Spectral Graph Theory

Winter 2020

Problem Set 1

Publish Date: October 27, 2020
Due Date: November 10, 2020

Exercise 1.1 Let $G=\{[n], E\}$ be a graph and let $\sigma \in S_{n}$ be a permutation. Define $\sigma(G)=\{[n], \sigma(E)\}$ where $(\sigma(i), \sigma(j)) \in \sigma(E) \Longleftrightarrow(i, j) \in E$. Prove or disprove the following statements:
(a) $\operatorname{Spec}\left(L_{G}\right)=\operatorname{Spec}\left(L_{\sigma(G)}\right)$.
(b) v is an eigenvector of L_{G} iff v is an eigenvector of $L_{\sigma(G)}$.

Exercise 1.2 Let G_{1}, G_{2} be two graphs on n and m vertices respectively. Prove that $L_{G_{1} \times G_{2}}=L_{G_{1}} \otimes$ $I_{m}+I_{n} \otimes L_{G_{2}}$ where \otimes is the Kronecker product of the matrices and \times is the graph product defined in class. Denote by $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\},\left\{\mu, \ldots, \mu_{m}\right\}$ the eigenvalues of $L_{G_{1}}, L_{G_{2}}$ respectively. Prove that the set $\left\{\lambda_{i}+\mu_{j} \mid i \in[n], j \in[m]\right\}$ is the set of eigenvalues of $L_{G_{1} \times G_{2}}$.

Exercise 1.3 Let G be a graph containing two disjoint cliques on n vertices with a single perfect matching between them. Compute the eigenvalues of L_{G} and provide an orthogonal basis of eigenvectors. For example:

Exercise 1.4 Let $G=([n], E)$ be a d-regular graph. Prove that the second smallest eigenvalue of L_{G}, satisfies $\lambda_{2} \leq \frac{n}{n-1} d$. Prove that this bound is tight, that is, for every n there is a d-regular $G=([n], E)$ such that $\lambda_{2}=\frac{n}{n-1} \stackrel{n}{d}$.

Exercise 1.5 Let $\left\{v_{1}, \ldots, v_{r}\right\} \subset \mathbb{R}^{n}$ be vectors such that $\left\|v_{i}\right\|_{2}=1$ for every $i \in[r]$.
(a) Prove that if $<v_{i}, v_{j}>=0$ for every $i \neq j$ then $\operatorname{dim}\left(\left\{v_{1}, \ldots, v_{r}\right\}\right)=r$.
(b) Let A be a symetric matrics with eigenvalues $\lambda_{1}, \ldots, \lambda_{t}$ prove that $\operatorname{Tr}\left(A^{2}\right)=\sum_{i=0}^{t} \lambda_{i}^{2}$.
(c) Prove that if $\left|<v_{i}, v_{j}>\right| \leq \epsilon$ for every $i \neq j$ then $\operatorname{dim}\left(\left\{v_{1}, \ldots, v_{r}\right\}\right) \geq \frac{r}{1+(r-1) \epsilon^{2}}$. Hint: use item (b) (on a suitable matrix) and Cauchy-Schwartz inequality.

Exercise 1.6 Recall that we proved in class that $P^{t} L_{R_{2 n}} P=2 L_{P_{n}}$. Where,

$$
P=\left[\begin{array}{ccc}
1 & & \\
& \ddots & \\
& & 1 \\
& . & 1 \\
1 & &
\end{array}\right] \in M(\mathbb{R})_{2 n \times n}
$$

and that if $v=P u$ is a eigenvector of $L_{R_{2 n}}$ satisfying $L_{R_{2 n}} v=\lambda v$ then $L_{P_{n}} u=\lambda u$.
(a) Prove that for every $\lambda \in \operatorname{Spec}\left(L_{R_{2 n}}\right)$ of multiplicity 2 there is a corresponding eigenvector $v_{\lambda} \in \operatorname{Im}(P)$.
(b) Compute $\operatorname{Spec}\left(L_{P_{n}}\right)$ and provide a basis of eigenvectors.

