Algebraic Geometric Codes

Recitation 12

Shir Peleg

Tel Aviv University

May 24, 2022

Assume F/E is separable. Let $\mathfrak{p} \in \mathbb{P}(E)$ and $\mathfrak{P} = \mathfrak{P}_1, \ldots, \mathfrak{P}_r \in \mathbb{P}(F)$ be the prime divisors of F lying over \mathfrak{p} . Let $\pi : \mathcal{O}_{\mathfrak{P}} \to F_{\mathfrak{P}}$ be the corresponding projective map (that can be extended to a place) which extends the projection map $\pi : \mathcal{O}_{\mathfrak{p}} \to E_{\mathfrak{p}}$.

Assume F/E is separable. Let $\mathfrak{p} \in \mathbb{P}(E)$ and $\mathfrak{P} = \mathfrak{P}_1, \ldots, \mathfrak{P}_r \in \mathbb{P}(F)$ be the prime divisors of F lying over \mathfrak{p} . Let $\pi : \mathcal{O}_{\mathfrak{P}} \to F_{\mathfrak{P}}$ be the corresponding projective map (that can be extended to a place) which extends the projection map $\pi : \mathcal{O}_{\mathfrak{p}} \to E_{\mathfrak{p}}$. Let $F_{\mathfrak{P},s}$ be the separable closure of $E_{\mathfrak{p}}$ in $F_{\mathfrak{P}}$.

Assume F/E is separable. Let $\mathfrak{p} \in \mathbb{P}(E)$ and $\mathfrak{P} = \mathfrak{P}_1, \ldots, \mathfrak{P}_r \in \mathbb{P}(F)$ be the prime divisors of F lying over \mathfrak{p} . Let $\pi : \mathcal{O}_{\mathfrak{P}} \to F_{\mathfrak{P}}$ be the corresponding projective map (that can be extended to a place) which extends the projection map $\pi : \mathcal{O}_{\mathfrak{p}} \to E_{\mathfrak{p}}$. Let $F_{\mathfrak{P},s}$ be the separable closure of $E_{\mathfrak{p}}$ in $F_{\mathfrak{P}}$. Let $y \in \mathcal{O}'_{\mathfrak{p}}$ be s.t. \bullet $v_{\mathfrak{P}_i}(y) > 0$ for $j = 2, \ldots, r$; and

 $(y) \in F_{\mathfrak{P},s}.$

Assume F/E is separable. Let $\mathfrak{p} \in \mathbb{P}(E)$ and $\mathfrak{P} = \mathfrak{P}_1, \ldots, \mathfrak{P}_r \in \mathbb{P}(F)$ be the prime divisors of F lying over \mathfrak{p} . Let $\pi : \mathcal{O}_{\mathfrak{P}} \to F_{\mathfrak{P}}$ be the corresponding projective map (that can be extended to a place) which extends the projection map $\pi : \mathcal{O}_{\mathfrak{p}} \to E_{\mathfrak{p}}$. Let $F_{\mathfrak{P},s}$ be the separable closure of $E_{\mathfrak{p}}$ in $F_{\mathfrak{P}}$. Let $y \in \mathcal{O}'_{\mathfrak{p}}$ be s.t. **2** $v_{\mathfrak{P}_j}(y) > 0$ for $j = 2, \ldots, r$; and **2** $\pi(y) \in F_{\mathfrak{P},s}$. Then, $\pi (Tr_{F/E}(y)) = e(\mathfrak{P}/\mathfrak{p}) \cdot Tr_{F_{\mathfrak{P},s}/E_{\mathfrak{p}}}(\pi(y)).$

Assume F/E is Galois. Function field over a perfect field.

Assume F/E is Galois. Function field over a perfect field. Let $\mathfrak{p} \in \mathbb{P}(E)$ and $\mathfrak{P} = \mathfrak{P}_1, \ldots, \mathfrak{P}_r \in \mathbb{P}(F)$ be the prime divisors of F lying over \mathfrak{p} . Let $\pi : \mathcal{O}_{\mathfrak{P}} \to F_{\mathfrak{P}}$ be the corresponding projective map (that can be extended to a place) which extends the projection map $\pi : \mathcal{O}_{\mathfrak{p}} \to E_{\mathfrak{p}}$.

Assume F/E is Galois. Function field over a perfect field. Let $\mathfrak{p} \in \mathbb{P}(E)$ and $\mathfrak{P} = \mathfrak{P}_1, \ldots, \mathfrak{P}_r \in \mathbb{P}(F)$ be the prime divisors of F lying over \mathfrak{p} . Let $\pi : \mathcal{O}_{\mathfrak{P}} \to F_{\mathfrak{P}}$ be the corresponding projective map (that can be extended to a place) which extends the projection map $\pi : \mathcal{O}_{\mathfrak{p}} \to E_{\mathfrak{p}}$. Let $y \in \mathcal{O}'_{\mathfrak{p}}$ be s.t.

•
$$v_{\mathfrak{P}_{i}}(y) > 0$$
 for $j = 2, ..., r$; and

Assume F/E is Galois. Function field over a perfect field. Let $\mathfrak{p} \in \mathbb{P}(E)$ and $\mathfrak{P} = \mathfrak{P}_1, \ldots, \mathfrak{P}_r \in \mathbb{P}(F)$ be the prime divisors of F lying over \mathfrak{p} . Let $\pi : \mathcal{O}_{\mathfrak{P}} \to F_{\mathfrak{P}}$ be the corresponding projective map (that can be extended to a place) which extends the projection map $\pi : \mathcal{O}_{\mathfrak{p}} \to E_{\mathfrak{p}}$. Let $y \in \mathcal{O}'_{\mathfrak{p}}$ be s.t.

•
$$v_{\mathfrak{P}_i}(y) > 0$$
 for $j = 2, ..., r$; and

Then,

$$\pi\left(\mathit{Tr}_{\mathsf{F}/\mathsf{E}}(y)\right) = e(\mathfrak{P}/\mathfrak{p}) \cdot \mathit{Tr}_{\mathsf{F}_{\mathfrak{P}}/\mathsf{E}_{\mathfrak{p}}}(\pi(y)).$$

Proof Recall then $Tr_{F/E}(y) = \sum_{\sigma \in G} \sigma(y)$.

Proof Recall then $Tr_{F/E}(y) = \sum_{\sigma \in G} \sigma(y)$. Let $\sigma \in Gal(F/E)$ s.t $\sigma \mathfrak{P} \neq \mathfrak{P}$ or, equivalently, $\mathfrak{P}' := \sigma^{-1} \mathfrak{P} \neq \mathfrak{P}$.

Proof Recall then $Tr_{F/E}(y) = \sum_{\sigma \in G} \sigma(y)$. Let $\sigma \in Gal(F/E)$ s.t $\sigma \mathfrak{P} \neq \mathfrak{P}$ or, equivalently, $\mathfrak{P}' := \sigma^{-1} \mathfrak{P} \neq \mathfrak{P}$. Since $\mathfrak{P}' \neq \mathfrak{P}$ we have, per our assumption, that

Proof Recall then $Tr_{F/E}(y) = \sum_{\sigma \in G} \sigma(y)$. Let $\sigma \in Gal(F/E)$ s.t $\sigma \mathfrak{P} \neq \mathfrak{P}$ or, equivalently, $\mathfrak{P}' := \sigma^{-1} \mathfrak{P} \neq \mathfrak{P}$. Since $\mathfrak{P}' \neq \mathfrak{P}$ we have, per our assumption, that $v_{\mathfrak{P}'}(y) > 0$ and so $v_{\sigma_i^{-1}\mathfrak{P}}(y) > 0$, and so

$$v_{\mathfrak{P}}(\sigma y) = v_{\sigma^{-1}\mathfrak{P}}(y) > 0 \implies \sigma y \in \mathcal{O}_{\mathfrak{P}} \text{ and } \pi(\sigma y) = 0.$$

Proof Recall then $Tr_{F/E}(y) = \sum_{\sigma \in G} \sigma(y)$. Let $\sigma \in Gal(F/E)$ s.t $\sigma \mathfrak{P} \neq \mathfrak{P}$ or, equivalently, $\mathfrak{P}' := \sigma^{-1} \mathfrak{P} \neq \mathfrak{P}$. Since $\mathfrak{P}' \neq \mathfrak{P}$ we have, per our assumption, that $v_{\mathfrak{P}'}(y) > 0$ and so $v_{\sigma_i^{-1}\mathfrak{P}}(y) > 0$, and so

$$u_{\mathfrak{P}}(\sigma y) = v_{\sigma^{-1}\mathfrak{P}}(y) > 0 \implies \sigma y \in \mathcal{O}_{\mathfrak{P}} \text{ and } \pi(\sigma y) = 0.$$

$$\pi(\operatorname{Tr}_{F/E}(y)) = \sum_{i=1}^{n} \pi(\sigma_i(y)) = \sum_{\sigma_i \in \mathcal{D}} \pi(\sigma_i(y))$$
$$= \sum_{\alpha \in \operatorname{Aut}(F_{\mathfrak{P}}/E_{\rho})} |\{i \mid \sigma_i \in \mathcal{D}, \sigma_i = \alpha\}| \cdot \alpha(\pi(y)).$$

Proof Recall

$$|\{i \mid \sigma_i \in \mathcal{D}, \sigma_i = \alpha\}| = I(\mathfrak{P}/\mathfrak{p}).$$

And

$$e(\mathfrak{P}/p) = \frac{[F:E]_i}{[F_{\mathfrak{P}}:E_{\mathfrak{p}}]_i} I(\mathfrak{P}/\mathfrak{p}).$$

Proof Recall

$$|\{i \mid \sigma_i \in \mathcal{D}, \sigma_i = \alpha\}| = I(\mathfrak{P}/\mathfrak{p}).$$

And

$$e(\mathfrak{P}/p) = \frac{[F:E]_i}{[F_{\mathfrak{P}}:E_{\mathfrak{p}}]_i} I(\mathfrak{P}/\mathfrak{p}).$$

Which implies

$$\pi(\mathit{Tr}_{F/E}(y)) = e(\mathfrak{P}/\mathfrak{p}) \sum_{\alpha \in Aut(F_{\mathfrak{P}}/E_p)} \alpha(\pi(y)) = e(\mathfrak{P}/\mathfrak{p}) \mathit{Tr}_{F_{\mathfrak{P}}/E_p}(\pi(y))$$

Proof sketch] Consider \hat{F} the Galois closure of F.

Proof sketch] Consider \hat{F} the Galois closure of F.

۲

$$Tr_{F/E}(y) = \sum_{E-embeddings} \sigma(y) = \sum_{\hat{\sigma} \in Gal(\hat{F}/E) | \text{diffrent on } F} \hat{\sigma}(y).$$

Proof sketch] Consider \hat{F} the Galois closure of F.

۲

$$Tr_{F/E}(y) = \sum_{E-embeddings} \sigma(y) = \sum_{\hat{\sigma} \in Gal(\hat{F}/E) | \text{diffrent on } F} \hat{\sigma}(y).$$

• We want to be smart when we choose $\hat{\sigma}$. We set some $\hat{\mathfrak{P}}/\mathfrak{P}$ and if possible we take $\hat{\sigma} \in D(\hat{\mathfrak{P}}/\mathfrak{p})$.

Proof sketch] Consider \hat{F} the Galois closure of F.

۲

$$Tr_{F/E}(y) = \sum_{E-embeddings} \sigma(y) = \sum_{\hat{\sigma} \in Gal(\hat{F}/E) | different on F} \hat{\sigma}(y).$$

We want to be smart when we choose ô. We set some ŷ/ŷ and if possible we take ô ∈ D(ŷ/p). Then we note that π(ô(y)) = α(π(y)) for some α ∈ E_p embedding of F_{ŷ,s}.

Proof sketch] Consider \hat{F} the Galois closure of F.

۲

$$Tr_{F/E}(y) = \sum_{E-embeddings} \sigma(y) = \sum_{\hat{\sigma} \in Gal(\hat{F}/E) | different on F} \hat{\sigma}(y).$$

- We want to be smart when we choose ô. We set some ŷ/ŷ and if possible we take ô ∈ D(ŷ/p). Then we note that π(ô(y)) = α(π(y)) for some α ∈ E_p embedding of F_{ŷ,s}.
- We then argue that we can obtain any α in such manner, i.e. $\exists \hat{\sigma} \text{ s.t.} \\ \pi(\hat{\sigma}(y)) = \alpha(\pi(y)).$

Proof sketch] Consider \hat{F} the Galois closure of F.

۲

$$Tr_{F/E}(y) = \sum_{E-embeddings} \sigma(y) = \sum_{\hat{\sigma} \in Gal(\hat{F}/E) | different on F} \hat{\sigma}(y).$$

- We want to be smart when we choose ô. We set some ŷ/ŷ and if possible we take ô ∈ D(ŷ/p). Then we note that π(ô(y)) = α(π(y)) for some α ∈ E_p embedding of F_{ŷ,s}.
- We then argue that we can obtain any α in such manner, i.e. $\exists \hat{\sigma} \text{ s.t.} \\ \pi(\hat{\sigma}(y)) = \alpha(\pi(y)).$
- We prove that for every α ,

$$|\{\hat{\sigma}\in\mathcal{D}(\hat{\mathfrak{P}}/\mathfrak{p}|\pi(\hat{\sigma}(y))=lpha(\pi(y))\}|=e(\mathfrak{P}/\mathfrak{p}).$$

Theorem 3

For every $\mathfrak p$ there exists a local integral basis for $\mathfrak p,$ namely, a basis z_1,\ldots,z_n of F/E s.t.

$$\mathcal{O}'_{\mathfrak{p}} = \sum_{i=1}^{''} \mathcal{O}_{\mathfrak{p}} z_i.$$

Proof

Let z_1, \ldots, z_n be any basis for F/E. As we saw in class that we can find a_i s.t. $a_i z_i$ is integral over O_p , we may assume that

$$z_1,\ldots,z_n\in\mathcal{O}'_{\mathfrak{p}},$$

or equivalently,

$$\sum_{j=1}^n \mathcal{O}_\mathfrak{p} z_j \subseteq \mathcal{O}'_\mathfrak{p}.$$

Proof

z_1, \ldots, z_n is a basis for F/E s.t. $\sum_{j=1}^n \mathcal{O}_{\mathfrak{p}} z_j \subseteq \mathcal{O}'_{\mathfrak{p}}$.

Proof

 z_1, \ldots, z_n is a basis for F/E s.t. $\sum_{j=1}^n \mathcal{O}_{\mathfrak{p}} z_j \subseteq \mathcal{O}'_{\mathfrak{p}}$. The key step of the proof is proving, by induction on k, that $\exists u_1, \ldots, u_n \in \mathcal{O}'_{\mathfrak{p}}$ s.t.

$$\mathcal{O}'_{\mathfrak{p}} \cap \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} z_{i}^{*} = \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} u_{i}.$$

Proof

 z_1, \ldots, z_n is a basis for F/E s.t. $\sum_{j=1}^n \mathcal{O}_p z_j \subseteq \mathcal{O}'_p$. The key step of the proof is proving, by induction on k, that $\exists u_1, \ldots, u_n \in \mathcal{O}'_p$ s.t.

$$\mathcal{O}'_{\mathfrak{p}} \cap \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} z_{i}^{*} = \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} u_{i}.$$

By a Claim from class, if $\sum_{j=1}^{n} \mathcal{O}_{\mathfrak{p}} z_{j} \subseteq \mathcal{O}'_{\mathfrak{p}}$, then $\sum_{j=1}^{n} \mathcal{O}_{\mathfrak{p}} z_{j}^{*} \supseteq \mathcal{O}'_{\mathfrak{p}}$.

 z_1, \ldots, z_n is a basis for F/E s.t. $\sum_{j=1}^n \mathcal{O}_p z_j \subseteq \mathcal{O}'_p$. The key step of the proof is proving, by induction on k, that $\exists u_1, \ldots, u_n \in \mathcal{O}'_p$ s.t.

$$\mathcal{O}'_{\mathfrak{p}} \cap \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} z_{i}^{*} = \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} u_{i}.$$

By a Claim from class, if $\sum_{j=1}^{n} \mathcal{O}_{\mathfrak{p}} z_{j} \subseteq \mathcal{O}'_{\mathfrak{p}}$, then $\sum_{j=1}^{n} \mathcal{O}_{\mathfrak{p}} z_{j}^{*} \supseteq \mathcal{O}'_{\mathfrak{p}}$. Thus, if we will prove the above, by setting k = n, we can conclude that

$$\mathcal{O}_{\mathfrak{p}}' = \sum_{i=1}^{n} \mathcal{O}_{\mathfrak{p}} u_{i},$$

which will almost prove the lemma (we still have to show that u_1, \ldots, u_n is a basis of F/E).

Proof

So, we wish to prove by induction on k, that $\exists u_1,\ldots,u_n\in\mathcal{O}'_\mathfrak{p}$ s.t

$$\mathcal{O}'_{\mathfrak{p}} \cap \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} z_{i}^{*} = \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} u_{i}.$$

The base case k = 0 is trivial (empty sum is 0).

Proof

So, we wish to prove by induction on k, that $\exists u_1, \ldots, u_n \in \mathcal{O}'_p$ s.t

$$\mathcal{O}'_{\mathfrak{p}} \cap \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} z_{i}^{*} = \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} u_{i}.$$

The base case k = 0 is trivial (empty sum is 0). Say that $u_1, \ldots, u_{k-1} \in \mathcal{O}'_p$ satisfy that

$$\mathcal{O}'_{\mathfrak{p}} \cap \sum_{i=1}^{k-1} \mathcal{O}_{\mathfrak{p}} z_i^* = \sum_{i=1}^{k-1} \mathcal{O}_{\mathfrak{p}} u_i.$$

So, we wish to prove by induction on k, that $\exists u_1, \ldots, u_n \in \mathcal{O}'_\mathfrak{p}$ s.t

$$\mathcal{O}'_{\mathfrak{p}} \cap \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} z_{i}^{*} = \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} u_{i}.$$

The base case k = 0 is trivial (empty sum is 0). Say that $u_1, \ldots, u_{k-1} \in \mathcal{O}'_p$ satisfy that

$$\mathcal{O}'_{\mathfrak{p}} \cap \sum_{i=1}^{k-1} \mathcal{O}_{\mathfrak{p}} z_i^* = \sum_{i=1}^{k-1} \mathcal{O}_{\mathfrak{p}} u_i.$$

Define

$$J = \{a_k \in \mathcal{O}_{\mathfrak{p}} \mid \exists a_1, \dots, a_{k-1} \in \mathcal{O}_{\mathfrak{p}} \text{ s.t. } a_1 z_1^* + \dots + a_k z_k^* \in \mathcal{O}_{\mathfrak{p}}'\}.$$

Observe that J is an ideal of $\mathcal{O}_{\mathfrak{p}}$.

Proof

$$J = \{a_k \in \mathcal{O}_{\mathfrak{p}} \mid \exists a_1, \ldots, a_{k-1} \in \mathcal{O}_{\mathfrak{p}} \text{ s.t. } a_1 z_1^* + \cdots + a_k z_k^* \in \mathcal{O}_{\mathfrak{p}}'\}.$$

Proof

$$J = \{a_k \in \mathcal{O}_{\mathfrak{p}} \mid \exists a_1, \ldots, a_{k-1} \in \mathcal{O}_{\mathfrak{p}} \text{ s.t. } a_1 z_1^* + \cdots + a_k z_k^* \in \mathcal{O}_{\mathfrak{p}}'\}.$$

As, $\mathcal{O}_{\mathfrak{p}}$ is a PID, we can write

 $\exists a_k \in J \quad J = a_k \mathcal{O}_p.$

Proof

$$J = \{a_k \in \mathcal{O}_{\mathfrak{p}} \mid \exists a_1, \ldots, a_{k-1} \in \mathcal{O}_{\mathfrak{p}} \text{ s.t. } a_1 z_1^* + \cdots + a_k z_k^* \in \mathcal{O}_{\mathfrak{p}}'\}.$$

As, $\mathcal{O}_\mathfrak{p}$ is a PID, we can write

$$\exists a_k \in J \quad J = a_k \mathcal{O}_{\mathfrak{p}}.$$

Let $a_1, \ldots, a_{k-1} \in \mathcal{O}_p$ s.t.

$$u_k = a_1 z_1^* + \cdots + a_k z_k^* \in \mathcal{O}'_{\mathfrak{p}}.$$

Proof

$$J = \{a_k \in \mathcal{O}_{\mathfrak{p}} \mid \exists a_1, \ldots, a_{k-1} \in \mathcal{O}_{\mathfrak{p}} \text{ s.t. } a_1 z_1^* + \cdots + a_k z_k^* \in \mathcal{O}_{\mathfrak{p}}'\}.$$

As, $\mathcal{O}_\mathfrak{p}$ is a PID, we can write

$$\exists a_k \in J \quad J = a_k \mathcal{O}_{\mathfrak{p}}.$$

Let $a_1, \ldots, a_{k-1} \in \mathcal{O}_p$ s.t.

$$u_k = a_1 z_1^* + \cdots + a_k z_k^* \in \mathcal{O}'_{\mathfrak{p}}.$$

By the choice of u_k and by the induction hypothesis, we get that

$$\mathcal{O}'_{\mathfrak{p}} \cap \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} z_{i}^{*} \supseteq \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} u_{i}.$$

Proof

On the other direction, take

$$z\in \mathcal{O}'_{\mathfrak{p}}\cap \sum_{i=1}^k \mathcal{O}_{\mathfrak{p}} z_i^*.$$

Write

$$z=b_1z_1^*+\dots+b_kz_k^*$$
 with $b_1,\dots,b_k\in\mathcal{O}_\mathfrak{p}.$

Proof

On the other direction, take

$$z\in \mathcal{O}'_{\mathfrak{p}}\cap \sum_{i=1}^k \mathcal{O}_{\mathfrak{p}} z_i^*.$$

Write

$$z = b_1 z_1^* + \dots + b_k z_k^*$$
 with $b_1, \dots, b_k \in \mathcal{O}_\mathfrak{p}.$

Thus, $b_k \in J = a_k \mathcal{O}_p$ and so $\exists c \in \mathcal{O}_p$ s.t. $b_k = ca_k$. Recall that

$$u_k = a_1 z_1^* + \cdots + a_k z_k^* \in \mathcal{O}'_{\mathfrak{p}}.$$

Proof

On the other direction, take

$$z\in \mathcal{O}'_\mathfrak{p}\cap \sum_{i=1}^k\mathcal{O}_\mathfrak{p}z_i^*.$$

Write

$$z = b_1 z_1^* + \dots + b_k z_k^*$$
 with $b_1, \dots, b_k \in \mathcal{O}_\mathfrak{p}.$

Thus, $b_k \in J = a_k \mathcal{O}_p$ and so $\exists c \in \mathcal{O}_p$ s.t. $b_k = ca_k$. Recall that

$$u_k = a_1 z_1^* + \cdots + a_k z_k^* \in \mathcal{O}'_{\mathfrak{p}}.$$

As $z, u_k \in \mathcal{O}'_\mathfrak{p}$ we have that

$$z - cu_k = (b_1 - ca_1)z_1^* + \dots + (b_{k-1} - ca_{k-1})z_{k-1}^*$$
$$\in \mathcal{O}'_{\mathfrak{p}} \cap \sum_{i=1}^{k-1} \mathcal{O}_{\mathfrak{p}} z_i^* = \sum_{i=1}^{k-1} \mathcal{O}_{\mathfrak{p}} u_i.$$

We conclude that

$$z\in\sum_{i=1}^k\mathcal{O}_\mathfrak{p}u_i$$

which proves the claim. Namely, $\exists u_1, \ldots, u_n \in \mathcal{O}'_{\mathfrak{p}}$ s.t.

$$\mathcal{O}'_{\mathfrak{p}} \cap \sum_{i=1}^{n} \mathcal{O}_{\mathfrak{p}} z_{i}^{*} = \sum_{i=1}^{n} \mathcal{O}_{\mathfrak{p}} u_{i}$$

and so

$$\mathcal{O}_{\mathfrak{p}}' = \sum_{i=1}^{n} \mathcal{O}_{\mathfrak{p}} u_{i}.$$

It remains to show that u_1, \ldots, u_n is a basis of F/E.

Proof.

Take $z \in F$. As z is algebraic over E, as before,

$$\exists b \in \mathcal{O}_{\mathfrak{p}}$$
 s.t. $bz \in \mathcal{O}'_{\mathfrak{p}}$.

Proof.

Take $z \in F$. As z is algebraic over E, as before,

$$\exists b \in \mathcal{O}_{\mathfrak{p}}$$
 s.t. $bz \in \mathcal{O}'_{\mathfrak{p}}$.

That is, every element z of F is of the form $\frac{a}{b}$ for $a \in \mathcal{O}'_{\mathfrak{p}}$, $0 \neq b \in \mathcal{O}_{\mathfrak{p}}$. Now,

$$a=\sum_{i=1}^{n}c_{i}u_{i}$$

for some $c_1, \ldots, c_n \in \mathcal{O}_\mathfrak{p}$ and so

$$z=\frac{a}{b}=\sum_{i=1}^n\frac{c_i}{b}u_i.$$

Proof.

Take $z \in F$. As z is algebraic over E, as before,

$$\exists b \in \mathcal{O}_{\mathfrak{p}}$$
 s.t. $bz \in \mathcal{O}'_{\mathfrak{p}}$.

That is, every element z of F is of the form $\frac{a}{b}$ for $a \in \mathcal{O}'_{\mathfrak{p}}$, $0 \neq b \in \mathcal{O}_{\mathfrak{p}}$. Now,

$$a=\sum_{i=1}^{n}c_{i}u_{i}$$

for some $c_1, \ldots, c_n \in \mathcal{O}_p$ and so

$$z=\frac{a}{b}=\sum_{i=1}^n\frac{c_i}{b}u_i.$$

Since $c_i, b \in \mathcal{O}_p$ we have that $\frac{c_i}{b} \in E$, and so $F = \sum_{i=1}^n Eu_i$.

Proof.

Take $z \in F$. As z is algebraic over E, as before,

$$\exists b \in \mathcal{O}_{\mathfrak{p}}$$
 s.t. $bz \in \mathcal{O}'_{\mathfrak{p}}$.

That is, every element z of F is of the form $\frac{a}{b}$ for $a \in \mathcal{O}'_{\mathfrak{p}}$, $0 \neq b \in \mathcal{O}_{\mathfrak{p}}$. Now,

$$a=\sum_{i=1}^{n}c_{i}u_{i}$$

for some $c_1, \ldots, c_n \in \mathcal{O}_p$ and so

$$z=\frac{a}{b}=\sum_{i=1}^n\frac{c_i}{b}u_i.$$

Since $c_i, b \in \mathcal{O}_p$ we have that $\frac{c_i}{b} \in E$, and so $F = \sum_{i=1}^n Eu_i$. This shows that u_1, \ldots, u_n spans F over E. The proof follows as [E:F] = n.