Towers of function fields and examples of optimal tame towers Unit 26

Gil Cohen

January 19, 2025

Gil Cohen Towers of function fields and examples of optimal tame towers

Overview

- Towers of function fields
- 2 Ihara's constant
- 3 The ramification and splitting loci of a tower
- 4 Recursive towers
- 5 Example
- 6 Splitting locus in recursive towers
- Ramification in recursive towers
- 8 Example continued

Definition 1

Let *q* be a prime power. A tower of function fields over \mathbb{F}_q is an infinite sequence $\mathcal{F} = (F_0, F_1, \ldots)$ of function fields F_i / \mathbb{F}_q s.t.

$$\forall i \geq 0 \quad \mathsf{F}_i \subsetneq \mathsf{F}_{i+1};$$

$$\forall i \ge 0 \quad \mathsf{F}_{i+1}/\mathsf{F}_i \text{ is finite and separable};$$

$$3 g_i \triangleq g(\mathsf{F}_i) \to \infty \text{ as } i \to \infty.$$

Recall that a prime divisor $\mathfrak{p}\in\mathbb{P}(\mathsf{E}/\mathsf{K})$ is rational if

$$\mathsf{deg}\,\mathfrak{p} \triangleq [\mathsf{E}_\mathfrak{p} : \mathsf{K}] = 1.$$

We denote by $n_i \triangleq N(F_i)$ the number of rational prime divisors of F_i .

Claim 2

Item 3 follows by items 1,2 and by $g_j \ge 2$ for some $j \ge 0$.

Proof.

By Hurwitz Genus Formula, for all $i \ge 0$,

$$g_{i+1} - 1 \ge [F_{i+1} : F_i](g_i - 1)$$

Since $g_j \ge 2$ and $[F_{i+1} : F_i] \ge 2$ we have

$$g_{j+1} \ge 2(g_j-1)+1 \ge 3, \ g_{j+2} \ge 2(g_{j+1}-1)+1 \ge 5.$$

In particular, by induction one can show that $g_{i+1} > g_i$ for $i \ge j$.

Towers of function fields

Claim 3

Let
$$\mathcal{F} = (F_0, F_1, \ldots)$$
 be a tower over \mathbb{F}_q . Then,

The sequence

$$\left(\frac{n_i}{[\mathsf{F}_i:\mathsf{F}_0]}\right)_{i\in\mathbb{N}}$$

is monotonically decreasing and so it is convergent.

2 The sequence

$$\left(rac{g_i-1}{[\mathsf{F}_i:\mathsf{F}_0]}
ight)_{i\in\mathbb{N}}$$

is monotonically increasing and so it is convergent in $\mathbb{R} \cup \{\infty\}$.

• Let j be s.t. $g_j \ge 2$. Then the sequence

$$\left(rac{n_i}{g_i-1}
ight)_{i\geq i}$$

is monotonically decreasing and so it is convergent.

Fix an extension F_{i+1}/F_i . Under a rational prime divisor p_{i+1} of F_{i+1} there is a rational prime divisor p_i of F_i . Indeed,

$$\deg \mathfrak{p}_{i+1} = f(\mathfrak{P}_{i+1}/\mathfrak{P}_i) \deg \mathfrak{p}_i$$

and so deg $\mathfrak{p}_{i+1} \implies \deg \mathfrak{p}_i = 1$.

On the other hand, by the fundamental equality, there are at most $[F_{i+1} : F_i]$ rational prime divisors of F_{i+1} lying over a rational prime divisor of F_i , and so

$$n_{i+1} \leq [\mathsf{F}_{i+1} : \mathsf{F}_i] \cdot n_i.$$

Thus,

$$\frac{n_{i+1}}{[\mathsf{F}_{i+1}:\mathsf{F}_0]} \leq \frac{[\mathsf{F}_{i+1}:\mathsf{F}_i]}{[\mathsf{F}_{i+1}:\mathsf{F}_0]} \cdot n_i = \frac{n_i}{[\mathsf{F}_i:\mathsf{F}_0]}.$$

This establishes Item 1.

Moving on to Item 2, by Hurwitz Genus Formula,

$$g_{i+1} - 1 \ge [\mathsf{F}_{i+1} : \mathsf{F}_i](g_i - 1).$$

Dividing by $[F_{i+1} : F_0]$ we get

$$egin{aligned} rac{g_{i+1}-1}{[\mathsf{F}_{i+1}:\mathsf{F}_0]} &\geq rac{[\mathsf{F}_{i+1}:\mathsf{F}_i]}{[\mathsf{F}_{i+1}:\mathsf{F}_0]}(g_i-1)\ &= rac{g_i-1}{[\mathsf{F}_i:\mathsf{F}_0]}, \end{aligned}$$

as desired.

Item 3 follows by Items 1,2.

Towers of function fields

Given Claim 3, the following definition makes sense.

Definition 4

Let $\mathcal{F} = (\mathsf{F}_0, \mathsf{F}_1, \ldots)$ be a tower over \mathbb{F}_q .

① The splitting rate of \mathcal{F} is defined by

$$\nu(\mathcal{F}) = \lim_{i \to \infty} \frac{n_i}{[\mathsf{F}_i : \mathsf{F}_0]}.$$

2 The genus of \mathcal{F} is defined by

$$\gamma(\mathcal{F}) = \lim_{i \to \infty} \frac{g_i}{[\mathsf{F}_i : \mathsf{F}_0]}.$$

③ The limit of \mathcal{F} is defined by

$$\lambda(\mathcal{F}) = \lim_{i \to \infty} \frac{n_i}{g_i} = \frac{\nu(\mathcal{F})}{\gamma(\mathcal{F})}$$

Towers of function fields

$$\begin{split} & 0 \leq \nu(\mathcal{F}) < \infty, \\ & 0 < \gamma(\mathcal{F}) \leq \infty, \\ & 0 \leq \lambda(\mathcal{F}) = \frac{\nu(\mathcal{F})}{\gamma(\mathcal{F})}. \end{split}$$

Definition 5

A tower \mathcal{F} is asymptotically good if $\lambda(\mathcal{F}) > 0$. Otherwise, \mathcal{F} is asymptotically bad.

Note that

 $\mathcal{F} \text{ is asymptotically good } \quad \Longleftrightarrow \quad \nu(\mathcal{F}) > \mathsf{0} \ \ \& \ \ \gamma(\mathsf{F}) < \infty.$

きょうきょう

Overview

Towers of function fields

2 Ihara's constant

- 3 The ramification and splitting loci of a tower
- 4 Recursive towers
- 5 Example
- 6 Splitting locus in recursive towers
- Ramification in recursive towers
- 8 Example continued

How good can a tower over \mathbb{F}_q be? Namely, what is

$$\mathrm{T}(q) = \sup_{\mathcal{F}} \lambda(\mathcal{F}),$$

where the supremum is taken over all towers \mathcal{F} over \mathbb{F}_q ?

One can ask a more general question. For an integer $g \ge 0$ let

 $N_q(g) = \max \{N(F) \mid F/\mathbb{F}_q \text{ is a function field with genus } g\}.$

Serre proved the bound

$$\mathsf{N}_q(g) \leq q + 1 + g \lceil 2 \sqrt{q}
ceil$$

(improving upon the Hasse-Weil celebrated bound $q + 1 + 2g\sqrt{q}$), and so $N_q(g)$ is well-defined.

$$N_q(g) = \max \{ N(F) \mid F/\mathbb{F}_q \text{ is a function field with genus } g \}$$

 $\leq q + 1 + g \lceil 2\sqrt{q} \rceil.$

Ihara's constant is defined by

$$\mathrm{A}(q) = \limsup_{g o \infty} rac{\mathsf{N}_q(g)}{g}.$$

By Serre's bound,

$$0 \leq \mathrm{A}(q) \leq \lceil 2\sqrt{q} \rceil.$$

The Drinfeld-Vladut bound sharpens the upper bound to $\sqrt{q} - 1$. The quantity A(q) is called Ihara's constant. Ihara's constant is defined by

$$A(q) = \limsup_{g \to \infty} \frac{\mathsf{N}_q(g)}{g}$$

By the Drinfeld-Vladut bound,

$$0 \leq \mathrm{A}(q) \leq \sqrt{q} - 1.$$

Interestingly, the Drinfeld-Vladut bound is tight for every q which is an even power of a prime. This was first proved by Ihara (1981) and by Tsfasman, Vladut and Zink (1982) using modular curves.

Garcia and Stichtenoth gave an alternative, more explicit, proof, establishing in fact that

$$T(q) \ge \sqrt{q} - 1$$

for such *q*-s. To the best of my knowledge, for *q* a non-square, the exact value of A(q) is unknown, though, $A(q) = \Omega(\log q)$.

Definition 6

A tower \mathcal{F} over \mathbb{F}_q is said to be asymptotically optimal if

$$\lambda(\mathcal{F}) = \mathcal{A}(q) = \sqrt{q} - 1.$$

Personally, I find this terminology confusing as it may be that asymptotically optimal towers do not exist when sticking to the above definition.

Overview

Ihara's constant

3 The ramification and splitting loci of a tower

4 Recursive towers

5 Example

6 Splitting locus in recursive towers

Ramification in recursive towers

8 Example continued

For a function field E/K we let $\mathbb{P}_1(E/K)$ be the set of rational prime divisors of E/K.

Let F/L be a function field extension of E/K. A prime divisor p of E/K is said to split completely if there are exactly [F : E] prime divisors of F/L lying over p.

Recall that by the fundamental equality,

$$[\mathsf{F}:\mathsf{E}] = \sum_{\mathfrak{P}/\mathfrak{p}} e(\mathfrak{P}/\mathfrak{p}) f(\mathfrak{P}/\mathfrak{p}),$$

there can be at most $[\mathsf{F}:\mathsf{E}]$ prime divisors lying over $\mathfrak{p}.$ Moreover, if \mathfrak{p} splits completely then

$$orall \mathfrak{P}/\mathfrak{p} \quad e(\mathfrak{P}/\mathfrak{p}) = f(\mathfrak{P}/\mathfrak{p}) = 1.$$

In particular, if $\mathfrak p$ is rational then so is $\mathfrak P$ as recall

$$\deg \mathfrak{P} = f(\mathfrak{P}/\mathfrak{p}) \cdot \deg \mathfrak{p}.$$

Definition 7

Let \mathcal{F} be a tower over \mathbb{F}_q . The set

 $\mathsf{Split}(\mathcal{F}) = \{ \mathfrak{p} \in \mathbb{P}_1(\mathsf{F}_0) \mid \mathfrak{p} \text{ splits completely in all extessions } \mathsf{F}_i/\mathsf{F}_0 \}$

is called the splitting locus of \mathcal{F} .

Let F/L be an extension of E/K. A prime divisor \mathfrak{p} of E/K is said to ramify in the extension F/L of E/K if $\exists \mathfrak{P}/\mathfrak{p} \text{ s.t. } e(\mathfrak{P}/\mathfrak{p}) > 1.$

Definition 8

Let \mathcal{F} be a tower over \mathbb{F}_q . The set

 $\mathsf{Ram}(\mathcal{F}) = \{\mathfrak{p} \in \mathbb{P}(\mathsf{F}_0) \mid \mathfrak{p} \text{ is ramified in } \mathsf{F}_i/\mathsf{F}_0 \text{ for some } i \geq 1\}$

is called the ramification locus of \mathcal{F} .

Note that $Split(\mathcal{F})$ is finite (and may be empty). $Ram(\mathcal{F})$ may be finite or infinite.

Claim 9

Let
$$\mathcal{F}$$
 be a tower over \mathbb{F}_q with $s = |\text{Split}(\mathcal{F})|$. Then,

 $\nu(\mathcal{F}) \geq s.$

Proof.

Fix $\mathfrak{p} \in \text{Split}(\mathcal{F})$ and $i \ge 0$. In F_i , there are exactly $[F_i : F_0]$ rational prime divisors lying over \mathfrak{p} . Thus,

 $n_i \geq [\mathsf{F}_i : \mathsf{F}_0] \cdot s$

and so

$$\nu(\mathcal{F}) = \lim_{i\to\infty} \frac{n_i}{[\mathsf{F}_i:\mathsf{F}_0]} \ge s.$$

Claim 10

Let \mathcal{F} be a tower over \mathbb{F}_q . Assume that $Ram(\mathcal{F})$ is finite and that

 $\forall \mathfrak{p} \in \mathsf{Ram}(\mathcal{F}) \quad \exists a_{\mathfrak{p}} \in \mathbb{R} \quad \forall i \geq 0, \ \mathfrak{P} \in \mathbb{P}(\mathsf{F}_i) \quad d(\mathfrak{P}/\mathfrak{p}) \leq a_{\mathfrak{p}} \cdot e(\mathfrak{P}/\mathfrak{p}).$

Then,

$$\gamma(\mathcal{F}) \leq g_0 - 1 + \frac{1}{2} \sum_{\mathfrak{p} \in \mathsf{Ram}(\mathcal{F})} a_\mathfrak{p} \cdot \deg \mathfrak{p} < \infty.$$

Proof.

By the Hurwitz Genus Formula,

$$\begin{aligned} 2g_i - 2 &= [\mathsf{F}_i : \mathsf{F}_0](2g_0 - 2) + \operatorname{deg} \operatorname{Diff}(\mathsf{F}_i/\mathsf{F}_0) \\ &= [\mathsf{F}_i : \mathsf{F}_0](2g_0 - 2) + \sum_{\mathfrak{p} \in \mathbb{P}(\mathsf{F}_0)} \sum_{\mathfrak{P}/\mathfrak{p}} d(\mathfrak{P}/\mathfrak{p}) \cdot \operatorname{deg} \mathfrak{P} \\ &\leq [\mathsf{F}_i : \mathsf{F}_0](2g_0 - 2) + \sum_{\mathfrak{p} \in \mathbb{P}(\mathsf{F}_0)} \sum_{\mathfrak{P}/\mathfrak{p}} a_{\mathfrak{p}} e(\mathfrak{P}/\mathfrak{p}) \cdot f(\mathfrak{P}/\mathfrak{p}) \operatorname{deg} \mathfrak{p}. \end{aligned}$$

Proof.

$$2g_i - 2 \leq [\mathsf{F}_i : \mathsf{F}_0](2g_0 - 2) + \sum_{\mathfrak{p} \in \mathbb{P}(\mathsf{F}_0)} \sum_{\mathfrak{P}/\mathfrak{p}} a_\mathfrak{p} e(\mathfrak{P}/\mathfrak{p}) \cdot f(\mathfrak{P}/\mathfrak{p}) \deg \mathfrak{p}$$

 $= [\mathsf{F}_i : \mathsf{F}_0](2g_0 - 2) + \sum_{\mathfrak{p} \in \mathbb{P}(\mathsf{F}_0)} a_\mathfrak{p} \deg \mathfrak{p} \sum_{\mathfrak{P}/\mathfrak{p}} e(\mathfrak{P}/\mathfrak{p}) f(\mathfrak{P}/\mathfrak{p}).$

Using the fundamental equality we get

$$2g_i - 2 \leq [\mathsf{F}_i : \mathsf{F}_0] \left(2g_0 - 2 + \sum_{\mathfrak{p} \in \mathbb{P}(\mathsf{F}_0)} a_\mathfrak{p} \deg \mathfrak{p} \right),$$

and so

$$\frac{g_i}{[\mathsf{F}_i:\mathsf{F}_0]} \leq g_0 - 1 + \frac{1}{2} \sum_{\mathfrak{p} \in \mathbb{P}(\mathsf{F}_0)} a_\mathfrak{p} \deg \mathfrak{p} + \frac{1}{[\mathsf{F}_i:\mathsf{F}_0]}.$$

The proof follows by taking the limit and using that $[F_i : F_0] \to \infty$.

Corollary 11

Let \mathcal{F} be a tower as in Claim 10. Assume that $s = |Split(\mathcal{F})| > 0$. Then, \mathcal{F} is asymptotically good, and we have

$$\lambda(\mathcal{F}) \geq rac{2s}{2g_0 - 2 + \sum_{\mathfrak{p} \in \mathsf{Ram}(\mathcal{F})} a_\mathfrak{p} \deg \mathfrak{p}}$$

Proof.

The proof readily follows by Claim 9, Claim 10 and since

$$\lambda(\mathcal{F}) = rac{
u(\mathcal{F})}{\gamma(\mathcal{F})}.$$

Definition 12

A tower \mathcal{F} over \mathbb{F}_q is celled tame if all ramification indices $e(\mathfrak{P}/\mathfrak{p})$, $\mathfrak{p} \in \mathbb{P}(\mathsf{F}_0)$, $\mathfrak{P} \in \mathbb{P}(\mathsf{F}_i)$ are coprime to q (equivalently, to the $p = \operatorname{char} \mathbb{F}_q$.)

Corollary 13

Let \mathcal{F} be a tame tower with $F_0 = \mathbb{F}_q(x)$ and

$$s = |\mathsf{Split}(\mathcal{F})| > 0$$
 $r = \sum_{\mathfrak{p} \in \mathsf{Ram}(\mathcal{F})} \deg \mathfrak{p}.$

Then,

$$\lambda(\mathcal{F}) \geq \frac{2s}{r-2}.$$

Proof.

The proof readily follows by Corollary 11 and by Dedekind's Different Theorem which states that $d(\mathfrak{P}/\mathfrak{p}) = e(\mathfrak{P}/\mathfrak{p}) - 1$ for tame towers.

Tower properties via ramification

Claim 14

Let $\mathsf{F}_0\subseteq\mathsf{F}_1\subseteq\cdots$ be a sequence of finite separable field extensions. Assume $\mathsf{F}_0/\mathbb{F}_q$ is a function field, and denote the constant field of F_i by $\mathsf{K}_i.$ Suppose that

 $\forall i \geq 0 \quad \exists \mathfrak{p}_i \in \mathbb{P}(\mathsf{F}_i), \, \mathfrak{P}_i \in \mathbb{P}(\mathsf{F}_{i+1}) \quad s.t. \quad \mathfrak{P}_i/\mathfrak{p}_i \text{ and } e(\mathfrak{P}_i/\mathfrak{p}_i) > 1.$

Then, $F_i \neq F_{i+1}$. Moreover, if in the above notation $e(\mathfrak{P}_i/\mathfrak{p}_i) = [F_{i+1} : F_i]$ for all *i* then $K_i = \mathbb{F}_q$.

Proof.

By the fundamental equality, $e(\mathfrak{P}_i/\mathfrak{p}_i) \leq [\mathsf{F}_{i+1}:\mathsf{F}_i]$ and so

$$e(\mathfrak{P}_i/\mathfrak{p}_i) > 1 \implies \mathsf{F}_{i+1} \neq \mathsf{F}_i.$$

We move to the moreover part.

Tower properties via ramification

Proof.

Consider the constant field extension $K_{i+1}F_i/K_{i+1}$. We have that

$$\mathsf{e}(\mathfrak{P}_i/\mathfrak{p}_i) = [\mathsf{F}_{i+1}:\mathsf{F}_i] = [\mathsf{F}_{i+1}:\mathsf{K}_{i+1}\mathsf{F}_i] \cdot [\mathsf{K}_{i+1}\mathsf{F}_i:\mathsf{F}_i].$$

Let $q_i \in \mathbb{P}(K_{i+1}F_i)$ be the prime divisor lying under \mathfrak{P}_i . Then,

$$e(\mathfrak{P}_i/\mathfrak{p}_i) = e(\mathfrak{P}_i/\mathfrak{q}_i) \cdot e(\mathfrak{q}_i/\mathfrak{p}_i) = e(\mathfrak{P}_i/\mathfrak{q}_i),$$

where the last equality holds as ramification does not occur in constant field extensions.

Tower properties via ramification

Proof.

$$e(\mathfrak{P}_i/\mathfrak{q}_i) = [\mathsf{F}_{i+1} : \mathsf{K}_{i+1}\mathsf{F}_i] \cdot [\mathsf{K}_{i+1}\mathsf{F}_i : \mathsf{F}_i].$$

But by the fundamental equality,

$$e(\mathfrak{P}_i/\mathfrak{q}_i) \leq [\mathsf{F}_{i+1} : \mathsf{K}_{i+1}\mathsf{F}_i],$$

and so

Overview

- Towers of function fields
- 2 Ihara's constant
- 3 The ramification and splitting loci of a tower
- 4 Recursive towers
- 5 Example
- 6 Splitting locus in recursive towers
- Ramification in recursive towers
- 8 Example continued

Let K be a field. We define the degree of an element

$$f(T) = rac{g(T)}{h(T)} \in \mathsf{K}(T)$$

with $g(T), h(T) \in K[T]$ coprime by

$$\deg(f) = \max(\deg(g), \deg(h)).$$

Note that this is well-defined as K[T] is a UFD.

Note that f(T) is constant $(f(T) \in K)$ iff deg(f) = 0.

Recursive towers

Definition 15

Let $f(Y) \in \mathbb{F}_q(Y)$, $h(X) \in \mathbb{F}_q(X)$ be non-constant rational functions, and let $\mathcal{F} = (F_0, F_1, \ldots)$ be a sequence of function fields over \mathbb{F}_q .

Suppose that $\forall i \in \mathbb{N} \ \exists x_i \in \mathsf{F}_i \text{ s.t.}$

- F₀ = 𝔽_q(x₀) is a rational function field (namely, x₀ is transcendental over 𝔽_q);
- 3 $f(x_{i+1}) = h(x_i)$; and
- $[\mathsf{F}_1 : \mathsf{F}_0] = \deg(f).$

Then, we say that \mathcal{F} is recursively defined over \mathbb{F}_q by the equation

$$f(Y)=h(X).$$

We call the function field $\mathbb{F}_q(x, y)/\mathbb{F}_q(x)$ with f(y) = h(x) the basic function field of the tower.

きょうきょう

Note that in a recursive tower,

 $\forall i \in \mathbb{N} \quad [\mathsf{F}_{i+1} : \mathsf{F}_i] \leq \deg(f).$

Indeed, write $f(T) = f_1(T)/f_2(T)$ where $f_1(T), f_2(T) \in \mathbb{F}_q[T]$ are coprime. By Item 2,

$$\mathsf{F}_{i+1}=\mathsf{F}_i(x_{i+1}),$$

and by Item 3, x_{i+1} is a root of

$$g(T) = f_1(T) - h(x_i)f_2(T) \in \mathsf{F}_i[T]$$

whose degree is

$$\deg(g) \leq \max(\deg(f_1), \deg(f_2)) = \deg(f).$$

Thus,

$$[\mathsf{F}_{i+1}:\mathsf{F}_i] \leq \deg(g) \leq \deg(f).$$

Overview

- Towers of function fields
- Ihara's constant
- 3 The ramification and splitting loci of a tower
- 4 Recursive towers
- 5 Example
- 6 Splitting locus in recursive towers
- Ramification in recursive towers
- 8 Example continued

Example

Let q be a power of an odd prime. We will show that the sequence $\mathcal{F}=(\mathsf{F}_0,\mathsf{F}_1,\ldots)$ that is recursively defined by

$$Y^2 = \frac{X^2 + 1}{2X}$$

is a tower over \mathbb{F}_q . So, we need to prove that

2 F_{i+1}/F_i is separable

• \mathbb{F}_q is the constant field of F_i ; and

•
$$g(F_j) \ge 2$$
 for some j .

As

$$\mathsf{F}_{i+1} = \mathsf{F}_i(x_{i+1})$$
 and $x_{i+1}^2 = \frac{x_i^2 + 1}{2x_i}$,

we have that $[F_{i+1} : F_i] \le 2$. As *q* is odd, by the theory of Kummer extensions, F_{i+1}/F_i is separable. This establishes Item 2.

To prove Items 1,3 using Claim 14 we will find, for each $i \in \mathbb{N}$

$$\mathfrak{p}_i \in \mathbb{P}(\mathsf{F}_i), \mathfrak{P}_i \in \mathbb{P}(\mathsf{F}_{i+1}) \quad \text{s.t.} \quad \mathfrak{P}_i/\mathfrak{p}_i \quad \text{and} \quad e(\mathfrak{P}_i/\mathfrak{p}_i) = 2.$$

Let \mathfrak{p}_0 be the unique pole of x_0 in $F_0 = \mathbb{F}_q(x_0)$. Let $\mathfrak{P}_0/\mathfrak{p}_0$ in $\mathbb{P}(F_1)$. We have that

$$2 \cdot v_{\mathfrak{P}_0}(x_1) = v_{\mathfrak{P}_0}(x_1^2) = e(\mathfrak{P}_0/\mathfrak{p}_0) \cdot v_{\mathfrak{p}_0}\left(\frac{x_0^2 + 1}{2x_0}\right) = -e(\mathfrak{P}_0/\mathfrak{p}_0).$$

Thus, using also the fundamental equality, $e(\mathfrak{P}_0/\mathfrak{p}_0)=2$ as desired.

Moreover, note that $v_{\mathfrak{P}_0}(x_1) = -1$ and so we can iterate this argument for all $i \in \mathbb{N}$.

∃ ► < ∃ ►</p>

It remains to prove Item 4. By the result on tame cyclic extensions, the only prime divisors of F_0 that ramify are

- \mathfrak{p}_0 the zero of x_0 in F_0 .
- \mathfrak{p}_{∞} the unique pole of x_0 in F_0 as

$$d = \gcd\left(n, \sum_{i=1}^{s} n_i \deg p_i(x)\right) = \gcd(2, 2-1) = \gcd(2, 1+1-1) = 1;$$

and

• either the prime divisor corresponding to $x_0^2 + 1$ in case it is irreducible in $\mathbb{F}_q[x_0]$ or the two prime divisors that correspond to its two distinct irreducible factors x + i, x - i.

Assume that $x_0^2 + 1$ is irreducible in $\mathbb{F}_q[x_0]$ (the other case is treated similarly and gives the same result).

By a result we proved, the three prime divisors totally ramify, namely have ramification index e = 2.

As q is odd, Dedekind different theorem implies that the different exponent is d = e - 1 = 1.

Moreover, by the fundamental equality, each of the three prime divisors have a unique prime divisor lying above it and the corresponding residual degree f = 1. Thus,

$$\begin{split} & \operatorname{\mathsf{deg}}\operatorname{\mathsf{Diff}}(\mathsf{F}_1/\mathsf{F}_0) = \sum_{\mathfrak{p} \in \mathbb{P}(\mathsf{F}_0)} \sum_{\mathfrak{P} \in \mathbb{P}(\mathsf{F}_1)} d(\mathfrak{P}/\mathfrak{p}) \operatorname{\mathsf{deg}} \mathfrak{P} \\ & = 1 \cdot 2 + 1 \cdot 1 + 1 \cdot 1 = 4. \end{split}$$

Note that in the case that $x_0^2 + 1$ is reducible the answer is also 4.

Recall Hurwitz Genus Formula for an extension F/L over E/K

$$2g_{\mathsf{F}} - 2 = \frac{[\mathsf{F}:\mathsf{E}]}{[\mathsf{L}:\mathsf{K}]} \cdot (2g_{\mathsf{E}} - 2) + \mathsf{deg}\,\mathsf{Diff}(\mathsf{F}/\mathsf{E}).$$

In our case,

$$2g_1-2=\frac{2}{1}\cdot(2\cdot 0-2)+4=0,$$

and so $g_1 = 1$.

2

∃ ► < ∃ ►</p>

Recall Hurwitz Genus Formula for an extension F/L over E/K

$$2g_{\mathsf{F}} - 2 = \frac{[\mathsf{F}:\mathsf{E}]}{[\mathsf{L}:\mathsf{K}]} \cdot (2g_{\mathsf{E}} - 2) + \mathsf{deg}\,\mathsf{Diff}(\mathsf{F}/\mathsf{E}),$$

and that $g_1 = 1$. Thus,

$$2g_2-2=\frac{2}{1}\cdot(2g_1-2)+\operatorname{deg}\operatorname{Diff}(\mathsf{F}_2/\mathsf{F}_1)=\operatorname{deg}\operatorname{Diff}(\mathsf{F}_2/\mathsf{F}_1).$$

We proved that the prime divisor \mathfrak{P}_0 of F_1 lying above \mathfrak{p}_0 totally ramifies. In particular, deg $\mathsf{Diff}(\mathsf{F}_2/\mathsf{F}_1)\geq 1$ and so

$$2g_2-2\geq 1,$$

which implies $g_2 \ge 2$, concluding the proof of Item 4.

Overview

- Towers of function fields
- 2 Ihara's constant
- 3 The ramification and splitting loci of a tower
- 4 Recursive towers
- 5 Example
- 6 Splitting locus in recursive towers
- Ramification in recursive towers
- 8 Example continued

Claim 16

Let $\mathcal{F}=(\mathsf{F}_0,\mathsf{F}_1,\ldots)$ be a recursive tower over \mathbb{F}_q which is defined by the equation

$$f(Y)=h(X),$$

and let $F = \mathbb{F}_q(x, y) / \mathbb{F}_q(x)$ be the basic function field of the tower.

Assume that

$$\exists \emptyset \neq \Sigma \subseteq \mathbb{F}_q \cup \{\infty\} \quad \text{s.t.} \quad \forall \alpha \in \Sigma,$$

9 p_{x-α} splits completely in F. **2** ∀𝔅 ∈ 𝔅(F) that lies over 𝔅_{x-α} it holds that y(𝔅) ∈ Σ.

Then,

$${\mathfrak{p}_{x_0-\alpha} \mid \alpha \in \Sigma} \subseteq {\mathsf{Split}}(\mathcal{F}).$$

In particular,

$$\nu(\mathcal{F}) \geq |\Sigma|.$$

Splitting locus in recursive towers

For the proof we will need the following result which, for lack of time, I am forced to omit (see Stichtenoth; Proposition 3.9.6). We will cover the result in the seminar part of the course.

Lemma 17

Let F/K be a finite separable extension of E/K. Assume that $F=F_1F_2$ where $E\subseteq F_1,F_2.$

Suppose that $\mathfrak{p} \in \mathbb{P}(\mathsf{E})$ splits completely in F_1/E . Then, every $\mathfrak{P} \in \mathbb{P}(\mathsf{F}_2)$ that lies over \mathfrak{p} splits completely in F/F_2 .

Proof. (Proof of Claim 16)

Fix $\alpha \in \Sigma$. We show by induction on *i* that $\mathfrak{p}_{x_0-\alpha}$ splits completely in F_i/F_0 .

The base case i = 1 follows per our assumption and since

$$\mathsf{F}_1/\mathsf{F}_0 = \mathbb{F}_q(x_0, x_1)/\mathbb{F}_q(x_0) \ \cong \mathbb{F}_q(x, y)/\mathbb{F}_q(x).$$

For the induction step, it suffices to prove that every $\mathfrak{P} \in \mathbb{P}(\mathsf{F}_i)$ that lies over $\mathfrak{p}_{x_0-\alpha}$ splits completely in $\mathsf{F}_{i+1}/\mathsf{F}_i$.

By an iterative application of Item 2,

$$\beta \triangleq x_i(\mathfrak{P}) \in \Sigma.$$

Splitting locus in recursive towers

Proof.

$$\beta \triangleq x_i(\mathfrak{P}) \in \Sigma.$$

Thus, by Item 1, $\mathfrak{p}_{x_i-\beta}$ splits completely in $\mathbb{F}_q(x_i, x_{i+1})/\mathbb{F}_q(x_i)$.

Hence, by Lemma 17, using that $F_{i+1} = \mathbb{F}_q(x_{i+1})F_i$, we have that \mathfrak{P} splits completely in F_{i+1}/F_i .

Corollary 18

Let $\mathcal{F} = (F_0, F_1, ...)$ be a recursive tower over \mathbb{F}_q that is defined by f(Y) = h(X).

Let $m = \deg f(Y)$. Assume that $\Sigma \subseteq \mathbb{F}_q$ satisfies the following: $\forall \alpha \in \Sigma$

Then,

$${\mathfrak{p}_{x_0-\alpha} \mid \alpha \in \Sigma} \subseteq {\mathsf{Split}}(\mathcal{F}).$$

Let $F = \mathbb{F}_q(x, y)$ be the basic function field of the tower, namely,

$$f(y)=h(x).$$

Fix
$$\alpha \in \Sigma$$
 and let $\mathfrak{p} = \mathfrak{p}_{x-\alpha} \in \mathbb{P}(\mathbb{F}_q(x))$.

Write

$$f(Y) = \frac{f_1(Y)}{f_2(Y)} = \frac{a_m Y^m + \cdots + a_0}{b_m Y^m + \cdots + b_0},$$

with $f_1(Y), f_2(Y) \in \mathbb{F}_q[Y]$ coprime. As deg f(Y) = m, not both $a_m, b_m = 0$.

As f(y) = h(x), y is a root of the polynomial

$$g(Y) = f_1(Y) - h(x)f_2(Y) \in \mathbb{F}_q(x)[Y].$$

Per our assumption, $h(\alpha) \neq \infty$ and the polynomial

$$g_{\alpha}(Y) = f_1(Y) - h(\alpha)f_2(Y) \in \mathbb{F}_q[Y]$$

has *m* distinct roots. Thus, deg $g_{\alpha} = m$ and so the leading coefficient of $g_{\alpha}(Y)$,

$$a_m - h(\alpha)b_m \neq 0.$$

Thus,

$$a_m - h(x)b_m \in \mathcal{O}_{\mathfrak{p}}^{\times}.$$

$$a_m - h(x)b_m \in \mathcal{O}_\mathfrak{p}^{\times},$$

and so

$$\frac{g(Y)}{a_m-h(x)b_m}\in\mathcal{O}_\mathfrak{p}[Y]$$

is a monic polynomial, establishing that $\alpha \in \mathcal{O}'_{\mathfrak{p}}.$

If we denote the distinct roots of $g_{\alpha}(Y)$ by β_1, \ldots, β_m , where recall

 $g_{\alpha}(Y) =$ the reduction of g(Y) modulo $\mathfrak{m}_{\mathfrak{p}}$,

then, Kummer's Theorem implies that in F, above p there are *m* distinct prime divisors $\mathfrak{P}_1, \ldots, \mathfrak{P}_m$ s.t. $y(\mathfrak{P}_i) = \beta_i$.

Per our assumption $\beta_1, \ldots, \beta_m \in \Sigma$ and the proof follows by Claim 16.

Consider again the recursive tower over $\mathbb{F}_9 = \mathbb{F}_3(\delta)$, $\delta^2 = -1$, that is given by

$$f(Y) = Y^2 = \frac{X^2 + 1}{2x} = h(X).$$

It can be verified that

$$\Sigma = \{ \mathbf{a} + \mathbf{b}\delta \mid \mathbf{a}, \mathbf{b} \in \{1, 2\} \}$$

satisfies the condition of Corollary 18. Indeed, take for example $1 + \delta$.

$$(1+\delta)^2 = 2\delta,$$
 $\frac{1}{2+2\delta} = 1+2\delta.$

Hence,

$$h(1+\delta) = \frac{(1+\delta)^2 + 1}{2(1+\delta)} = (2\delta + 1)(1+2\delta) = \delta,$$

and the solutions to $t^2 = \delta$ are $1 + 2\delta$, $2 + \delta$, both are in Σ .

Thus, by Corollary 18, $u(\mathcal{F}) \geq |\Sigma| = 4.$

Overview

- Towers of function fields
- Ihara's constant
- 3 The ramification and splitting loci of a tower
- 4 Recursive towers
- 5 Example
- 6 Splitting locus in recursive towers
- Ramification in recursive towers
 - 8 Example continued

Lemma 19

Let $\mathcal{F}=(\mathsf{F}_0,\mathsf{F}_1,\ldots)$ be a recursive tower over \mathbb{F}_q defined by the equation

$$f(Y)=h(X),$$

with a basic function field F. Assume that every prime divisor of $\mathbb{F}_q(x)$ that ramifies is rational, in particular,

 $\Lambda_0 \triangleq \{x(\mathfrak{p}) \mid \mathfrak{p} \in \mathbb{F}_q(x) \text{ is ramified in } \mathbb{F}_q(x,y)/\mathbb{F}_q(x)\} \subseteq \mathbb{F}_q \cup \{\infty\}.$

Suppose that $\Lambda \subseteq \mathbb{F}_q \cup \{\infty\}$ satisfies:

- $\Lambda_0 \subseteq \Lambda$; and
- Objective optimization a ∈ F_q ∪ {∞} to the equation f(β) = h(α) in fact satisfies α ∈ Λ.

Then, the ramification locus $Ram(\mathcal{F})$ is finite and

 $\operatorname{\mathsf{Ram}}(\mathcal{F})\subseteq \{\mathfrak{p}\in \mathbb{P}(\mathbb{F}_q(x_0))\ |\ x_0(\mathfrak{p})\in \Lambda\}.$

We make a small remark before proving Lemma 19.

Say F/L is an extension of E/K. Take $\mathfrak{P} \in \mathbb{P}(F)$ that lies over $\mathfrak{p} \in \mathbb{P}(E)$. Take $x \in \mathcal{O}_{\mathfrak{p}}$. Then $x \in \mathcal{O}_{\mathfrak{P}}$ and

$$x(\mathfrak{P}) = x(\mathfrak{p}).$$

Indeed,

$$egin{aligned} & x(\mathfrak{p}) = x + \mathfrak{m}_{\mathfrak{p}} \in \mathcal{O}_{\mathfrak{p}} \big/ \mathfrak{m}_{\mathfrak{p}} \hookrightarrow \mathcal{O}_{\mathfrak{P}} \big/ \mathfrak{m}_{\mathfrak{P}}, \ & x(\mathfrak{P}) = x + \mathfrak{m}_{\mathfrak{P}} \in \mathcal{O}_{\mathfrak{P}} \big/ \mathfrak{m}_{\mathfrak{P}}, \end{aligned}$$

where the embedding maps $x + \mathfrak{m}_{\mathfrak{p}} \mapsto x + \mathfrak{m}_{\mathfrak{P}}$.

Ramification in recursive towers

We will need the following lemma which will be covered in the seminar part of the course.

Lemma 20 (Abhyankar's Lemma)

Let F/L be a finite separable extension of E/K. Let $F_1/L_1,\,F_2/L_2$ be extensions of E/K s.t. $F=F_1F_2.$

Let $\mathfrak{P} \in \mathbb{P}(\mathsf{F})$ a prime divisor lying over $\mathfrak{p} \in \mathbb{P}(\mathsf{E})$. Let $\mathfrak{P}_1, \mathfrak{P}_2$ be the prime divisors lying under \mathfrak{P} in $\mathbb{P}(\mathsf{F}_1), \mathbb{P}(\mathsf{F}_2)$, respectively.

If one of $\mathfrak{P}_1/\mathfrak{p}, \, \mathfrak{P}_2/\mathfrak{p}$ is tame then

 $e(\mathfrak{P}/\mathfrak{p}) = \operatorname{\mathsf{lcm}}\left(e(\mathfrak{P}_1/\mathfrak{p}), e(\mathfrak{P}_2/\mathfrak{p})\right).$

Proof. (Proof of Lemma 19)

Take $\mathfrak{p} \in \mathbb{P}(\mathbb{F}_q(x_0))$ which ramifies in \mathcal{F} . We wish to prove $x_0(\mathfrak{p}) \in \Lambda$.

Let $i \ge 0$ and $\mathfrak{P} \in \mathbb{P}(F_i)$ be a prime divisor lying over \mathfrak{p} which ramifies in F_{i+1}/F_i .

Ramification in recursive towers

Proof.

By Abhyankar's Lemma, \mathfrak{p}' ramifies in $\mathbb{F}_q(x_i, x_{i+1})/\mathbb{F}_q(x_i)$. Indeed, otherwise $e(\mathfrak{P}'/\mathfrak{p}') = 1$ and so we can apply the lemma and get

$$e(\mathfrak{q}/\mathfrak{p}') = \operatorname{lcm}(e(\mathfrak{P}/\mathfrak{p}'), e(\mathfrak{P}'/\mathfrak{p}')) = e(\mathfrak{P}/\mathfrak{p}')$$

which contradicts $e(q/\mathfrak{P}) > 1$.

Ramification in recursive towers

Proof.

As \mathfrak{p}' ramifies in $\mathbb{F}_q(x_i, x_{i+1})/\mathbb{F}_q(x_i)$,

$$\beta_i \triangleq x_i(\mathfrak{p}') \in \Lambda_0.$$

By the remark, $\beta_i = x_i(\mathfrak{P})$. Thus, if we denote

$$\beta_j \triangleq x_j(\mathfrak{P}) \qquad j=i,\ldots,0$$

then

$$f(\beta_j) = f(x_j(\mathfrak{P})) = h(x_{j-1}(\mathfrak{P})) = h(\beta_{j-1}),$$

and so, per our assumption on Λ ,

 $\beta_i \in \Lambda_0 \subseteq \Lambda \implies \beta_{i-1} \in \Lambda \implies \cdots \implies \beta_0 \in \Lambda.$

The proof then follows since

$$\beta_0 = x_0(\mathfrak{P}) = x_0(\mathfrak{p}).$$

Overview

- Towers of function fields
- 2 Ihara's constant
- 3 The ramification and splitting loci of a tower
- 4 Recursive towers
- 5 Example
- 6 Splitting locus in recursive towers
- Ramification in recursive towers
- 8 Example continued

Consider again the recursive tower over $\mathbb{F}_9 = \mathbb{F}_3(\delta)$, $\delta^2 = -1$, that is given by

$$f(Y) = Y^2 = \frac{X^2 + 1}{2X} = \frac{(X - \delta)(X + \delta)}{2X} = h(X).$$

As this is a Kummer extension, the only prime divisors that ramify are those that correspond to

$$\Lambda_0 = \{0, \pm \delta, \infty\} \,.$$

We claim that, with the notation of Lemma 19,

$$\Lambda=\Lambda_0\cup\{\pm 1\}.$$

Indeed, consider first $\beta = 0$. The solutions to

$$0 = f(0) = f(\beta) = h(\alpha) = \frac{(\alpha - \delta)(\alpha + \delta)}{2\alpha}$$

are $\pm \delta \in \Lambda$.

$$f(Y) = Y^2 = \frac{X^2 + 1}{2X} = \frac{(X - \delta)(X + \delta)}{2X} = h(X).$$
$$\Lambda_0 = \{0, \pm \delta, \infty\} \qquad \Lambda = \Lambda_0 \cup \{\pm 1\}.$$

For $\beta=\pm\delta,$ the solution to

$$-1 = (\pm \delta)^2 = f(\beta) = h(\alpha) = \frac{\alpha^2 + 1}{2\alpha},$$

namely to

$$\alpha^2 + 2\alpha + 1 = (\alpha + 1)^2$$

 $\text{ is } -1 \in \Lambda.$

э

=

$$f(Y) = Y^2 = \frac{X^2 + 1}{2X} = \frac{(X - \delta)(X + \delta)}{2X} = h(X).$$
$$\Lambda_0 = \{0, \pm \delta, \infty\} \qquad \Lambda = \Lambda_0 \cup \{\pm 1\}.$$

Similarly, for $\beta = \pm 1$, the solution to

$$1 = (\pm 1)^2 = f(\beta) = h(\alpha) = \frac{\alpha^2 + 1}{2\alpha},$$

namely, to

$$\alpha^2 - 2\alpha + 1 = (\alpha - 1)^2$$

 $\text{ is } 1 \in \Lambda.$

3 x 3

$$f(Y) = Y^{2} = \frac{X^{2} + 1}{2X} = \frac{(X - \delta)(X + \delta)}{2X} = h(X).$$

$$\Lambda_{0} = \{0, \pm \delta, \infty\} \qquad \Lambda = \Lambda_{0} \cup \{\pm 1\}.$$

Lastly is $\beta = \infty$ (recall the arithmetic rules involving ∞) the solution to

$$\infty = \infty^2 = f(\infty) = h(\alpha) = \frac{\alpha^2 + 1}{2\alpha},$$

are

$$\alpha = 0, \infty.$$

Both are in Λ .

Recall Corollary 13 which states that in a tame tower \mathcal{F} with $F_0 = \mathbb{F}_q(x)$, with

$$s = |\mathsf{Split}(\mathcal{F})|$$
 $r = \sum_{\mathfrak{p} \in \mathsf{Ram}(\mathcal{F})} \mathsf{deg}\,\mathfrak{p},$

it holds that

$$\lambda(\mathcal{F}) \geq \frac{2s}{r-2}.$$

By Lemma 19,

$$\mathsf{Ram}(\mathcal{F})\subseteq\{\mathsf{0},\infty,\pm\delta,\pm1\}$$

and so $r \leq 6$.

By a previous calculation we did, $s \ge 4$, and so

$$\lambda(\mathcal{F}) \geq rac{2\cdot 4}{6-2} = 2 = \sqrt{9} - 1 = \mathrm{A}(9),$$

and so this is an optimal tower over \mathbb{F}_9 .

In fact, the recursive tower that is given by

$$Y^2 = \frac{X^2 + 1}{2X}$$

is optimal over any field \mathbb{F}_q with q an even power of an odd prime.

The analysis we did for the ramification locus remains as is. Indeed, note that as $q = p^2$, where p is a power of an odd prime,

$$|\mathbb{F}_q^{ imes}|=p^2-1=(p+1)(p-1) \quad \Longrightarrow \quad 4\,|\,|\mathbb{F}_q^{ imes}|,$$

and so there is an element δ of order 4 in \mathbb{F}_q , namely, $\delta^2=-1.$ Therefore $r\leq 6$ and so

$$\lambda(\mathcal{F}) \geq rac{2s}{6-2} = rac{s}{2}.$$

The difficult part is to show that

$$s = |\mathsf{Split}(\mathcal{F})| = 2(p-1).$$

This will establish that $\mathcal F$ is optimal since then

$$\lambda(\mathcal{F}) \geq \frac{s}{2} = p - 1 = \sqrt{q} - 1 = A(q).$$

The key to achieve this is to consider the Deuring polynomial

$$H_{\rho}(X) = \sum_{m=0}^{\frac{p-1}{2}} {\binom{p-1}{2} \choose m}^2 \cdot X^m.$$

E.g.,

$$H_3(X) = 1 + X,$$

$$H_5(X) = 1 + 4X + X^2,$$

$$H_7(X) = 1 + 9X + 9X^2 + X^3$$

$$H_p(X) = \sum_{m=0}^{\frac{p-1}{2}} {\binom{p-1}{2} \choose m}^2 \cdot X^m.$$

As it turns out, the Deuring polynomial satisfies

$$H_p(X^4) = X^{p-1} \cdot H_p\left(\left(\frac{X^2+1}{2X}\right)^2\right).$$

E.g.,

$$X^{2} \cdot H_{3}\left(\left(\frac{X^{2}+1}{2X}\right)^{2}\right) = X^{2} \cdot \left(1 + \left(\frac{X^{2}+1}{2X}\right)^{2}\right)$$
$$= X^{2} + \frac{1}{4} \cdot \left(X^{4} + 2X^{2} + 1\right)$$
$$= 1 + X^{4}$$
$$= H_{3}(X^{4}).$$

$$H_p(X) = \sum_{m=0}^{\frac{p-1}{2}} {\binom{p-1}{2} \choose m}^2 \cdot X^m.$$

As it turns out, the Deuring polynomial satisfies

$$H_p(X^4) = X^{p-1} \cdot H_p\left(\left(\frac{X^2+1}{2X}\right)^2\right).$$

Using the above equation it can be checked that

$$\Lambda_{0} = \{ \alpha \in \overline{\mathbb{F}_{p}} \mid H_{p}(\alpha^{4}) = 0 \} \subseteq \mathbb{F}_{p^{2}},$$

and that Λ_0 satisfies Lemma 19 and, moreover that H_p is separable. Hence,

$$|\Lambda_0| = 4 \cdot \frac{p-1}{2} = 2(p-1).$$

To prove the equation

$$H_p(X^4) = X^{p-1} \cdot H_p\left(\left(\frac{X^2+1}{2X}\right)^2\right)$$

one uses Gauss's hypergeometric differential equation which is outside the scope of this course. See, e.g., the paper "Asymptotically good towers and differential equations" by Beelen and Bouw.