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Technical lemma

Lemma 1

Assume F/E is separable. Let p ∈ P(E ) and P = P1, . . . ,Pr ∈ P(F ) be
the prime divisors of F lying over p. Let π : OP → FP be the
corresponding projective map (that can be extended to a place) which
extends the projection map π : Op → Ep.

Let FP,s be the separable closure of Ep in FP.
Let y ∈ O′

p be s.t.
1 vPj (y) > 0 for j = 2, . . . , r ; and
2 π(y) ∈ FP,s .

Then,
π
(
TrF/E (y)

)
= e(P/p) · TrFP,s/Ep

(π(y)).
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Technical lemma

Lemma 2

Assume F/E is Galois. Function field over a perfect field.

Let p ∈ P(E )
and P = P1, . . . ,Pr ∈ P(F ) be the prime divisors of F lying over p. Let
π : OP → FP be the corresponding projective map (that can be extended
to a place) which extends the projection map π : Op → Ep. Let y ∈ O′

p

be s.t.
1 vPj (y) > 0 for j = 2, . . . , r ; and

Then,
π
(
TrF/E (y)
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= e(P/p) · TrFP/Ep
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Proof of Lemma 2

Proof

Proof Recall then TrF/E (y) =
∑

σ∈G σ(y).

Let σ ∈ Gal(F/E ) s.t σP ̸= P or, equivalently, P′ := σ−1P ̸= P.
Since P′ ̸= P we have, per our assumption, that
vP′(y) > 0 and so vσi

−1P(y) > 0, and so

vP(σy) = vσ−1P(y) > 0 =⇒ σy ∈ OP and π(σy) = 0.

π(TrF/E (y)) =
n∑

i=1

π(σi (y)) =
∑
σi∈D

π(σi (y))

=
∑

α∈Aut(FP/Ep)

|{i | σi ∈ D, σi = α}| · α(π(y)).
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Proof of Lemma 2

Proof
Proof Recall

|{i | σi ∈ D, σi = α}| = I (P/p).

And

e(P/p) =
[F : E ]i
[FP : Ep]i

I (P/p).

Which implies

π(TrF/E (y)) = e(P/p)
∑

α∈Aut(FP/Ep)

α(π(y)) = e(P/p)TrFP/Ep
(π(y))
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Proof of Lemma 1 - Key Ideas

[

Proof sketch]
Consider F̂ the Galois closure of F .

TrF/E (y) =
∑

E−embeddings

σ(y) =
∑

σ̂∈Gal(F̂/E)|diffrent on F

σ̂(y).

We want to be smart when we choose σ̂. We set some P̂/P and if
possible we take σ̂ ∈ D(P̂/p). Then we note that π(σ̂(y)) = α(π(y))
for some α ∈ Ep embedding of FP,s .
We then argue that we can obtain any α in such manner, i.e. ∃σ̂ s.t.
π(σ̂(y)) = α(π(y)).
We prove that for every α,

|{σ̂ ∈ D(P̂/p|π(σ̂(y)) = α(π(y))}| = e(P/p).
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Valuation rings and their integral closures are PID

Theorem 3

For every p there exists a local integral basis for p, namely, a basis
z1, . . . , zn of F/E s.t.

O′
p =

n∑
i=1

Opzi .

Proof

Let z1, . . . , zn be any basis for F/E . As we saw in class that we can find
ai s.t. aizi is integral over Op, we may assume that

z1, . . . , zn ∈ O′
p,

or equivalently,
n∑

j=1

Opzj ⊆ O′
p.
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Valuation rings and their integral closures are PID

Proof

z1, . . . , zn is a basis for F/E s.t.
∑n

j=1 Opzj ⊆ O′
p.

The key step of the proof is proving, by induction on k , that
∃u1, . . . , un ∈ O′

p s.t.

O′
p ∩

k∑
i=1

Opz
∗
i =

k∑
i=1

Opui .

By a Claim from class, if
∑n

j=1 Opzj ⊆ O′
p, then

∑n
j=1 Opz

∗
j ⊇ O′

p.
Thus, if we will prove the above, by setting k = n, we can conclude that

O′
p =

n∑
i=1

Opui ,

which will almost prove the lemma (we still have to show that u1, . . . , un
is a basis of F/E ).
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Valuation rings and their integral closures are PID

Proof

So, we wish to prove by induction on k , that ∃u1, . . . , un ∈ O′
p s.t

O′
p ∩

k∑
i=1

Opz
∗
i =

k∑
i=1

Opui .

The base case k = 0 is trivial (empty sum is 0).

Say that u1, . . . , uk−1 ∈ O′
p satisfy that

O′
p ∩

k−1∑
i=1

Opz
∗
i =

k−1∑
i=1

Opui .

Define

J = {ak ∈ Op | ∃a1, . . . , ak−1 ∈ Op s.t. a1z
∗
1 + · · ·+ akz

∗
k ∈ O′

p}.

Observe that J is an ideal of Op.
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Valuation rings and their integral closures are PID

Proof

J = {ak ∈ Op | ∃a1, . . . , ak−1 ∈ Op s.t. a1z
∗
1 + · · ·+ akz

∗
k ∈ O′

p}.

As, Op is a PID, we can write

∃ak ∈ J J = akOp.

Let a1, . . . , ak−1 ∈ Op s.t.

uk = a1z
∗
1 + · · ·+ akz

∗
k ∈ O′

p.

By the choice of uk and by the induction hypothesis, we get that
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Valuation rings and their integral closures are PID

Proof
On the other direction, take

z ∈ O′
p ∩

k∑
i=1

Opz
∗
i .

Write
z = b1z

∗
1 + · · ·+ bkz

∗
k with b1, . . . , bk ∈ Op.

Thus, bk ∈ J = akOp and so ∃c ∈ Op s.t. bk = cak . Recall that

uk = a1z
∗
1 + · · ·+ akz

∗
k ∈ O′

p.

As z , uk ∈ O′
p we have that

z − cuk = (b1 − ca1)z
∗
1 + · · ·+ (bk−1 − cak−1)z

∗
k−1

∈ O′
p ∩

k−1∑
i=1

Opz
∗
i =

k−1∑
i=1

Opui .
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p we have that

z − cuk = (b1 − ca1)z
∗
1 + · · ·+ (bk−1 − cak−1)z

∗
k−1

∈ O′
p ∩

k−1∑
i=1

Opz
∗
i =

k−1∑
i=1

Opui .
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Valuation rings and their integral closures are PID

Proof
We conclude that

z ∈
k∑

i=1

Opui

which proves the claim. Namely, ∃u1, . . . , un ∈ O′
p s.t.

O′
p ∩

n∑
i=1

Opz
∗
i =

n∑
i=1

Opui

and so

O′
p =

n∑
i=1

Opui .

It remains to show that u1, . . . , un is a basis of F/E .
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Valuation rings and their integral closures are PID

Proof.
Take z ∈ F . As z is algebraic over E , as before,

∃b ∈ Op s.t. bz ∈ O′
p.

That is, every element z of F is of the form a
b for a ∈ O′

p, 0 ̸= b ∈ Op.
Now,

a =
n∑

i=1

ciui

for some c1, . . . , cn ∈ Op and so

z =
a

b
=

n∑
i=1

ci
b
ui .

Since ci , b ∈ Op we have that ci
b ∈ E , and so F =

∑n
i=1 Eui .

This shows that u1, . . . , un spans F over E . The proof follows as
[E : F ] = n.
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