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The Fiedler value

The Laplacian of a graph is PSD. Indeed, recall

xTlx = > (x(u) — x(v))~. (1)

uveE

If X is an eigenvalue of L with (normalized) eigenvector 1) then
0<e L=\
We sort the eigenvalues of the Laplacian from smallest to largest
0= << <A,
Note that A\; = 0 by Equation 1. Alternatively,

L1=(D— M)1=0.
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Lemma

G is connected <= X, > 0.

If G is not connected we can write

/L0
"‘(0 L2>'
1

Hence (0) and ((1)) are two orthogonal eigenvectors of eigenvalue 0.
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Assume now that A = 0. We wish to show that G is not
connected.

Let ?» be an eigenvector corresponding to A»>. We have

O=Xo=v"Lyp= > (¢(u)—p(v))>

uveE

From this it follows that %) is constant on every connected
component. But 4 is not constant (as 171 =0, 1 # 0) and so G
cannot be connected. [
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Isoperimetry and A

Let G = (V, E) be an undirected graph. For S C V we define the
boundary of S by

(S)={uveE|ueS,v¢S}
The isoperimetric ratio of S # () is defined by

_1o(S)]
oS) = g1

The isoperimetric ratio of G is given by

0c = @glgv max(6(S),0(V \ S)) = 0<T9IInS§ 9(S).
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Cheeger's inequality

Clearly, for a d-regular graph G, g < d. (in fact, 0 < 4 + o(1)).
We say that G is a-edge expander if g > ad

Theorem (Cheeger's inequality)

For every d-regular graph G,

& <0c;< \/2)\2

Hence, a d-regular graph is a = é\—f/ edge expander.

Namely, a large A\» = good edge expansion.
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Cheeger's inequality - easy direction

To prgve the easy direction we show that for every S C V with
s="5(n=1VI),
0(S) > Xa2(1 —s).

By Courant-Fischer,

o xTLx
A> = min =
x11 X'X

Take x = 15 — s1. Then,

x"Lx = (15 —s1)"L(1s — s1) = 1] L1s.
But

115 = > (1s(u) — 1s(v))* = 9(S).

uveE
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Cheeger's inequality - easy direction

Now,

x"x=(1s —s1)" (15 — s1)
=1l15 - 25111+ 5171

— sn—2s°n+ s%n

=sn—s°n
— |S|(1—s).
Combining the above,
9(S) 19(5)
< — = > 1-—
2= 50 -5) YO = g 2R
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Cheeger's inequality - difficult direction idea

To prove the more difficult direction one uses an eigenvector of the
second eigenvalue to embed the graph in the real line.

ISt

Figure: 20-vertex cycle graph embedded into R.
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Graph drawing using a second eigenvector
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Figure: Depth-4 complete binary tree embedded into R.
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Figure: Third-dumbbell embedded into R.
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Cheeger's inequality - difficult direction idea

To prove the more difficult direction one uses an eigenvector of the
second eigenvalue to embed the graph in the real line.
Indeed,

Ao = min x'Lx = mi _ 2
2= min x"Lx=min »  (x(u) = x(v))*,
Ix=1 Ix]=1 uveE

and so such an eigenvector will tend to embed the vertices in a

“cluster” close to each other.

Then one defines a distribution on the reals according to the
embedding, and use it to cut the vertex set to two sets.
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m The larger A, the better is the edge expansion.

m For a d-regular graph, Ao = d — u». So, equivalently, the
smaller pp (=dw,) is the better is the expansion.

m How small can pp be?
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