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Scribe: Tomer Manket

Let F/K be a function field with genus g.

1 Adeles and Weil Differentials

Definition 1. An adele of F/K is a mapping

α : PF → F

p 7−→ αp

such that νp(αp) ≥ 0 for almost all p ∈ PF .

The set A of all the adeles of F/K is a K-vector space, called the adele space of F/K. For
a ∈ D, the set

Λ(a) := {α ∈ A | νp(αp) + νp(a) ≥ 0 for all p ∈ PF }

is a K-subspace of A. The diagonal embedding F ↪→ A maps each x ∈ F to its principal
adele - the adele all of whose components are equal to x.

Definition 2. A Weil differential of F/K is a K-linear map ω : A → K such that

kerω ⊇ Λ(a) + F

for some a ∈ D.

The set Ω of all Weil differentials of F/K is a K-vector space. For a ∈ D, the set

Ω(a) := {ω ∈ Ω | ω(Λ(a) + F ) = 0}

is a K-subspace of Ω. Its dimension is

δ(a) := dimK Ω(a) = dimK
A⧸(Λ(a) + F ) = g − 1− (deg a− dim a).

Theorem 3. For each 0 ̸= ω ∈ Ω there exists a unique divisor, denoted by (ω), such that

ω ∈ Ω(a) ⇐⇒ a ≤ (ω).

Definition 4. For 0 ̸= ω ∈ Ω and p ∈ PF , we define νp(ω) := νp((ω)).
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2 Local Components of Weil Differentials

Definition 5. Let p ∈ PF . The local embedding ιp : F ↪→ A maps each x ∈ F to ιp(x),
where

(ιp(x))q :=

{
x q = p

0 q ̸= p

For a Weil Differential ω ∈ Ω, its local component ωp : F → K is defined by

ωp(x) := ω(ιp(x)).

A K

F

ω

ιp ωp

⟳
In particular, ωp : F → K is K-linear.

Theorem 6. Let ω ∈ Ω and α ∈ A. Then ωp(αp) = 0 for almost all p ∈ PF , and

ω(α) =
∑
p∈PF

ωp(αp).

In particular, ∑
p∈PF

ωp(1) = 0.

Proposition 7. Let 0 ̸= ω ∈ Ω, p ∈ PF and r ∈ Z. Then

νp(ω) ≥ r ⇐⇒ ωp(x) = 0 for all x ∈ F with νp(x) ≥ −r.

Corollary 8. νp(ω) = m ∈ Z if and only if

1. For every x ∈ F with νp(x) ≥ −m we have ωp(x) = 0; and

2. There exists x ∈ F such that νp(x) = −(m+ 1) and ωp(x) ̸= 0.

In particular, ωp is not identically zero.

Corollary 9. A Weil differential is uniquely determined by its local component. That is, if
ω, ω′ ∈ Ω satisfy ωp = ω′

p for some p ∈ PF , then ω = ω′.

3 AG Codes from Weil Differentials

Let F/Fq be a function field of genus g (i.e. K = Fq), p1, . . . , pn be distinct prime divisors
of degree one, b = p1 + . . .+ pn and a ∈ D such that νpi(a) = 0 for all i ∈ [n].
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Recall that if p is a prime divisor of degree one and x ∈ F satisfies νp(x) ≥ 0, then

x(p) := x+mp ∈ Op/mp = Fq.

In class we defined the Goppa code

CL (b, a) := {(f(p1), . . . , f(pn)) | f ∈ L (a)} ⊆ Fn
q .

Definition 10. The algebraic geometry code CΩ(b, a) ⊆ Fn
q is defined by

CΩ(b, a) := {(ωp1(1), . . . , ωpn(1)) | ω ∈ Ω(a− b)}.

Claim 11. Let p be a prime divisor of degree one, x ∈ F such that νp(x) ≥ 0 and ω ∈ Ω
such that νp(ω) ≥ −1. Then

ωp(x) = x(p) · ωp(1).

Proof. As x(p) ∈ Fq, we can write x = c + y where c = x(p) ∈ Fq and y ∈ mp (i.e. y ∈ F
and νpi(y) > 0). Hence

ωp(x) = ωp(c) + ωp(y) = c · ωp(1) + 0 = x(p) · ωp(1)

(where ωp(y) = 0 by Proposition 7, as νp(ω) ≥ −1 and y ∈ F satisfies νp(y) ≥ 1).

Theorem 12 (The parameters of the code CΩ(b, a)). The code CΩ(b, a) ⊆ Fn
q has dimension

dimK CΩ(b, a) = δ(a− b)− δ(a)

and minimum distance
d ≥ deg a− (2g − 2).

Proof. We will only prove the first statement (the dimension of CΩ(b, a) over Fq). The
evaluation map ev: Ω(a− b) → CΩ(b, a) given by

ev(ω) := (ωp1(1), . . . , ωpn(1))

is a surjective, Fq-linear map. We claim that ker(ev) = Ω(a). Indeed,

(⊇): Let ω ∈ Ω(a). Since a− b ≤ a we have Ω(a− b) ⊇ Ω(a), so ω ∈ Ω(a− b). In addition,
a ≤ (ω) so for every i ∈ [n],

νpi(ω) ≥ νpi(a) = 0 =⇒ ωpi(1) = 0

by Proposition 7.

(⊆): Suppose ω ∈ ker(ev). Then ω ∈ Ω(a− b) so a− b ≤ (ω). Hence for p /∈ supp(b),

νp(ω) ≥ νp(a− b) = νp(a)

and for every i ∈ [n],
νpi(ω) ≥ νpi(a− b) = −1.
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In order to prove that ω ∈ Ω(a) it suffices to show that (ω) ≥ a, i.e. to show that for i ∈ [n],
νpi(ω) ≥ νpi(a) = 0. By Proposition 7, it suffices to show that if x ∈ F satisfies νpi(x) ≥ 0
then ωpi(x) = 0. Indeed, given such x ∈ F we get by Claim 11 that

ωpi(x) = x(pi) · ωpi(1) = x(pi) · 0 = 0.

It follows (by the rank-nullity Theorem) that

dimK Ω(a) + dimK CΩ(b, a) = dimK Ω(a− b),

i.e.

dimK CΩ(b, a) = δ(a− b)− δ(a).

Theorem 13. The codes CL (b, a) and CΩ(b, a) are dual to each other, i.e.

CΩ(b, a) = CL (b, a)⊥.

Proof. Let us first show that CΩ(b, a) ⊆ CL (b, a)⊥. Let 0 ̸= ω ∈ Ω(a− b) and x ∈ L (a).
Then by Claim 11 we obtain

(ωp1(1), . . . , ωpn(1)) · (x(p1), . . . , x(pn)) =
n∑

i=1

x(pi) · ωpi(1) =
n∑

i=1

ωpi(x). (1)

Note that for p /∈ supp(b) we have νp(x) ≥ −νp(ω) (as x ∈ L (a) implies νp(x) ≥ −νp(a),
and ω ∈ Ω(a− b) implies (ω) ≥ a− b, so νp(ω) ≥ νp(a− b) = νp(a)). Thus, by Proposition
7 we obtain ωp(x) = 0. It follows that

n∑
i=1

ωpi(x) =
∑
p∈PF

ωp(x) = ω(x) = 0,

where we used Theorem 6 and the fact that Weil differentials vanish on principal adeles.
Together with (1) we get the desired result.

Now, the equality CΩ(b, a) = CL (b, a)⊥ follows from dimension considerations, as

dimK CL (b, a)⊥ = n− dimK CL (b, a)

= n− (dim a− dim(a− b)),

which is equal (using Theorem 12) to

dimK CΩ(b, a) = δ(a− b)− δ(a)

= g − 1− (deg(a− b)− dim(a− b))− [g − 1− (deg a− dim a)]

= deg b+ dim(a− b)− dim a

= n− (dim a− dim(a− b)).

4



Remarkably, the code CΩ(b, a) can be represented as a Goppa code CL (b, p) for an appro-
priate divisor p.

Claim 14. There exists a Weil differential η such that for all i ∈ [n],

νpi(η) = −1 and ηpi(1) = 1.

Theorem 15.
CΩ(b, a) = CL (b, b− a+ (η))

where η ∈ Ω is as in Claim 14.
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