Recap

Gil Cohen

January 22, 2025

The Different

Definition 1

Let F/L be an extension of E/K with F/E finite and separable. Let $\mathfrak p$ be a prime divisor of E/K with valuation ring $\mathcal O_{\mathfrak p}$ and integral closure $\mathcal O'_{\mathfrak p}$ in F. Let

$$C_{\mathfrak{p}}=t_{\mathfrak{p}}\mathcal{O}'_{\mathfrak{p}}$$

be the complementary module over $\mathcal{O}_{\mathfrak{p}}$.

We define the different exponent of $\mathfrak{P}/\mathfrak{p}$ by

$$d(\mathfrak{P}/\mathfrak{p}) = -v_{\mathfrak{P}}(t_{\mathfrak{p}}).$$

The different of F/E if defined by

$$\mathsf{Diff}(\mathsf{F}/\mathsf{E}) = \sum_{\mathfrak{p} \in \mathbb{P}(\mathsf{E})} \sum_{\mathfrak{P}/\mathfrak{p}} d(\mathfrak{P}/\mathfrak{p}) \mathfrak{P}.$$

Dedekind Different Theorem

Theorem 2 (Dedekind Different Theorem)

Let F/L be a finite separable extension of E/K. Let $\mathfrak{p} \in \mathbb{P}(E)$ and $\mathfrak{P} \in \mathbb{P}(F)$ lying over \mathfrak{p} . Then,

- $oldsymbol{d} d(\mathfrak{P}/\mathfrak{p}) \geq e(\mathfrak{P}/\mathfrak{p}) 1$; and

Corollary 3

With the above notations,

$$d(\mathfrak{P}/\mathfrak{p})=0 \quad \Longleftrightarrow \quad e(\mathfrak{P}/\mathfrak{p})=1$$

In particular, for almost all $\mathfrak{p}, \mathfrak{P}/\mathfrak{p}$ we have that $e(\mathfrak{P}/\mathfrak{p}) = 1$.

Hurwitz Genus Formula

Theorem 4

Let F/L be a finite separable extension of E/K. Let g_E, g_F be the corresponding genera. Then,

$$2g_{\mathsf{F}}-2=\frac{[\mathsf{F}:\mathsf{E}]}{[\mathsf{L}:\mathsf{K}]}\cdot (2g_{\mathsf{E}}-2)+\mathsf{deg}\,\mathsf{Diff}(\mathsf{F}/\mathsf{E}).$$

A lemma about the dual basis

We have the following lemma about dual bases.

Lemma 5

Let F/L be a degree n separable extension of E/K s.t.

$$F = E(y)$$
 $y \in F$.

Let $\varphi(T) \in E[T]$ be the minimal polynomial of y over E, and write

$$\varphi(T) = (T - y)(c_0 + c_1T + c_2T^2 + \cdots + c_{n-1}T^{n-1}),$$

with $c_i \in F$. Then, the dual basis of $1, y, y^2, \dots, y^{n-1}$ is given by

$$\frac{c_0}{\varphi'(y)},\ldots,\frac{c_{n-1}}{\varphi'(y)}.$$

A bound on the different exponent

Theorem 6

Let F/L be a finite separable extension of E/K s.t.

$$F = E(y)$$
 $y \in F$.

Let $\mathfrak{p} \in \mathbb{P}(\mathsf{E})$ be s.t. $y \in \mathcal{O}'_{\mathfrak{p}}.$

Let $\varphi(T) \in \mathcal{O}_{\mathfrak{p}}[T]$ be the minimal polynomial of y over E.

Let $\mathfrak{P}_1, \ldots, \mathfrak{P}_r \in \mathbb{P}(\mathsf{F})$ be the prime divisors lying over \mathfrak{p} . Then,

$$\forall i \in [r] \quad d(\mathfrak{P}_i/\mathfrak{p}) \leq \upsilon_{\mathfrak{P}_i}(\varphi'(y)).$$

The different exponent and local bases

Theorem 7

Let F/L be a finite separable extension of E/K s.t.

$$F = E(y)$$
 $y \in F$.

Let $\mathfrak{p} \in \mathbb{P}(\mathsf{E})$ be s.t. $y \in \mathcal{O}'_{\mathfrak{p}}$.

Let $\varphi(T) \in \mathcal{O}_{\mathfrak{p}}[T]$ be the minimal polynomial of y over E.

Let $\mathfrak{P}_1,\dots,\mathfrak{P}_r\in\mathbb{P}(\mathsf{F})$ be the prime divisors lying over $\mathfrak{p}.$ Then,

$$\mathcal{O}'_{\mathfrak{p}} = \mathcal{O}_{\mathfrak{p}}[y] \quad \Longleftrightarrow \quad \forall i \in [r] \quad d(\mathfrak{P}_i/\mathfrak{p}) = v_{\mathfrak{P}_i}(\varphi'(y)).$$

The different exponent and local bases

Corollary 8

Let F/L be a finite separable extension of E/K s.t.

$$F = E(y)$$
 $y \in F$.

Let $\mathfrak{p} \in \mathbb{P}(\mathsf{E})$ be s.t. $y \in \mathcal{O}'_{\mathfrak{p}}$.

Let $\varphi(T) \in \mathcal{O}_{\mathfrak{p}}[T]$ be the minimal polynomial of y over E.

Assume that

$$\forall \mathfrak{P}/\mathfrak{p} \qquad \upsilon_{\mathfrak{P}}(\varphi'(y)) = 0.$$

Then, $\mathfrak p$ is unramified in F/E and $\mathcal O_{\mathfrak p}[y]=\mathcal O'_{\mathfrak p}.$