Gil Cohen

October 17, 2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

1 The Fiedler value

- 2 Isoperimetry and λ_2
- 3 Cheeger's inequality proof of the easy direction
- 4 Cheeger's inequality proof idea of the difficult direction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

└─ The Fiedler value

The Fiedler value

The Laplacian of a graph is PSD. Indeed, recall

$$\mathbf{x}^T \mathbf{L} \mathbf{x} = \sum_{uv \in E} (\mathbf{x}(u) - \mathbf{x}(v))^2.$$
(1)

If λ is an eigenvalue of L with (normalized) eigenvector ψ then

$$\mathbf{0} \leq \boldsymbol{\psi}^{\mathsf{T}} \mathbf{L} \boldsymbol{\psi} = \lambda$$

We sort the eigenvalues of the Laplacian from smallest to largest

$$0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$

Note that $\lambda_1 = 0$ by Equation 1. Alternatively,

$$\mathsf{L}\mathbf{1} = (\mathsf{D} - \mathsf{M})\mathbf{1} = \mathbf{0}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

└─ The Fiedler value

The Fiedler value

Lemma

G is connected $\iff \lambda_2 > 0$.

Proof

If G is not connected we can write

$$\mathbf{L} = egin{pmatrix} \mathbf{L}_1 & 0 \ 0 & \mathbf{L}_2 \end{pmatrix}.$$

Hence $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ are two orthogonal eigenvectors of eigenvalue 0.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

└─ The Fiedler value

The Fiedler value

Proof.

Assume now that $\lambda_2 = 0$. We wish to show that G is not connected.

Let ψ be an eigenvector corresponding to λ_2 . We have

$$0 = \lambda_2 = \psi^T \mathbf{L} \psi = \sum_{uv \in E} (\psi(u) - \psi(v))^2.$$

From this it follows that ψ is constant on every connected component. But ψ is not constant (as $\psi^T \mathbf{1} = 0, \ \psi \neq \mathbf{0}$) and so G cannot be connected.

 \Box Isoperimetry and λ_2

Overview

1 The Fiedler value

2 Isoperimetry and λ_2

3 Cheeger's inequality - proof of the easy direction

4 Cheeger's inequality - proof idea of the difficult direction

 \Box Isoperimetry and λ_2

Isoperimetry and λ_2

Definition

Let G = (V, E) be an undirected graph. For $S \subseteq V$ we define the boundary of S by

$$\partial(S) = \{uv \in E \mid u \in S, v \notin S\}.$$

The isoperimetric ratio of $S \neq \emptyset$ is defined by

$$\theta(S) = \frac{|\partial(S)|}{|S|}$$

The isoperimetric ratio of G is given by

$$\theta_{G} = \min_{\emptyset \neq S \subset V} \max(\theta(S), \theta(V \setminus S)) = \min_{0 < |S| \le \frac{n}{2}} \theta(S).$$

 \square Isoperimetry and λ_2

Cheeger's inequality

Clearly, for a *d*-regular graph *G*, $\theta_G \leq d$. (in fact, $\theta_G \leq \frac{d}{2} + o(1)$). We say that *G* is α -edge expander if $\theta_G \geq \alpha d$

Theorem (Cheeger's inequality)

For every d-regular graph G,

$$\frac{\lambda_2}{2} \le \theta_{\mathsf{G}} \le \sqrt{2\lambda_2 \mathsf{d}}.$$

Hence, a *d*-regular graph is $\alpha = \frac{\lambda_2}{2d}$ edge expander.

Namely, a large $\lambda_2 \implies$ good edge expansion.

Cheeger's inequality - proof of the easy direction

Overview

1 The Fiedler value

2 Isoperimetry and λ_2

3 Cheeger's inequality - proof of the easy direction

4 Cheeger's inequality - proof idea of the difficult direction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Cheeger's inequality - proof of the easy direction

Cheeger's inequality - easy direction

Proof

To prove the easy direction we show that for every $S \subseteq V$ with $s = \frac{|S|}{n}$ (n = |V|), $\theta(S) \ge \lambda_2(1 - s)$.

By Courant-Fischer,

$$\lambda_2 = \min_{\mathbf{x} \perp \mathbf{1}} \frac{\mathbf{x}^T \mathbf{L} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}.$$

Take $\mathbf{x} = \mathbf{1}_{S} - s\mathbf{1}$. Then,

$$\mathbf{x}^{\mathsf{T}}\mathbf{L}\mathbf{x} = (\mathbf{1}_{\mathcal{S}} - s\mathbf{1})^{\mathsf{T}}\mathbf{L}(\mathbf{1}_{\mathcal{S}} - s\mathbf{1}) = \mathbf{1}_{\mathcal{S}}^{\mathsf{T}}\mathbf{L}\mathbf{1}_{\mathcal{S}}.$$

But

$$\mathbf{1}_{S}^{T}\mathsf{L}\mathbf{1}_{S} = \sum_{uv \in E} (\mathbf{1}_{S}(u) - \mathbf{1}_{S}(v))^{2} = \partial(S).$$

Cheeger's inequality - proof of the easy direction

Cheeger's inequality - easy direction

Proof

Now,

$$\mathbf{x}^{T}\mathbf{x} = (\mathbf{1}_{S} - s\mathbf{1})^{T}(\mathbf{1}_{S} - s\mathbf{1})$$

= $\mathbf{1}_{S}^{T}\mathbf{1}_{S} - 2s\mathbf{1}_{S}^{T}\mathbf{1} + s^{2}\mathbf{1}^{T}\mathbf{1}$
= $sn - 2s^{2}n + s^{2}n$
= $sn - s^{2}n$
= $|S|(1 - s)$.

Combining the above,

$$\lambda_2 \leq rac{\partial(S)}{|S|(1-s)} \quad \Longrightarrow \quad heta(S) = rac{|\partial(S)|}{|S|} \geq \lambda_2(1-s).$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 めんの

Cheeger's inequality - proof idea of the difficult direction

Overview

1 The Fiedler value

2 Isoperimetry and λ_2

3 Cheeger's inequality - proof of the easy direction

4 Cheeger's inequality - proof idea of the difficult direction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Cheeger's inequality - proof idea of the difficult direction

Cheeger's inequality - difficult direction idea

To prove the more difficult direction one uses an eigenvector of the second eigenvalue to embed the graph in the real line.

Figure: 20-vertex path graph embedded into \mathbb{R} .

Figure: 20-vertex cycle graph embedded into \mathbb{R} .

Cheeger's inequality - proof idea of the difficult direction

Graph drawing using a second eigenvector

Figure: Depth-4 complete binary tree embedded into \mathbb{R} .

Figure: Third-dumbbell embedded into \mathbb{R} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Cheeger's inequality - proof idea of the difficult direction

Cheeger's inequality - difficult direction idea

To prove the more difficult direction one uses an eigenvector of the second eigenvalue to embed the graph in the real line. Indeed,

$$\lambda_2 = \min_{\substack{\mathbf{x} \perp \mathbf{1} \\ \|\mathbf{x}\| = 1}} \mathbf{x}^T \mathbf{L} \mathbf{x} = \min_{\substack{\mathbf{x} \perp \mathbf{1} \\ \|\mathbf{x}\| = 1}} \sum_{uv \in E} (\mathbf{x}(u) - \mathbf{x}(v))^2,$$

and so such an eigenvector will tend to embed the vertices in a "cluster" close to each other.

Then one defines a distribution on the reals according to the embedding, and use it to cut the vertex set to two sets.

Summary

1 The Fiedler value

2 Isoperimetry and λ_2

3 Cheeger's inequality - proof of the easy direction

4 Cheeger's inequality - proof idea of the difficult direction

5 Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Summary

- The larger λ_2 the better is the edge expansion.
- For a *d*-regular graph, λ₂ = *d* − μ₂. So, equivalently, the smaller μ₂ (=*d*ω₂) is the better is the expansion.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

■ How small can µ₂ be?