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Spectral Graph Theory 101

Spectral graph theory studies graphs by looking at the spectrum of
related matrices.

G will be a d-regular undirected graph on n vertices with
adjacency matrix A whose eigenvalues are

−d ≤ λn ≤ · · · ≤ λ2 ≤ λ1 = d .
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Spectral Graph Theory 101

Figure: The 30-vertex cycle.
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Spectral Graph Theory 101

Figure: The spectrum of the 30-vertex cycle.
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Spectral Graph Theory 101

Figure: The 29-vertex cycle & inverses graph.
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Spectral Graph Theory 101

Gil Cohen Random Walks on Rotating Expanders



Spectral Graph Theory 101

Figure: Who am I?
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Spectral Graph Theory 101

−d ≤ λn ≤ · · · ≤ λ2 ≤ λ1 = d .

The spectral expansion of G is given by

λ = max (|λ2|, |λn|) .

The smaller λ is - the better. E.g., random walks mix quickly.

Random walks are analyzed by studying At which corresponds to
G t that has degree D = d t and spectral expansion λt .
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Spectral Graph Theory 101

According to the Alon-Boppana bound the “best” d-regular
spectral expanders, dubbed Ramanujan graphs, satisfy

λ = 2
√
d − 1.

A lot of beautiful work has been done:

Lubotzky, Phillips, Sarnak’88 and Margulis’88, Bilu-Linial’06,
Marcus, Spielman, Srivastava’15, Cohen’16, and many others.

Nearly-Ramanujan graphs have been studied by e.g., Friedman’08,
Reingold,Vadhan and Wigderson’02, Ben-Aroya and Ta-Shma’15,
Bordenave’19, Mohanty, O’Donnell and Paredes’19, and Alon’20.

A lot of combinatorics, number theory, group theory, and a
little bit of analysis.
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A downside to expander random walks

Take a d-regular Ramanujan graph G . Then,

λ = 2
√
d − 1 ≈ 2

√
d .

So G t has degree D = d t and spectral expansion

λt ≈ (2
√
d)t = 2t

√
D = 2t−1 · 2

√
D.

So the spectral expansion deteriorates exponentially in t when
compared to a Ramanujan graph of the same degree.
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A downside to expander random walks

Question. Can we avoid this exponential loss?

Answer. Strictly speaking, no.

Still... Can we do something similar to a random walk that has
slower deterioration in t?
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Step-permute-step

Instead of taking two steps on G ,

1 take the first step according to G ;

2 permute G -s vertices, and take the second step according to
the permuted G .

A2 → PAPT · A for some P = P(G ).

We prefer to end up with an undirected graph, so we consider

A · PAPT · A.

For technical reasons, we in fact study

AP , A · PA2PT · A.
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Step-permute-step

AP , A · PA2PT · A.

AP corresponds to a D = d4 regular graph. Assuming G is
Ramanujan,

2
√
D ≤ λ(AP) ≤ 16

√
D.

Question. What does one permutation buy us?

We prove that for every sufficiently high-girth G ,

∃P = P(G ) s.t. λ(AP) ≤ 27

4

√
D + o(1) < 7

√
D.

Simulations suggest that 27
4 is the typical behavior.
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Our results

Theorem (Main result on Ramanujan graphs; informal)

By carefully permuting the vertices between steps one can achieve
a linear deterioration in t.

Theorem (Main result on Ramanujan graphs)

∀d-regular Ramanujan graph G and t ≥ 2 ∃ a sequence of
permutation matrices P = (P1, . . . ,Pt−1) s.t.

λ (AP) ≤
(

1 +
1

t

)t

(t + 1)
√
D + ε < e(t + 1)

√
D + ε,

where D = d2t and

AP = APt−1A · · ·P2AP1A
2PT

1 AP
T
2 · · ·APT

t−1A,

and ε = 2−Ω(g)(td)t .
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Our results

Theorem (Main result; informal)

If t is not too large one pays λ for the first step only, and
1 ·
√
d for every other step;

For large t, one get a linear deterioration with t, independent
of λ.

Theorem (Main result)

∀d-regular λ-spectral expander G and t ≥ 2 ∃ a sequence of
permutation matrices P s.t.

λ (AP) ≤

{
O(λ2d t−1) = O(λ

√
D), t < λ2

d ;

e(t + 1)
√
D + ε, otherwise.
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Rotating the expander?

Expand

A =
n∑

i=1

λiψiψ
T
i ,

where ψ1, . . . ,ψn are respective eigenvectors. So

At =

(
n∑

i=1

λiψiψ
T
i

)t

=
n∑

i=1

λtiψiψ
T
i .

That is, the eigenvector ψ2 is aligned, well, with itself.
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Rotating the expander?

Can we break the alignments by rotation?

Let’s play lose with the graph structure, and rotate the
eigenvectors. So instead of At we may consider

t∏
i=1

QiAQ
T
i ,

where the Qi -s are orthogonal matrices.
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Rotating the expander?

We rather end up with an undirected graph, so we consider

AQ = AQt−1A · · ·Q2AQ1A
2QT

1 AQ
T
2 · · ·AQT

t−1A.

A natural first step is to consider

EQ‖AQ‖

where Q1, . . . ,Qt−1 are independent Haar random orthogonal
matrices.

Inspired by the (fantastic!) works of Marcus, Spielman and
Srivastava, we track the entire spectrum by attempting to bound
the max-root of

A�(x) = EQ [χx(AQ)] .
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Road map
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The multiplicative convolution

Definition (Multiplicative convolution)

Let A,B be real symmetric matrices with characteristic polynomials
a(x), b(x). The multiplicative convolution a� b is defined by

(a� b)(x) = EQ[χx(AQBQT)],

where Q is Haar random orthogonal matrix.
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The multiplicative convolution

(a� b)(x) = EQ[χx(AQBQT)]

In our case, for t = 2,

AQ = AQA2QTA,

and so

χx(AQ) = χx(AQA2QTA) = χx(A2QA2QT).

Thus,
EQχx(AQ) = χx(A2)� χx(A2).

Similarly, for every t ≥ 2,

EQχx(AQ) = χx(A2)�t .
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The M and N transforms

Let µ be a distribution on [0, a]. Define

Mµ(x) =

∫ a

0

t

x − t
µ(t)dt

=
∞∑
r=1

mr (µ)

x r
.

We extend Mµ to real-rooted polynomials p(x) and then to real
symmetric matrices in the natural way. E.g.,

MA(x) =
1

n

n∑
i=1

λi
x − λi

.

Lastly, Nµ(y) is the largest x s.t. Mµ(x) = y .
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The M and N transforms

MA(x) =
1

n

n∑
i=1

λi
x − λi

.

Observe that for every y > 0, NA(y) is an upper bound on λ1.
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The multiplicative convolution and the N transform

We wish to bound the largest root of

EQχx(AQ) = χx(A2)�t .

Thus, we want to have a good bound on Nχx (A2)�t .

Theorem (MSS’15)

∀p(x), q(x) with non-negative real roots and every y > 0,

Np�q(y) ≤ y

y + 1
· Np(y) · Nq(y).

Hence,

Nχx (A2)�t (y) ≤
(

y

y + 1

)t−1

NA2(y)t .
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Back to our analysis

Nχx (A2)�t (y) ≤
(

y

y + 1

)t−1

NA2(y)t .

NA2(y) is difficult to work out as it is the max-inverse of

MA2(x) =
1

n

n∑
i=1

λ2
i

x − λ2
i

.
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Cheat!

Replace SpecA with the Kesten-McKay distribution.

NA2(y)  Nkm2(y)

Figure: The Kesten-McKay distribution for d = 3, 5, 10.
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Let’s calculate

Recall that NA2(y) is the max-inverse of

MA2(x) =
1

n

n∑
i=1

λ2
i

x − λ2
i

,

Instead, we will work with the km2 distribution.

Mkm2(x) =
2d

x − 2d +
√

x2 − 4(d − 1)x
,

Nkm2(y) =
d2(y + 1)2

y(y + d)
.
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Let’s calculate

Nkm2(y) =
d2(y + 1)2

y(y + d)
.

Hence

N(km2)�t (y) ≤
(

y

y + 1

)t−1

· Nkm2(y)t

=

(
d2

d + y

)t

· (y + 1)t+1

y
.

Ignoring the 1
y factor, we would have plugged y = 0 and get

d t =
√
D.
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Let’s calculate

N(km2)�t (y) ≤
(

d2

d + y

)t

· (y + 1)t+1

y
.

ymin = d
dt−t−1 minimizes the RHS, yielding

N(km2)�t (ymin) =

(
1 +

1

t

)t

(t + 1)d t < e(t + 1)d t .
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Uncheat

Recall that

Mµ(x) =
∞∑
r=1

mr (µ)

x r
.

To obtain the result about G we use the observation that the first
g
2 moments of A and km are equal. Hence, for a large girth,

MA2(x) ≈Mkm2(x) ∀x sufficiently large.

From this we can show that

NA2(y) ≈ Nkm2(y) ∀y in some range.
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Summary

Summary. Rotate your expander while taking long random walks.

Many interesting questions!

1 Explicitness? Strongly explicitness?

2 Is the linear loss in t inherent?

3 Applications?

4 Other applications of finite free probability, quadrature and
interlacing?

Thank you!

Gil Cohen Random Walks on Rotating Expanders



Some figures

Mkm2(x) =
6

x − 6 +
√
x2 − 8x
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Some figures

Nkm2(y) =
9(y + 1)2

y(y + 3)
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