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Kummer’s Theorem

Throughout this unit we consider finite separable extensions F/L of E/K.

The goal in this unit is to find all prime divisors in P(F) lying over a given
p ∈ P(E).

To this end, we will take y ∈ O′p s.t. F = E(y).

Recall that the minimal polynomial

ϕ(T ) =
∑

ciT
i ∈ E[T ]

of such y over E is in fact in Op[T ].

In what follows, we denote by ϕ̄(T ) ∈ Ep[T ] the projection of ϕ(T ) to
Ep[T ] (where, recall, Ep = Op/mp), namely,

ϕ̄(T ) =
∑

(ci + mp)T i =
∑

ci (p)T i =
∑

c̄iT
i .
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Kummer’s Theorem

Theorem 1 (Kummer’s Theorem I)

Let F/L be a finite separable extension of E/K, and let y ∈ F be s.t.
F = E(y). Let p ∈ P(E) be s.t. y ∈ O′p.

Let ϕ(T ) ∈ Op[T ] be the minimal polynomial of y over E. Factor

ϕ̄(T ) =
r∏

i=1

γi (T )εi ∈ Ep[T ]

where γi (T ) ∈ Ep[T ] are irreducible and distinct (and εi ≥ 1).

Let ϕi (T ) ∈ Op[T ] be s.t. ϕ̄i (T ) = γi (T ) and degϕi = deg γi .

Then, ∃P1, . . . ,Pr ∈ P(F) lying over p s.t.

1 ∀i ∈ [r ] ϕi (y) ∈ mPi (equivalently, (ϕi (y))(Pi ) = 0).

2 f (Pi/p) ≥ deg γi (T ).

3 The prime divisors P1, . . . ,Pr are distinct.
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Kummer’s Theorem

In the proof we make use of the following simple claim.

Claim 2

Let R,S ,T rings. In the notation of the diagram below, assuming ρ is
onto and that

ker ρ ⊆ ker π (⇐⇒ ρ(r1) = ρ(r2) =⇒ π(r1) = π(r2)).

Then, there exists a unique homomorphism σ : S → T s.t the diagram
commutes.

Gil Cohen Kummer’s Theorem



Kummer’s Theorem

Proof. (Proof of Theorem 1)

Denote
Ei = Ep[T ]/〈γi (T )〉.

As γi (T ) is irreducible over Ep we have that Ei is a field extension of Ep

of degree [Ei : Ep] = deg γi .

Denote n = [F : E] = [E(y) : E] and consider the ring homomorphisms in
the diagram, where

Op[y ] =
n−1∑
i=0

Opy
i .
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Kummer’s Theorem

Proof.

Observe that
ker ρ = ϕ(T )Op[T ] = 〈ϕ(T )〉.

Moreover,
πi (ϕ(T )) = ϕ̄(T ) mod γi (T ) = 0.

Thus,
ker ρ ⊆ ker πi ,

and so by Claim 2 there exists a unique homomorphism σi for which the
diagram below commutes.
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Kummer’s Theorem

Proof.

σi takes the explicit form

σi

n−1∑
j=0

cjy
j

 =
n−1∑
j=0

c̄jT
j mod γi (T ).

πi is onto and thus so is σi . We claim that

ker σi = mpOp[y ] + ϕi (y)Op[y ].

The inclusion ⊇ is trivial. We turn to show the other direction.
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Kummer’s Theorem

Proof.

Take
∑n−1

j=0 cjy
j ∈ ker σi . Then, (recall γi (T ) = ϕ̄i (T ))

n−1∑
j=0

c̄jT
j = ϕ̄i (T )ψ̄(T )

for some ψ(T ) ∈ Op[T ]. Thus,

n−1∑
j=0

cjT
j − ϕi (T )ψ(T ) ∈ mp · Op[T ].
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Kummer’s Theorem

Proof.

Recall
n−1∑
j=0

cjT
j − ϕi (T )ψ(T ) ∈ mp · Op[T ],

and so
n−1∑
j=0

cjy
j − ϕi (y)ψ(y) ∈ mp · Op[y ].

Hence,
n−1∑
j=0

cjy
j ∈ ϕi (y) · Op[y ] + mp · Op[y ],

as desired. Namely,

ker σi = mpOp[y ] + ϕi (y)Op[y ].
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Kummer’s Theorem

For the proof of Theorem 1, we recall the following lemma.

Lemma 3

Let F/K be a function field and let R be a subring of F with K ⊆ R ⊆ F.
Suppose that {0} 6= I ( R is a proper ideal of R. Then,

∃p ∈ P(F) s.t. I ⊆ mp and R ⊆ Op.

Proof. (Proof of Theorem 1 continued)

Going back to the proof, by Lemma 3,

∃Pi ∈ P(F) s.t. ker σi ⊆ mPi and Op[y ] ⊆ OPi .

Hence, Pi lies over p and ϕi (y) ∈ mPi .

This establishes Item 1.
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Kummer’s Theorem

Proof.

∃Pi ∈ P(F) s.t. ker σi ⊆ mPi and Op[y ] ⊆ OPi .

To prove Item 2, namely, f (Pi/p) ≥ deg γi (T ), observe that

Ei
∼= Op[y ]

/
ker σi ↪→ OPi

/
mPi

= FPi

and so
f (Pi/p) = [FPi : Ep] ≥ [Ei : Ep] = deg γi (T ).
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Kummer’s Theorem

Proof.

To conclude the proof, we show that the Pi -s are distinct.

For i 6= j , γi (T ) = ϕ̄i (T ) and γj(T ) = ϕ̄j(T ) are relatively prime in
Ep[T ]. Thus, ∃λi (T ), λj(T ) ∈ Op[T ] s.t.

1 = ϕ̄i (T )λ̄i (T ) + ϕ̄j(T )λ̄j(T ).

Thus,
ϕi (y)λi (y) + ϕj(y)λj(y)− 1 ∈ mp · Op[y ].

Recall that
ker σi = mpOp[y ] + ϕi (y)Op[y ],

and so
1 ∈ ker σi + ker σj ⊆ mPi + mPj ,

which implies that Pi 6= Pj .
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F/L a finite separable extension of E/K, F = E(y), and p s.t. y ∈ O′p.

ϕ(T ) ∈ Op[T ] is the minimal polynomial of y over E. Factor

ϕ̄(T ) =
r∏

i=1

γi (T )εi ∈ Ep[T ]

where γi (T ) ∈ Ep[T ] are irreducible and distinct (and εi ≥ 1).

Let ϕi (T ) ∈ Op[T ] be s.t. ϕ̄i (T ) = γi (T ) and degϕi = deg γi .

Theorem 4 (Kummer’s Theorem II)

Under the hypothesis of Theorem 1, if in addition ε1 = · · · = εr = 1
then,

1 The prime divisors P1, . . . ,Pr are all the prime divisors in F lying
over p;

2 ∀i ∈ [r ] e(Pi/p) = 1; and

3 ∀i ∈ [r ] f (Pi/p) = deg γi (T ).
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Proof.

By the additional hypothesis,

ϕ̄(T ) =
r∏

i=1

γi (T ).

Thus,

[F : E] = degϕ =
r∑

i=1

degϕi .

By Item 2 of Theorem 1, f (Pi/p) ≥ degϕi and so

[F : E] ≤
r∑

i=1

f (Pi/p) ≤
∑
P/p

e(P/p)f (P/p) = [F : E],

where we used the fundamental equality. The proof then follows.
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Kummer’s Theorem III

F/L a finite separable extension of E/K, F = E(y), and p s.t. y ∈ O′p.

ϕ(T ) ∈ Op[T ] is the minimal polynomial of y over E. Factor

ϕ̄(T ) =
r∏

i=1

γi (T )εi ∈ Ep[T ]

where γi (T ) ∈ Ep[T ] are irreducible and distinct (and εi ≥ 1).

Let ϕi (T ) ∈ Op[T ] be s.t. ϕ̄i (T ) = γi (T ) and degϕi = deg γi .

Theorem 5 (Kummer’s Theorem III)

Under the hypothesis of Theorem 1, if in addition 1, y , y2, . . . , yn−1 is a
local integral basis for p, where n = [F : E], then

1 The prime divisors P1, . . . ,Pr are all prime divisors in F lying over p;

2 ∀i ∈ [r ] e(Pi/p) = εi ; and

3 ∀i ∈ [r ] f (Pi/p) = deg γi (T ).
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Proof.

We start with Item (1). We have that

ϕ̄(T ) =
r∏

i=1

ϕ̄i (T )εi in Ep[T ] =
(
Op

/
mp

)
[T ].

Therefore,

ϕ̄(y) =
r∏

i=1

ϕ̄i (y)εi in Ep[y ] =
(
Op

/
mp

)
[y ],

and so

0 = ϕ(y) =
r∏

i=1

ϕi (y)εi mod mpOp[y ].
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Proof.

So far

0 =
r∏

i=1

ϕi (y)εi mod mpOp[y ].

Fix P/p. Since y ∈ O′p ⊆ OP, we have that

mpOp[y ] ⊆ mpOP ⊆ mP,

and so
r∏

i=1

ϕi (y)εi ∈ mP.

mP is a prime (in fact, maximal) ideal of OP and so ∃i ∈ [r ] s.t.
ϕi (y) ∈ mP. Thus,

ϕi (y)Op[y ] ⊆ mP ∩ Op[y ].
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Kummer’s Theorem III

Proof.

ϕi (y)Op[y ] ⊆ mP ∩ Op[y ].

As y ∈ O′p ⊆ OP one also has that

mpOp[y ] ⊆ mpO′p ⊆ mpOP ⊆ mP,

and so
mpOp[y ] ⊆ mP ∩ Op[y ].

To summarize,

mpOp[y ] + ϕi (y)Op[y ] ⊆ mP ∩ Op[y ].
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Proof.

mpOp[y ] + ϕi (y)Op[y ] ⊆ mP ∩ Op[y ].

In the proof of Theorem 1 we showed that the LHS is ker σi where the
image of σi is the field Ei . Thus, the LHS is a maximal ideal of Op[y ].

The RHS is clearly a non-trivial ideal of Op[y ] and so we have

mpOp[y ] + ϕi (y)Op[y ] = mP ∩ Op[y ]. (1)
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Proof.

mpOp[y ] + ϕi (y)Op[y ] = mP ∩ Op[y ].

However, as ϕi (y) ∈ mPi (Theorem 1, Item (1)) we also have, by the
same reasoning, that

mpOp[y ] + ϕi (y)Op[y ] = mPi ∩ Op[y ].

Thus,
mP ∩ Op[y ] = mPi ∩ Op[y ].

Now, per our hypothesis Op[y ] = O′p, we have that

mP ∩ O′p = mPi ∩ O′p.

As we now explain, unless P = Pi this contradicts the WAT. This will
establish Item 1.
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Kummer’s Theorem III

Proof.

For P 6= Pi , mP ∩ O′p = mPi ∩ O′p contradicts the WAT.

To see this, for simplicity, say p has three prime divisors lying above it
P1,P2,P3. Then,

mP1 ∩ O′p = mP1 ∩ (OP1 ∩ OP2 ∩ OP3)

= (mP1 ∩ OP1) ∩ (OP2 ∩ OP3)

= mP1 ∩ (OP2 ∩ OP3) .

Similarly,
mP2 ∩ O′p = mP2 ∩ (OP1 ∩ OP3) ,

and so
mP1 ∩ (OP2 ∩ OP3) = mP2 ∩ (OP1 ∩ OP3) .
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Proof.

mP1 ∩ (OP2 ∩ OP3) = mP2 ∩ (OP1 ∩ OP3) .

In particular, we have that

mP1 ∩ (OP2 ∩ OP3) ⊆ mP2 .

Thus,

υP1(x) > 0 & υP2(x) ≥ 0 & υP3(x) ≥ 0 =⇒ υP2(x) > 0.

This contradicts the WAT that guarantees the existence of an element x
with

υP1(x) > 0 & υP2(x) = 0 & υP3(x) = 0.

This proves Item 1.
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Kummer’s Theorem III

Proof.

We turn to prove Items 2,3, namely,

∀i ∈ [r ] e(Pi/p) = εi and f (Pi/p) = deg γi (T ).

Item 1, and our hypothesis imply

Op[y ] = O′p =
r⋂

i=1

OPi .

Using the WAT we can find elements t1, . . . , tr ∈ F s.t.

υPi (tj) = δi,j .

Let t ∈ E be s.t. υp(t) = 1.

In the proof of Item 1 (Equation (1)) we proved that

mpOp[y ] + ϕi (y)Op[y ] = mPi ∩ Op[y ].
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Kummer’s Theorem III

Proof.

mpOp[y ] + ϕi (y)Op[y ] = mPi ∩ Op[y ].

and so, as mp = tOp,

ti ∈ mPi ∩ Op[y ] = tOp[y ] + ϕi (y)Op[y ].

Thus, we can write

ti = ϕi (y)ai (y) + tbi (y) ai (y), bi (y) ∈ Op[y ].

Thus,
r∏

i=1

tεii = a(y)
r∏

i=1

ϕi (y)εi + t · b(y)

for some a(y), b(y) ∈ Op[y ]. E.g.,

t1t2 = (ϕ1a1 + tb1)(ϕ2a2 + tb2)

= a1a2 · ϕ1ϕ2 + t · (ϕ1a1b2 + b1ϕ2a2 + tb1b2).
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Proof.

So far
r∏

i=1

tεii = a(y)
r∏

i=1

ϕi (y)εi + t · b(y)

for some a(y), b(y) ∈ Op[y ]. Now, as tOp = mp,

r∏
i=1

ϕi (y)εi = ϕ(y) mod t · Op[y ].

Moreover ϕ(y) = 0, and so

r∏
i=1

tεii = t · c(y)

for some c(y) ∈ Op[y ].
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Kummer’s Theorem III

Proof.

So far,
r∏

i=1

tεii = t · c(y) c(y) ∈ Op[y ].

Thus,

εi = υPi

(
r∏

i=1

tεii

)
= υPi (t) + υPi (c(y)) ≥ υPi (t),

where the last inequality follows as c(y) ∈ Op[y ] = O′p = ∩iOPi .

But
υPi (t) = e(Pi/p) · υp(t) = e(Pi/p),

and so we conclude that
εi ≥ e(Pi/p).
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Proof.

Taking a detour, recall that in the proof of Theorem 1, to prove Item 2
we noted that

Ep[T ]
/
〈γi (T )〉 , Ei

∼= Op[y ]
/

ker σi ↪→ OPi

/
mPi

= FPi ,

and so
f (Pi/p) = [FPi : Ep] ≥ [Ei : Ep] = deg γi (T ).
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Proof.

Returning to our proof, to recap, we showed that

ker σi = mpOp[y ] + ϕi (y)Op[y ] = mPi ∩ Op[y ],

and we claim that this implies

f (Pi/p) = deg γi (T )

establishing Item 3.
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Proof.

We have that ker σi = mPi ∩ Op[y ], and we wish to prove

f (Pi/p) = deg γi (T ).

Recall the second isomorphism theorem for commutative rings which
states that

(S + J)
/
J ∼= S

/
(S ∩ J)

for S a subring of R and J an ideal of R.

In our case (R = OPi ),

(Op[y ] + mPi )
/
mPi
∼= Op[y ]

/
(mPi ∩ Op[y ])

= Op[y ]
/

ker σi

= Ei

= Ep[T ]
/
〈γi (T )〉.
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Proof.

We wish to prove
f (Pi/p) = deg γi (T ).

So far we proved that

(Op[y ] + mPi )
/
mPi
∼= Ep[T ]

/
〈γi (T )〉.

The proof will follow by showing that

Op[y ] + mPi = OPi .

Indeed, recall that OPi

/
mPi

= FPi and that

f (Pi/p) = [FPi : Ep],

deg γi (T ) = [Ep[T ]/〈γi (T )〉 : Ep].
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Proof.

We turn to prove that

Op[y ] + mPi = OPi .

The ⊆ direction is trivial, so take z ∈ OPi . Per our assumption,

Op[y ] = O′p =
r⋂

j=1

OPj .

By the WAT, we can find y ∈ F s.t.

υPi (y − z) > 0,

υPj (y) ≥ 0 ∀j 6= i .

Thus, z = (z − y) + y with z − y ∈ mPi and y ∈ O′p.

This establishes Item 3.
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Proof.

Going back to Item 2, using the fundamental equality and what we
proved, namely,

e(Pi/p) ≤ εi & f (Pi/p) = deg γi (T )

we get that

[F : E] =
r∑

i=1

e(Pi/p)f (Pi/p) ≤
r∑

i=1

εi deg γi (T )

= deg γ(T ) = [F : E].

Thus, εi = e(Pi/p) for all i ∈ [r ], completing the proof.
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