3 − y).

We want to show that e(q/P2,1) = 2. To this end, it suffices to show
that

υP2,1 (y3 − y) = 1.

Now,

υP2,1 (y3 − y) = υP2,1 (y2 − 1) + υP2,1 (y) = υP2,1 (y2 − 1),

where the last equality follows as υP2,1 (y − 1) > 0 and so υP2,1 (y) > 0
would imply υP2,1 (1) > 0.

So we need to show that

υP2,1 (y2 − 1) = 1.
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A second floor - the rational prime divisors

We need to show that
υP2,1 (y2 − 1) = 1.

Now,
y2 − 1 = x3 − x − 1 = (x − 2)(x2 + 2x + 3),

where, recall x2 + 2x + 3 is irreducible in F5[x ]. Thus,

υP2,1 (y2 − 1) = υP2,1 ((x − 2)(x2 + 2x + 3))

= e(P2,1/p2) · υp2 ((x − 2)(x2 + 2x + 3)) = 1.

This proves that e(q/P2,1) = 2.

z is a local parameter for q since

2 · υq(z) = υq(z2) = υq(y3 − y) = e(q/P2,1) · υP2,1 (y3 − y) = 2 · 1 = 2.
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Hurwitz Genus Formula

Theorem 1 (Hurwitz Genus Formula)

Let F/L be a finite separable extension of E/K. Let gE, gF be the
corresponding genera. Then,

2gF − 2 =
[F : E]

[L : K]
· (2gE − 2) + deg Diff(F/E).

Diff that appears in Hurwitz Genus Formula is an important divisor called
the different of F/E,

Diff(F/E) =
∑

p∈P(E)

∑
P/p

d(P/p)P,

where we are not yet in a position to define d(P/p). However,
Dedekind’s Different Theorem relates d(P/p) with the ramification index
e(P/p) in some cases.
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Dedekind Different Theorem

Theorem 2 (Dedekind Different Theorem)

Let F/L be a finite separable extension of E/K. Let p ∈ P(E) and
P ∈ P(F) lying over p. Then,

1 d(P/p) ≥ e(P/p)− 1; and

2 d(P/p) = e(P/p)− 1 ⇐⇒ char K - e(P/p).

Corollary 3

With the above notations,

d(P/p) = 0 ⇐⇒ e(P/p) = 1

In particular, for almost all p,P/p we have that e(P/p) = 1.
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A second floor - the genus

By Hurwitz Genus Formula, and since g1 = 1,

2g2−2 = 2·(2g1−2)+deg Diff(F2/F1) =⇒ g2 = 1+
1

2
·deg Diff(F2/F1).

Now,
Diff(F2/F1) =

∑
P∈P(F1)

∑
q/P

d(q/P)q.

As F2/F1 is tame (the characteristic, 5, does not divide the ramification
indices ∈ {1, 2}), by Dedekind Different Theorem,

d(q/P) = e(q/P)− 1,

and so our task is to find all ramified places in F2/F1.
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A second floor - the genus

We have already found 6 such places:

are there more? Yes! but let’s take a detour, and compute the principal
divisors of x , y , z in F2.
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Some principal divisors

As
(x)F1 = 2P0,0 − 2P∞

we have that
(x)F2 = 4q0,0,0 − 4q∞.

Similarly, since

(y)F1 = P0,0 + P1,0 + P−1,0 − 3P∞,

we have that

(y)F2 = 2q0,0,0 + 2q1,0,0 + 2q−1,0,0 − 6q∞.

Let’s find (z)F2 .
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Some principal divisors

First let’s find where (at which q ∈ P(F2)) are the zeros and poles of z .

υq(z) 6= 0 ⇐⇒ υq(z2) 6= 0 ⇐⇒ υP(y3 − y) 6= 0,

where P ∈ P(F1) lies under q.

Consider now two cases. First, if υP(y) 6= 0 then

υP(y3) = 3 · υP(y) 6= υP(y) =⇒ υP(y3 − y) 6= 0.

Thus, z has zeros and poles over those of y .

Recall that

(y)F2 = 2q0,0,0 + 2q1,0,0 + 2q−1,0,0 − 6q∞.

and so a simple calculation that I will leave to you shows that

(z)F2 = q0,0,0+q1,0,0+q−1,0,0−9q∞+ whatever comes from the other case.

Gil Cohen y2 = x3 − x over F5 in more depth



Some principal divisors

(z)F2 = q0,0 + q1,0 + q−1,0− 9q∞+ whatever comes from the other case.

As a detour recall that

deg(z)F2,∞ = [F2 : F5(z)].

Now,

[F2 : F5(z)] = [F5(x , y , z) : F5(z)]

= [F5(x , y , z) : F5(y , z)] · [F5(y , z) : F5(z)].

Recall z2 = y3 − y , and so T 3 −T − z2 ∈ F5(z)[T ] vanishes at y . It can
be shown to be irreducible and so

[F5(y , z) : F5(z)] = 3.

Similarly, [F5(x , y , z) : F5(y , z)] = 3 and so

deg(z)F2,∞ = [F2 : F5(z)] = 3 · 3 = 9.
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Some principal divisors

(z)F2 = q0,0 + q1,0 + q−1,0− 9q∞+ whatever comes from the other case.

Moving on to Case 2 - υP(y) = 0, and so

υP(y3 − y) = υP(y2 − 1) + υP(y) = υP(y2 − 1).

Thus, for the prime divisor p lying under P,

υp(x3 − x − 1) 6= 0.

Recall that x3 − x − 1 = (x − 2)(x2 − 2x + 3) and so

p ∈ {p2, px2−2x+3}.

A calculation I will leave to you shows that the two prime divisors of F2

lying over p2 are simple zeros of z .
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Some principal divisors

Denote p′ , px2−2x+3.

We have that

y2 − 1 = x3 − x − 1 = (x − 2)(x2 − 2x + 3)

and so
ϕ(T ) = T 2 − (x − 2)(x2 − 2x + 3)− 1

is the minimal polynomial of y over F5(x). Thus, y ∈ O′p′ and the
projection to (F2)p′ [T ] is

ϕ̄(T ) = T 2 − 1.

Thus, by Kummer’s Theorem, there are two prime divisors lying over p′

in F1 which we denote by

Px2−2x+3,1,Px2−2x+3,−1.
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Some principal divisors

From here it is standard by now to check that each totally ramifies in
F2/F1.

To summarize, we have that

(z)F2 =q0,0,0 + q1,0,0 + q−1,0,0 − 9q∞+

q2,1,0 + q2,−1,0 + qx2−2x+3,1,0 + qx2−2x+3,−1,0.
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A second floor - Weierstrass gaps

Now that we have that

(x)F2,∞ = 4q∞,

(y)F2,∞ = 6q∞,

(z)F2,∞ = 9q∞,

we can look at L(r · q∞) for r = 0, 1, 2, . . .
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Back to the genus

Assuming we can continue on like that, showing that

∀r > 16 L(r · q∞) 6= L((r − 1) · q∞)

(and we can), taking into account that the red dashes are me unable to
find a function in the corresponding space, we conclude by
Riemann-Roch that g ≤ 6.
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Back to the genus

On the other hand, recall that we have already found 6 ramified places in
F2/F1, all of degree 1, and so

g2 = 1 +
1

2
· deg Diff(F2/F1)

= 1 +
1

2
·
∑

P∈P(F1)

∑
q/P

ramifies

deg q

≥ 1 +
1

2
· 6 = 4.

It turns out that the genus is indeed g2 = 6 - there are two more places
in F2 that ramify, each is of degree 2 over F1. In fact, both lie over the
place px2−x+3 we’ve encountered before.
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Back to the genus

I leave it to you to verify this. In fact, we did almost all the work before,
when computing the principal divisors.
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More floors

For three floors we had

In general, we have the following behavior:
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More floors

For four floors we will get
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More floors

Denote by ni , N(Fi ) the number of rational prime divisors in Fi/F5.

It is easy to see that the following recursive relation holds:

ni = ni−1 + 2,

n0 = 6,

and so ni = 6 + 2i .
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More floors

As for the genus gi , g(Fi ), by Hurwitz Genus Formula,

gi = 2gi−1 − 1 +
1

2
deg Diff(Fi/Fi−1).

Now,
Diff(Fi/Fi−1) =

∑
p∈P(Fi−1)

∑
P/p

d(P/p)P.

As Fi/Fi−1 is tame, by Dedekind Different Theorem,

d(P/p) = e(P/p)− 1,

and so, even if we only consider the ramification that occurs at rational
prime divisors,

deg Diff(Fi/Fi−1) ≥ number of p ∈ P(Fi−1) that ramify.
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More floors

gi = 2gi−1 − 1 +
1

2
deg Diff(Fi/Fi−1),

deg Diff(Fi/Fi−1) ≥ number of p ∈ P(Fi−1) that ramify.

It is easy to see that the number of prime divisors in Fi that ramify is
4 + 2i , and so

deg Diff(Fi/Fi−1) ≥ 2 + 2i .

Thus,
gi ≥ 2gi−1 + i .

Since g0 = 0 we have
gi ≥ 2i+1 − i − 2.
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More floors

To summarize, we have that

ni = 2i + 6,

gi ≥ 2i+1 − i − 2.

Recall that Goppa codes satisfy

ρ+ δ ≥ 1− g − 1

n
.

Since for gi > ni for i ≥ 3, floors 3 and higher, used in the general
construction by Goppa, fail to give meaningful codes.

Gil Cohen y2 = x3 − x over F5 in more depth



Overview

1 A second floor

2 Hurwitz Genus Formula & Dedekind Different Theorem

3 The genus & Weierstrass gaps of the second floor

4 Some principal divisors

5 Back to the genus calculation

6 More floors

7 A much better tower

Gil Cohen y2 = x3 − x over F5 in more depth



A better example

Consider the function field F = F9(x , y), where

y2 = x +
1

x
.

Since this is a degree n = 2 extension of F9(x) we are in a similar
situation as in the previous example. In particular, F9 is the constant field
of F.

Moreover, the ramification indices are either 1 or 2 and anyhow are
coprime to the characteristic, 3.
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Rational prime divisors

By observing the table, Kummer’s Theorem implies that any
α ∈ F9 \ {0, δ, 2δ} splits completely in F/F9(x).

Using the fundamental equality trick, we can show that 0, δ, 2δ as well as
∞ totally ramify.
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Rational prime divisors

I leave it to you to prove that the genus is 1.
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Second level
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The general tower

It is easy to see that
N(Fi ) ≥ 4 · 2i .

I leave it to you to check that

g(Fi ) = 2i+1 − i + 2.

Thus,
g(Fi )

N(Fi )
→ 1

2
,

and so one can get Goppa codes over F9 of unbounded length with

ρ+ δ ≥ 1

2
− o(1).

Over F9, these codes are in fact optimal among Goppa codes. It has to
do with the fact that

2 =
√

9− 1.
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