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Recitation 8: Adeles, Weil Differentials and AG Codes
Scribe: Tomer Manket

Let F/K be a function field with genus g.

1 Adeles and Weil Differentials

Definition 1. An adele of F/K is a mapping

oa: Pp — F
pl—)ap

such that v,(ap) > 0 for almost all p € Pp.

The set A of all the adeles of F'/K is a K-vector space, called the adele space of F/K. For
a € D, the set
Aa) :={a € A|vy(ap) +1p(a) >0 forall p e Pp}

is a K-subspace of A. The diagonal embedding F' — A maps each x € F to its principal
adele - the adele all of whose components are equal to x.

Definition 2. A Weil differential of F'/K is a K-linear map w: A — K such that
kerw D A(a) + F

for some a € D.

The set Q of all Weil differentials of F'/K is a K-vector space. For a € D, the set
Qa) :={w e Q| w(A(a) + F) =0}
is a K-subspace of ). Its dimension is
d(a) ;== dimg Q(a) = dimg A/(A(a) YR =9 1 — (dega —dima).
Theorem 3. For each 0 # w € Q) there exists a unique divisor, denoted by (w), such that
weNa) <= a<(w).

Definition 4. For 0 # w € Q and p € Pp, we define vy(w) := vp((w)).



2 Local Components of Weil Differentials

Definition 5. Let p € Pp. The local embedding ty: F' — A maps each x € F to (),

where
(1@))g = {g L

For a Weil Differential w € €, its local component wy: F' — K is defined by

wp(@) 1= w(ip(2).

A—® K
/71
F

In particular, wy: F' — K is K-linear.

Theorem 6. Let w € Q and o € A. Then wy(ay) =0 for almost all p € Pp, and

w(a) = Z wp(ap).

pePR

> wp(1) =0.

pEPR

In particular,

Proposition 7. Let 0 #w € Q, p € Pr and r € Z. Then
Vp(w) > 1 <= wp(x) =0 for all x € F with vp(z) > —r.
Corollary 8. vy(w) =m € Z if and only if

1. For every x € F with vy(x) > —m we have wy(z) = 0; and

2. There exists x € I such that vy(x) = —(m + 1) and wy(x) # 0.

In particular, wy 1s not identically zero.

Corollary 9. A Weil differential is uniquely determined by its local component. That is, if
w,w' € Q satisfy wy = wy for some p € Pr, then w = w'.

3 AG Codes from Welil Differentials

Let F/IF, be a function field of genus g (i.e. K =F,), p1,...,pn be distinct prime divisors
of degree one, b =p; + ...+ p, and a € D such that vy, (a) = 0 for all i € [n].



Recall that if p is a prime divisor of degree one and z € F satisfies v, (z) > 0, then

In class we defined the Goppa code
Cz(b,a) :=={(f(p1),. -, f(bn)) | [ € L(a)} S Fy.
Definition 10. The algebraic geometry code Cq(b,a) C Fy is defined by
Ca(b,a) := {(wp, (1),...,wp, (1)) |w e Qa—Db)}.

Claim 11. Let p be a prime divisor of degree one, x € F such that vy(x) > 0 and w € Q
such that vy(w) > —1. Then

wy(z) = 2(p) - wy(1).

Proof. As z(p) € Fy, we can write x = ¢+ y where ¢ = z(p) € F; and y € m, (ie. y € F
and vy, (y) > 0). Hence

() = wpl(©) + wp(y) = - wp(1) +0 = a(p) - wp(1)
(where wy(y) = 0 by Proposition 7, as vp(w) > —1 and y € F' satisfies v,(y) > 1). O
Theorem 12 (The parameters of the code Cq(b,a)). The code Cq(b,a) C Fy has dimension
dimg Cq(b,a) =d(a—b) — d(a)
and minimum distance

d>dega— (29— 2).

Proof. We will only prove the first statement (the dimension of Cq(b,a) over F;). The
evaluation map ev: Q(a — b) — Cq(b, a) given by

eV(OJ) = (wpl(1)7 tee 7wpn(1))
is a surjective, Fy-linear map. We claim that ker(ev) = Q(a). Indeed,

(2): Let w € Q(a). Since a — b < a we have Q(a—b) D Q(a), so w € Q(a —b). In addition,
a < (w) so for every i € [n],

V(W) 2 1p,(a) =0 = wy, (1) =0
by Proposition 7.
(€): Suppose w € ker(ev). Then w € Q(a —b) so a — b < (w). Hence for p ¢ supp(b),
vp(w) = 1p(a—b) =1p(a)

and for every i € [n],
Vpi(w) > Vpi(a_ b) =-1



In order to prove that w € Q(a) it suffices to show that (w) > a, i.e. to show that for i € [n],
Vp,(w) > 14,(a) = 0. By Proposition 7, it suffices to show that if x € F satisfies vy, (x) > 0
then wy, () = 0. Indeed, given such z € F' we get by Claim 11 that

wpi(x) = x(p%) : Wpi(l) = SU(pz) -0=0.

It follows (by the rank-nullity Theorem) that
dim g Q(a) + dimg CQ(b, Cl) = dimg Q(a — b),
ie.

dimg Cq(b,a) = d(a—b) — o(a).

Theorem 13. The codes C¢(b,a) and Cq(b,a) are dual to each other, i.e.

Cq(b,a) = Cg(b,a)*.

Proof. Let us first show that Cq(b,a) C Ce(b,a)t. Let 0 # w € Q(a—b) and = € Z(a).
Then by Claim 11 we obtain

n

(wpr ()5 wp, (1) - (@(pr), s w(n)) = Y w(pi) - wp, (1) = Y wp, (). (1)
i=1

=1

Note that for p ¢ supp(b) we have v,(z) > —1p(w) (as z € Z(a) implies vy(z) > —vp(a),

and w € Q(a — b) implies (w) > a — b, so vy(w) > vp(a —b) = vy(a)). Thus, by P;:)position
7 we obtain wy(z) = 0. It follows that

D wp () =) wy(@) = w(@) =0,
=1

pePp

where we used Theorem 6 and the fact that Weil differentials vanish on principal adeles.
Together with (1) we get the desired result.

Now, the equality Cq(b,a) = C(b,a)* follows from dimension considerations, as
dimg Co(b,a)t = n — dimg C (b, a)
=n — (dima — dim(a — b)),
which is equal (using Theorem 12) to
dimg Cq(b,a) = d6(a—b) — (a)

=¢g—1—(deg(a —b) —dim(a — b)) —[g — 1 — (dega — dim a)]
= degb + dim(a — b) — dima
=n — (dima — dim(a — b)).



Remarkably, the code Cq(b, a) can be represented as a Goppa code C (b, p) for an appro-
priate divisor p.

Claim 14. There exists a Weil differential n such that for all i € [n],
Vp,(n) = —1 and np,(1) =1.

Theorem 15.
Ca(b,a) = Cy(b,b—a+(n))

where n € Q s as in Claim 14.
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