Weil Differentials Unit 14

Gil Cohen

March 27, 2022

Overview

- Weil differentials
- 2 Weil Differentials and "ordinary" differentials
- Back to Weil Differentials
- Canonical divisors

When discussing adeles, we proved that for every $\mathfrak{a} \in \mathcal{D}$,

$$\dim_{\mathsf{K}} \mathbb{A} / (\Lambda(\mathfrak{a}) + \mathsf{F}) = g - 1 - (\deg \mathfrak{a} - \dim \mathfrak{a}).$$

To better understand the K-vector space

$$V = \mathbb{A} / (\Lambda(\mathfrak{a}) + \mathsf{F})$$

we will consider its functionals

$$\mathsf{Hom}_{\mathsf{K}}(V,\mathsf{K}) = \{\alpha : V \to \mathsf{K} \mid \alpha \text{ is K-linear}\}.$$

Equivalently, we will study K-linear maps from $\mathbb A$ to K that vanish on $\Lambda(\mathfrak a)+F.$

Definition 1 (Weil differential)

Let F/K be a function field. A Weil differential is an element

$$\omega \in \mathsf{Hom}_\mathsf{K}(\mathbb{A},\mathsf{K})$$

that vanishes on $\Lambda(\mathfrak{a}) + F$ for some $\mathfrak{a} \in \mathcal{D}_{F/K}$.

The set of all Weil differentials of F/K is denoted by $\Omega = \Omega_{F/K}$.

The definition seems to have little to do with the more familiar notion of a differential. Namely, an operator d that "differentiate" functions having properties such as

$$d(f+g) = df + dg$$

$$d(fg) = f(dg) + g(df).$$

In the seminar part of the course you will get the chance to learn more about this connection. Still, we will explore this relation a bit now.

Overview

- Weil differentials
- 2 Weil Differentials and "ordinary" differentials
- Back to Weil Differentials
- 4 Canonical divisors

Definition 2

Let F/K be a function field. A map

$$\delta: \mathsf{F} \to \mathsf{F}$$

is a derivation of F/K if it is K-linear and it satisfies the product rule

$$\delta(uv) = u \cdot \delta(v) + v \cdot \delta(u)$$

for all $u, v \in F$.

Definition 3

An element $x \in F$ is called a separating element of F/K provided that F/K(x) is algebraic and separable.

Lemma 4

Let x be a separating element of F/K. Then, there exists a unique derivation

$$\delta_x : \mathsf{F} \to \mathsf{F}$$

of F/K s.t.

$$\delta_{\mathsf{x}}(\mathsf{x})=1.$$

 δ_x is called the derivation with respect to x.

Definition 5

Let

$$Der_F = \{ \eta : F \to F \mid \eta \text{ is a derivation of } F/K \}.$$

Note that Der_F is an F-vector space:

$$(\eta_1 + \eta_2)(z) = \eta_1(z) + \eta_2(z)$$
$$(u\eta)(z) = u \cdot \eta(z).$$

 Der_F is called the the vector space of derivations of F/K.

Lemma 6

Let x be a separating element of F/K. Then, for each $\eta \in \mathsf{Der}_\mathsf{F}$ we have that

$$\eta = \eta(x) \cdot \delta_x.$$

In particular,

$$dim_F Der_F = 1$$
.

Definition 7

On the set

$$Z = \{(u, x) \in F \times F \mid x \text{ is a separating element}\}$$

define the relation

$$(u,x) \sim (v,y) \iff v = u \cdot \delta_y(x).$$

 \sim is an equivalence relation. We write

u dx

for the class containing (u, x) and call it a differential.

Definition 8

Let

$$\Delta_{\mathsf{F}} = \{ u \, dx \mid x \text{ is a separating element} \}$$

be the set of all differentials of F/K.

It turns out we can add up differentials u dx, v dy as follows: choose a separating element z, and use the chain rule to write

$$u dx = (u \cdot \delta_z(x)) dz,$$

$$v dy = (v \cdot \delta_z(y)) dz,$$

and define

$$u dx + v dy = (u \cdot \delta_z(x) + v \cdot \delta_z(y)) dz.$$

Likewise,

$$w \cdot (u dx) = (wu) dx \in \Delta_{\mathsf{F}},$$

and so Δ_F is an F-vector space.

Definition 9

Define the map

$$d: \mathsf{F} o \Delta_{\mathsf{F}}$$
 $t \mapsto dt$

with the understanding that dt = 0 for t non-separating.

Lemma 10

Let $z \in F$ be a separating element. Then, $dz \neq 0$, and every differential $\omega \in \Delta_F$ can be written in the form

$$\omega = u \, dz$$

for some $u \in F$. In particular,

$$\dim_{\mathsf{F}} \Delta_{\mathsf{F}} = 1$$
.

Moreover, d is a derivation (though to Δ_F rather than to F).

Since

$$\dim_{\mathsf{F}} \Delta_{\mathsf{F}} = 1$$

we can define the quotient of differentials ω_1 and $\omega_2 \neq 0$ by

$$\frac{\omega_1}{\omega_2}=u\in\mathsf{F},$$

where u is the unique element in F s.t. $\omega_1 = u\omega_2$. In particular,

$$\delta_z(y) = \frac{dy}{dz}.$$

The chain rule, for example, takes the form

$$\frac{dy}{dz} = \frac{dy}{dx} \cdot \frac{dx}{dz}.$$

Overview

- Weil differentials
- 2 Weil Differentials and "ordinary" differentials
- Back to Weil Differentials
- 4 Canonical divisors

Technicality

Let F/K be a function field. Let V be an F-vector space and W a K-vector space.

We know that $Hom_K(V, W)$ is a K-vector space. Indeed, if

$$\varphi_1, \varphi_2: V \to W$$

are K-linear then so is their sum $\varphi_1 + \varphi_2$ and $a\varphi_1$ for every $a \in K$.

That holds true even if V is a K-vector space.

As V is an F-vector space, $\operatorname{Hom}_{\mathsf{K}}(V,W)$ is also an F-vector space. Indeed, for $a\in\mathsf{F}$ and $\varphi\in\operatorname{Hom}_{\mathsf{K}}(V,W)$,

$$(a\varphi)(v)=\varphi(av).$$

One can show $a\varphi \in \operatorname{Hom}_{\mathsf{K}}(V,W)$. E.g., for $b \in \mathsf{K}$ and $v \in V$,

$$(a\varphi)(bv) = \varphi(abv) = b \cdot \varphi(av) = b \cdot (a\varphi)(v).$$

Technicality

Moreover, if $a \in K$ then

$$(a\varphi)(v) = \varphi(av) = a \cdot \varphi(v)$$

and so the multiplication by an element of F extends the multiplication of an element by K. In particular,

Definition 11

Let F/K be a function field and $\mathfrak{a}\in\mathcal{D}_{F/K}.$ We define

$$\Omega(\mathfrak{a}) = \{ \omega \in \Omega_{\mathsf{F}/\mathsf{K}} \mid \omega(\Lambda(\mathfrak{a}) + \mathsf{F}) = 0 \}.$$

Claim 12

 $\forall \mathfrak{a}, \mathfrak{b} \in \mathcal{D} \text{ and } x \in \mathsf{F}^{\times},$

Left as an exercise.

Claim 13

 $\forall \mathfrak{a} \in \mathcal{D}$, $\Omega(\mathfrak{a})$ is a subspace of $\mathsf{Hom}_\mathsf{K}(\mathbb{A},\mathsf{K})$ as a K-vector space.

Proof.

 $\Omega(\mathfrak{a})$ clearly closed under addition. Moreover, for $x \in \mathsf{K}^{ imes}$,

$$x\Lambda(\mathfrak{a}) = \Lambda(\mathfrak{a} - (x)) = \Lambda(\mathfrak{a}),$$

and so

$$\omega \in \Omega(\mathfrak{a}) \implies (x\omega)(\Lambda(\mathfrak{a}) + \mathsf{F}) = \omega(x(\Lambda(\mathfrak{a}) + \mathsf{F}))$$
$$= \omega(\Lambda(\mathfrak{a}) + \mathsf{F})$$
$$= 0.$$

We let

$$\delta(\mathfrak{a}) = \dim_{\mathsf{K}} \Omega(\mathfrak{a}).$$

Note that

$$\delta(\mathfrak{a}) = \dim_{\mathsf{K}} \mathbb{A} / (\Lambda(\mathfrak{a}) + \mathsf{F})$$

= $g - 1 - (\deg \mathfrak{a} - \dim \mathfrak{a}).$

Claim 14

$$\Omega = \bigcup_{\mathfrak{a} \in \mathcal{D}} \Omega(\mathfrak{a})$$

is an F-vector space.

Proof.

Take $\omega \in \Omega$ and $x \in F^{\times}$. Let $\mathfrak{a} \in \mathcal{D}$ s.t. $\omega \in \Omega(\mathfrak{a})$. Then,

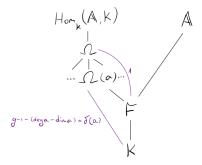
$$(x\omega)(\Lambda(\mathfrak{a} + (x)) + F) = \omega(x(\Lambda(\mathfrak{a} + (x)) + F))$$
$$= \omega(\Lambda(\mathfrak{a}) + F)$$
$$= 0.$$

Take $\omega_1, \omega_2 \in \Omega$. Then, $\omega_1 \in \Omega(\mathfrak{a}_1)$, $\omega_2 \in \Omega(\mathfrak{a}_2)$, and so by Claim 12,

$$\omega_1 + \omega_2 \in \Omega(\min(\mathfrak{a}_1, \mathfrak{a}_2)) \subseteq \Omega.$$

Theorem 15

 $\text{dim}_{\text{F}}\,\Omega=1.$



Informally, and inaccurately, if we think of Ω as differentials $\Omega = \{dx \mid x \in \mathsf{F}\}$ then Theorem 15 is to be expected as

$$dy = \frac{dy}{dx} \cdot dx.$$

Proof.

Let $\omega_1, \omega_2 \in \Omega \setminus \{0\}$. We want to find $x \in F^{\times}$ s.t. $\omega_2 = x\omega_1$. As

$$\Omega(\mathfrak{a}) + \Omega(\mathfrak{b}) \subseteq \Omega(\min(\mathfrak{a}, \mathfrak{b})),$$

we my assume that $\omega_1, \omega_2 \in \Omega(\mathfrak{b})$ for some $\mathfrak{b} \in \mathcal{D}$.

Take $\mathfrak{a} \in \mathcal{D}$, $\mathfrak{a} < 0$, with a "sufficiently low" degree $d = \deg \mathfrak{a}$.

As a < 0 we have that

$$\dim \mathfrak{a} = \dim_{\mathsf{K}} \mathcal{L}(\mathfrak{a}) = 0,$$

and so for a sufficiently large |d|,

$$\begin{split} \delta(\mathfrak{a}) &= \dim_{\mathsf{K}} \Omega(\mathfrak{a}) \\ &= g - 1 - (\deg \mathfrak{a} - \dim \mathfrak{a}) \\ &= g - 1 - d > 0. \end{split}$$

Proof.

For i = 1, 2 define the map

$$F \to \Omega$$

 $x \mapsto x\omega_i$.

These are injective K-linear maps. Further, each induces a map

$$T_i: \mathcal{L}(\mathfrak{b}-\mathfrak{a}) \to \Omega(\mathfrak{a}).$$

Indeed, if $x \in \mathcal{L}(\mathfrak{b} - \mathfrak{a})$ then $(x) + \mathfrak{b} \ge \mathfrak{a}$. Thus,

$$x\omega_i \in x\Omega(\mathfrak{b}) = \Omega((x) + \mathfrak{b}) \subseteq \Omega(\mathfrak{a}).$$

Proof.

By Riemann's Theorem,

$$g-1 \ge \deg(\mathfrak{b} - \mathfrak{a}) - \dim(\mathfrak{b} - \mathfrak{a})$$

= $-d + \deg \mathfrak{b} - \dim \operatorname{Im} T_i$.

Thus, by taking |d| large enough,

$$egin{split} \dim \operatorname{Im} T_i &\geq -d + \deg \mathfrak{b} - g + 1 \ &> rac{1}{2}(g - 1 - d) \ &= rac{\delta(\mathfrak{a})}{2}, \end{split}$$

as indeed

$$\delta(\mathfrak{a}) = g - 1 - (\deg \mathfrak{a} - \dim \mathfrak{a}) = g - 1 - d.$$

Proof.

As $\delta(\mathfrak{a}) = \dim_{\mathsf{K}} \Omega(\mathfrak{a})$ and since

$$\dim_{\mathsf{K}} \operatorname{Im} T_1, \, \dim_{\mathsf{K}} \operatorname{Im} T_2 > \frac{\delta(\mathfrak{a})}{2},$$

the two subspaces intersect non trivially.

Therefore, $\exists x_1, x_2 \in \mathsf{F}^{\times}$ s.t.

$$x_1\omega_1=x_2\omega_2$$

which concludes the proof.

Recall that

$$\Lambda(0) = \{ \alpha \in \mathbb{A} \mid \upsilon_{\mathfrak{p}}(\alpha) \ge 0 \},$$

and that

$$\Omega(0) = \{\omega \in \Omega \ | \ \omega(\Lambda(0) + \mathsf{F}) = 0\}.$$

We have the following characterization of the genus.

Claim 16

$$\delta(0)=\dim_{\mathsf{K}}\Omega(0)=g.$$

Proof.

As
$$\mathcal{L}(0) = K$$
,

$$\delta(0) = g - 1 - (\deg 0 - \dim 0) = g.$$

Recall that

$$\mathfrak{a} \ \mathsf{large} \quad \Longrightarrow \quad \Lambda(\mathfrak{a}) \ \mathsf{large} \quad \Longrightarrow \quad \Omega(\mathfrak{a}) \ \mathsf{small}.$$

Claim 17

$$\Omega(\mathfrak{a}) \neq \{0\} \implies \dim \mathfrak{a} \leq g.$$

Proof.

Take $0 \neq \omega \in \Omega(\mathfrak{a})$. Consider the K-monomorphism

$$\mathcal{L}(\mathfrak{a}) \to \Omega$$

 $x \mapsto x\omega$

Now,

$$x\omega \in x\Omega(\mathfrak{a}) = \Omega(\mathfrak{a} + (x)) \subseteq \Omega(0).$$

Thus, by Claim 16,

$$\dim \mathfrak{a} = \dim_{\mathsf{K}} \mathcal{L}(\mathfrak{a}) \leq \dim_{\mathsf{K}} \Omega(0) = g.$$

Overview

- Weil differentials
- 2 Weil Differentials and "ordinary" differentials
- Back to Weil Differentials
- Canonical divisors

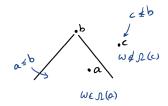
Recall that
$$\omega \in \Omega(\mathfrak{b}) \iff \omega(\Lambda(\mathfrak{b}) + \mathsf{F}) = 0$$
, and so if $\omega \in \Omega(\mathfrak{b})$ then $\mathfrak{a} \leq \mathfrak{b} \implies \omega \in \Omega(\mathfrak{a})$.

Theorem 18

For every $0 \neq \omega \in \Omega$ there exists a unique $\mathfrak{b} \in \mathcal{D}$ satisfying

$$\omega \in \Omega(\mathfrak{a}) \iff \mathfrak{a} \leq \mathfrak{b}.$$

This unique divisor \mathfrak{b} is denoted by (ω) .



Proof.

Consider $\mathfrak{a} \in \mathcal{D}$ s.t. $\omega \in \Omega(\mathfrak{a})$. By Claim 17, dim $\mathfrak{a} \leq g$.

By Riemann's Theorem,

$$\deg \mathfrak{a} \leq 2g-1$$
.

Thus, we can take a divisor of maximal degree \mathfrak{b} s.t. $\omega \in \Omega(\mathfrak{b})$. Take any $\mathfrak{a} \in \mathcal{D}$ s.t. $\omega \in \Omega(\mathfrak{a})$. Then,

$$\omega \in \Omega(\mathfrak{a}) \cap \Omega(\mathfrak{b}) = \Omega(\max(\mathfrak{a},\mathfrak{b})).$$

But by the maximality of the degree of \mathfrak{b} ,

$$\deg \mathfrak{b} \geq \deg \max(\mathfrak{a}, \mathfrak{b}),$$

and so

$$\mathfrak{b} = \max(\mathfrak{a}, \mathfrak{b}) \geq \mathfrak{a}.$$

Uniqueness is obvious.

Recall that Ω is an F-vector space via $(x\omega)(\alpha) = \omega(x\alpha)$.

Claim 19

For $0 \neq \omega \in \Omega$ and $x \in F^{\times}$,

$$(x\omega)=(x)+(\omega).$$

Proof.

By Theorem 18,

$$x\omega \in \Omega(\mathfrak{a})$$
 \iff $\omega \in x^{-1}\Omega(\mathfrak{a}) = \Omega(\mathfrak{a} - (x))$
 \iff $(\omega) \ge \mathfrak{a} - (x)$
 \iff $\mathfrak{a} \le (x) + (\omega).$

But we also have, by Theorem 18, that

$$x\omega \in \Omega(\mathfrak{a}) \iff \mathfrak{a} \leq (x\omega),$$

and $(x\omega)$ is the unique such divisor. Thus, $(x\omega) = (x) + (\omega)$.

Definition 20

A divisor of the form (ω) for $\omega \in \Omega$ is called canonical. The set of all canonical divisors is denoted by \mathcal{W} .

Claim 21

 \mathcal{W} is an element of $C = \mathcal{D}/\mathcal{P}$.

This explains why we call a canonical divisor "canonical". Perhaps a better name would have been a canonical divisor class.

Proof.

Take $0 \neq \omega \in \Omega$. By Theorem 15,

$$\Omega = \{ x\omega \mid x \in \mathsf{F} \},\$$

and so, by Claim 19,

$$\mathcal{W} = \{(\omega') \mid \omega' \in \Omega\}$$

$$= \{(x\omega) \mid x \in F\}$$

$$= \{(x) + (\omega) \mid x \in F\}$$

$$= (\omega) + \{(x) \mid x \in F\}$$

$$= (\omega) + \mathcal{P}.$$