Algebraic Geometric Codes

Recitation 12

Shir Peleg
Tel Aviv University
May 24, 2022

Technical lemma

Lemma 1

Assume F / E is separable. Let $\mathfrak{p} \in \mathbb{P}(E)$ and $\mathfrak{P}=\mathfrak{P}_{1}, \ldots, \mathfrak{P}_{r} \in \mathbb{P}(F)$ be the prime divisors of F lying over \mathfrak{p}. Let $\pi: \mathcal{O}_{\mathfrak{P}} \rightarrow F_{\mathfrak{P}}$ be the corresponding projective map (that can be extended to a place) which extends the projection map $\pi: \mathcal{O}_{\mathfrak{p}} \rightarrow E_{\mathfrak{p}}$.

Technical lemma

Lemma 1

Assume F / E is separable. Let $\mathfrak{p} \in \mathbb{P}(E)$ and $\mathfrak{P}=\mathfrak{P}_{1}, \ldots, \mathfrak{P}_{r} \in \mathbb{P}(F)$ be the prime divisors of F lying over \mathfrak{p}. Let $\pi: \mathcal{O}_{\mathfrak{P}} \rightarrow F_{\mathfrak{P}}$ be the corresponding projective map (that can be extended to a place) which extends the projection map $\pi: \mathcal{O}_{\mathfrak{p}} \rightarrow E_{\mathfrak{p}}$. Let $F_{\mathfrak{P}, s}$ be the separable closure of $E_{\mathfrak{p}}$ in $F_{\mathfrak{P}}$.

Technical lemma

Lemma 1

Assume F / E is separable. Let $\mathfrak{p} \in \mathbb{P}(E)$ and $\mathfrak{P}=\mathfrak{P}_{1}, \ldots, \mathfrak{P}_{r} \in \mathbb{P}(F)$ be the prime divisors of F lying over \mathfrak{p}. Let $\pi: \mathcal{O}_{\mathfrak{P}} \rightarrow F_{\mathfrak{P}}$ be the corresponding projective map (that can be extended to a place) which extends the projection map $\pi: \mathcal{O}_{\mathfrak{p}} \rightarrow E_{\mathfrak{p}}$.
Let $F_{\mathfrak{P}, s}$ be the separable closure of $E_{\mathfrak{p}}$ in $F_{\mathfrak{P}}$.
Let $y \in \mathcal{O}_{\mathfrak{p}}^{\prime}$ be s.t.
(1) $v_{\mathfrak{P}_{j}}(y)>0$ for $j=2, \ldots, r$; and
(2) $\pi(y) \in F_{\mathfrak{P}, s}$.

Technical lemma

Lemma 1

Assume F / E is separable. Let $\mathfrak{p} \in \mathbb{P}(E)$ and $\mathfrak{P}=\mathfrak{P}_{1}, \ldots, \mathfrak{P}_{r} \in \mathbb{P}(F)$ be the prime divisors of F lying over \mathfrak{p}. Let $\pi: \mathcal{O}_{\mathfrak{P}} \rightarrow F_{\mathfrak{P}}$ be the corresponding projective map (that can be extended to a place) which extends the projection map $\pi: \mathcal{O}_{\mathfrak{p}} \rightarrow E_{\mathfrak{p}}$.
Let $F_{\mathfrak{P}, s}$ be the separable closure of $E_{\mathfrak{p}}$ in $F_{\mathfrak{P}}$.
Let $y \in \mathcal{O}_{\mathfrak{p}}^{\prime}$ be s.t.
(1) $v_{\mathfrak{P}_{j}}(y)>0$ for $j=2, \ldots, r$; and
(2) $\pi(y) \in F_{\mathfrak{P}, s}$.

Then,

$$
\pi\left(\operatorname{Tr}_{F / E}(y)\right)=e(\mathfrak{P} / \mathfrak{p}) \cdot \operatorname{Tr}_{F_{\mathfrak{P}, s} / E_{\mathfrak{p}}}(\pi(y))
$$

Technical lemma

Lemma 2

Assume F/E is Galois. Function field over a perfect field.

Technical lemma

Lemma 2

Assume F / E is Galois. Function field over a perfect field. Let $\mathfrak{p} \in \mathbb{P}(E)$ and $\mathfrak{P}=\mathfrak{P}_{1}, \ldots, \mathfrak{P}_{r} \in \mathbb{P}(F)$ be the prime divisors of F lying over \mathfrak{p}. Let $\pi: \mathcal{O}_{\mathfrak{P}} \rightarrow F_{\mathfrak{F}}$ be the corresponding projective map (that can be extended to a place) which extends the projection map $\pi: \mathcal{O}_{\mathfrak{p}} \rightarrow E_{p}$.

Technical lemma

Lemma 2

Assume F / E is Galois. Function field over a perfect field. Let $\mathfrak{p} \in \mathbb{P}(E)$ and $\mathfrak{P}=\mathfrak{P}_{1}, \ldots, \mathfrak{P}_{r} \in \mathbb{P}(F)$ be the prime divisors of F lying over \mathfrak{p}. Let $\pi: \mathcal{O}_{\mathfrak{P}} \rightarrow F_{\mathfrak{P}}$ be the corresponding projective map (that can be extended to a place) which extends the projection map $\pi: \mathcal{O}_{\mathfrak{p}} \rightarrow E_{\mathfrak{p}}$. Let $y \in \mathcal{O}_{\mathfrak{p}}^{\prime}$ be s.t.
(c) $v_{\mathfrak{P}_{j}}(y)>0$ for $j=2, \ldots, r$; and

Technical lemma

Lemma 2

Assume F / E is Galois. Function field over a perfect field. Let $\mathfrak{p} \in \mathbb{P}(E)$ and $\mathfrak{P}=\mathfrak{P}_{1}, \ldots, \mathfrak{P}_{r} \in \mathbb{P}(F)$ be the prime divisors of F lying over \mathfrak{p}. Let $\pi: \mathcal{O}_{\mathfrak{P}} \rightarrow F_{\mathfrak{F}}$ be the corresponding projective map (that can be extended to a place) which extends the projection map $\pi: \mathcal{O}_{\mathfrak{p}} \rightarrow E_{\mathfrak{p}}$. Let $y \in \mathcal{O}_{\mathfrak{p}}^{\prime}$ be s.t.
(1) $v_{\mathfrak{P}_{j}}(y)>0$ for $j=2, \ldots, r$; and

Then,

$$
\pi\left(\operatorname{Tr}_{\text {F/E }}(y)\right)=e(\mathfrak{P} / \mathfrak{p}) \cdot \operatorname{Tr}_{r_{\mathfrak{F}} / E_{\mathfrak{p}}}(\pi(y)) .
$$

Proof of Lemma 2

Proof
 Proof Recall then $\operatorname{Tr}_{F / E}(y)=\sum_{\sigma \in G} \sigma(y)$.

Proof of Lemma 2

Proof

Proof Recall then $\operatorname{Tr}_{F / E}(y)=\sum_{\sigma \in G} \sigma(y)$.
Let $\sigma \in \operatorname{Gal}(F / E)$ s.t $\sigma \mathfrak{P} \neq \mathfrak{P}$ or, equivalently, $\mathfrak{P}^{\prime}:=\sigma^{-1} \mathfrak{P} \neq \mathfrak{P}$.

Proof of Lemma 2

Proof

Proof Recall then $\operatorname{Tr}_{F / E}(y)=\sum_{\sigma \in G} \sigma(y)$.
Let $\sigma \in \operatorname{Gal}(F / E)$ s.t $\sigma \mathfrak{P} \neq \mathfrak{P}$ or, equivalently, $\mathfrak{P}^{\prime}:=\sigma^{-1} \mathfrak{P} \neq \mathfrak{P}$.
Since $\mathfrak{P}^{\prime} \neq \mathfrak{P}$ we have, per our assumption, that

Proof of Lemma 2

Proof

Proof Recall then $\operatorname{Tr}_{F / E}(y)=\sum_{\sigma \in G} \sigma(y)$.
Let $\sigma \in \operatorname{Gal}(F / E)$ s.t $\sigma \mathfrak{P} \neq \mathfrak{P}$ or, equivalently, $\mathfrak{P}^{\prime}:=\sigma^{-1} \mathfrak{P} \neq \mathfrak{P}$.
Since $\mathfrak{P}^{\prime} \neq \mathfrak{P}$ we have, per our assumption, that
$v_{\mathfrak{F}}(y)>0$ and so $v_{\sigma_{i}-1} \mathfrak{P}(y)>0$, and so

$$
v_{\mathfrak{P}}(\sigma y)=v_{\sigma^{-1} \mathfrak{P}}(y)>0 \quad \Longrightarrow \quad \sigma y \in \mathcal{O}_{\mathfrak{P}} \text { and } \pi(\sigma y)=0
$$

Proof of Lemma 2

Proof

Proof Recall then $\operatorname{Tr}_{F / E}(y)=\sum_{\sigma \in G} \sigma(y)$.
Let $\sigma \in \operatorname{Gal}(F / E)$ s.t $\sigma \mathfrak{P} \neq \mathfrak{P}$ or, equivalently, $\mathfrak{P}^{\prime}:=\sigma^{-1} \mathfrak{P} \neq \mathfrak{P}$.
Since $\mathfrak{P}^{\prime} \neq \mathfrak{P}$ we have, per our assumption, that
$v_{\mathfrak{F}}(y)>0$ and so $v_{\sigma_{i}-1} \mathfrak{P}(y)>0$, and so

$$
\begin{aligned}
& v_{\mathfrak{P}}(\sigma y)=v_{\sigma^{-1} \mathfrak{P}}(y)>0 \quad \Longrightarrow \quad \sigma y \in \mathcal{O}_{\mathfrak{P}} \text { and } \pi(\sigma y)=0 . \\
& \begin{aligned}
\pi\left(\operatorname{Tr}_{F / E}(y)\right) & =\sum_{i=1}^{n} \pi\left(\sigma_{i}(y)\right)=\sum_{\sigma_{i} \in \mathcal{D}} \pi\left(\sigma_{i}(y)\right) \\
= & \sum_{\alpha \in A u t\left(F_{\mathfrak{F}} / E_{p}\right)}\left|\left\{i \mid \sigma_{i} \in \mathcal{D}, \sigma_{i}=\alpha\right\}\right| \cdot \alpha(\pi(y)) .
\end{aligned} .
\end{aligned}
$$

Proof of Lemma 2

Proof

Proof Recall

$$
\left|\left\{i \mid \sigma_{i} \in \mathcal{D}, \sigma_{i}=\alpha\right\}\right|=I(\mathfrak{P} / \mathfrak{p})
$$

And

$$
e(\mathfrak{P} / p)=\frac{[F: E]_{i}}{\left[F_{\mathfrak{P}}: E_{\mathfrak{p}}\right]_{i}} I(\mathfrak{P} / \mathfrak{p}) .
$$

Proof of Lemma 2

Proof

Proof Recall

$$
\left|\left\{i \mid \sigma_{i} \in \mathcal{D}, \sigma_{i}=\alpha\right\}\right|=I(\mathfrak{P} / \mathfrak{p})
$$

And

$$
e(\mathfrak{P} / p)=\frac{[F: E]_{i}}{\left[F_{\mathfrak{F}}: E_{\mathfrak{p}}\right]_{i}} l(\mathfrak{P} / \mathfrak{p}) .
$$

Which implies

$$
\pi\left(\operatorname{Tr}_{F / E}(y)\right)=e(\mathfrak{P} / \mathfrak{p}) \sum_{\alpha \in \operatorname{Aut}\left(F_{\mathfrak{F}} / E_{p}\right)} \alpha(\pi(y))=e(\mathfrak{P} / \mathfrak{p}) \operatorname{Tr}_{F_{\mathfrak{F}} / E_{\mathfrak{p}}}(\pi(y))
$$

Proof of Lemma 1 - Key Ideas

Proof sketch]

Consider \hat{F} the Galois closure of F.

Proof of Lemma 1 - Key Ideas

Proof sketch]

Consider \hat{F} the Galois closure of F.
-

$$
\operatorname{Tr}_{F / E}(y)=\sum_{E-\text { embeddings }} \sigma(y)=\sum_{\hat{\sigma} \in \operatorname{Gal}(\hat{F} / E) \mid \text { diffrent on } F} \hat{\sigma}(y)
$$

Proof of Lemma 1 - Key Ideas

Proof sketch]

Consider \hat{F} the Galois closure of F.
-

$$
\operatorname{Tr}_{F / E}(y)=\sum_{E-\text { embeddings }} \sigma(y)=\sum_{\hat{\sigma} \in \operatorname{Gal}(\hat{F} / E) \mid \text { diffrent on } F} \hat{\sigma}(y) .
$$

- We want to be smart when we choose $\hat{\sigma}$. We set some $\hat{\mathfrak{P}} / \mathfrak{P}$ and if possible we take $\hat{\sigma} \in D(\hat{\mathfrak{P}} / \mathfrak{p})$.

Proof of Lemma 1 - Key Ideas

Proof sketch]

Consider \hat{F} the Galois closure of F.
-

$$
\operatorname{Tr}_{F / E}(y)=\sum_{E-\text { embeddings }} \sigma(y)=\sum_{\hat{\sigma} \in G_{a}(\hat{F} / E) \text { diffrent on } F} \hat{\sigma}(y) .
$$

- We want to be smart when we choose $\hat{\sigma}$. We set some $\hat{\mathfrak{P}} / \mathfrak{P}$ and if possible we take $\hat{\sigma} \in D(\hat{\mathfrak{P}} / \mathfrak{p})$. Then we note that $\pi(\hat{\sigma}(y))=\alpha(\pi(y))$ for some $\alpha \in E_{\mathfrak{p}}$ embedding of $F_{\mathfrak{F}, s}$.

Proof of Lemma 1 - Key Ideas

Proof sketch]

Consider \hat{F} the Galois closure of F.
-

$$
\operatorname{Tr}_{F / E}(y)=\sum_{E-\text { embeddings }} \sigma(y)=\sum_{\hat{\sigma} \in \operatorname{Gal}(\hat{F} / E) \mid \text { diffrent on } F} \hat{\sigma}(y)
$$

- We want to be smart when we choose $\hat{\sigma}$. We set some $\hat{\mathfrak{P}} / \mathfrak{P}$ and if possible we take $\hat{\sigma} \in D(\hat{\mathfrak{P}} / \mathfrak{p})$. Then we note that $\pi(\hat{\sigma}(y))=\alpha(\pi(y))$ for some $\alpha \in E_{\mathfrak{p}}$ embedding of $F_{\mathfrak{F}, s}$.
- We then argue that we can obtain any α in such manner, i.e. $\exists \hat{\sigma}$ s.t. $\pi(\hat{\sigma}(y))=\alpha(\pi(y))$.

Proof of Lemma 1 - Key Ideas

Proof sketch]
Consider \hat{F} the Galois closure of F.
-

$$
\operatorname{Tr}_{F / E}(y)=\sum_{E-\text { embeddings }} \sigma(y)=\sum_{\hat{\sigma} \in G a l(\hat{F} / E) \mid \text { diffrent on } F} \hat{\sigma}(y) .
$$

- We want to be smart when we choose $\hat{\sigma}$. We set some $\hat{\mathfrak{P}} / \mathfrak{P}$ and if possible we take $\hat{\sigma} \in D(\hat{\mathfrak{P}} / \mathfrak{p})$. Then we note that $\pi(\hat{\sigma}(y))=\alpha(\pi(y))$ for some $\alpha \in E_{\mathfrak{p}}$ embedding of $F_{\mathfrak{F}, \mathrm{s}}$.
- We then argue that we can obtain any α in such manner, i.e. $\exists \hat{\sigma}$ s.t. $\pi(\hat{\sigma}(y))=\alpha(\pi(y))$.
- We prove that for every α,

$$
\mid\{\hat{\sigma} \in \mathcal{D}(\hat{\mathfrak{P}} / \mathfrak{p} \mid \pi(\hat{\sigma}(y))=\alpha(\pi(y))\} \mid=e(\mathfrak{P} / \mathfrak{p}) .
$$

Valuation rings and their integral closures are PID

Theorem 3

For every \mathfrak{p} there exists a local integral basis for \mathfrak{p}, namely, a basis z_{1}, \ldots, z_{n} of F / E s.t.

$$
\mathcal{O}_{\mathfrak{p}}^{\prime}=\sum_{i=1}^{n} \mathcal{O}_{\mathfrak{p}} z_{i} .
$$

Proof

Let z_{1}, \ldots, z_{n} be any basis for F / E. As we saw in class that we can find a_{i} s.t. $a_{i} z_{i}$ is integral over O_{p}, we may assume that

$$
z_{1}, \ldots, z_{n} \in \mathcal{O}_{\mathfrak{p}}^{\prime}
$$

or equivalently,

$$
\sum_{j=1}^{n} \mathcal{O}_{\mathfrak{p}} z_{j} \subseteq \mathcal{O}_{\mathfrak{p}}^{\prime}
$$

Valuation rings and their integral closures are PID

> Proof
> z_{1}, \ldots, z_{n} is a basis for F / E s.t. $\sum_{j=1}^{n} \mathcal{O}_{\mathfrak{p}} z_{j} \subseteq \mathcal{O}_{\mathfrak{p}}^{\prime}$

Valuation rings and their integral closures are PID

Proof

z_{1}, \ldots, z_{n} is a basis for F / E s.t. $\sum_{j=1}^{n} \mathcal{O}_{\mathfrak{p}} z_{j} \subseteq \mathcal{O}_{p}^{\prime}$. The key step of the proof is proving, by induction on k, that $\exists u_{1}, \ldots, u_{n} \in \mathcal{O}_{p}^{\prime}$ s.t.

$$
\mathcal{O}_{\mathfrak{p}}^{\prime} \cap \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} z_{i}^{*}=\sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} u_{i} .
$$

Valuation rings and their integral closures are PID

Proof

z_{1}, \ldots, z_{n} is a basis for F / E s.t. $\sum_{j=1}^{n} \mathcal{O}_{\mathfrak{p}} z_{j} \subseteq \mathcal{O}_{\mathfrak{p}}^{\prime}$.
The key step of the proof is proving, by induction on k, that $\exists u_{1}, \ldots, u_{n} \in \mathcal{O}_{\mathfrak{p}}^{\prime}$ s.t.

$$
\mathcal{O}_{\mathfrak{p}}^{\prime} \cap \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} z_{i}^{*}=\sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} u_{i} .
$$

By a Claim from class, if $\sum_{j=1}^{n} \mathcal{O}_{\mathfrak{p}} z_{j} \subseteq \mathcal{O}_{\mathfrak{p}}^{\prime}$, then $\sum_{j=1}^{n} \mathcal{O}_{\mathfrak{p}} z_{j}^{*} \supseteq \mathcal{O}_{\mathfrak{p}}^{\prime}$.

Valuation rings and their integral closures are PID

Proof

z_{1}, \ldots, z_{n} is a basis for F / E s.t. $\sum_{j=1}^{n} \mathcal{O}_{\mathfrak{p}} z_{j} \subseteq \mathcal{O}_{\mathfrak{p}}^{\prime}$.
The key step of the proof is proving, by induction on k, that $\exists u_{1}, \ldots, u_{n} \in \mathcal{O}_{\mathfrak{p}}^{\prime}$ s.t.

$$
\mathcal{O}_{\mathfrak{p}}^{\prime} \cap \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} z_{i}^{*}=\sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} u_{i}
$$

By a Claim from class, if $\sum_{j=1}^{n} \mathcal{O}_{\mathfrak{p}} z_{j} \subseteq \mathcal{O}_{\mathfrak{p}}^{\prime}$, then $\sum_{j=1}^{n} \mathcal{O}_{\mathfrak{p}} z_{j}^{*} \supseteq \mathcal{O}_{\mathfrak{p}}^{\prime}$. Thus, if we will prove the above, by setting $k=n$, we can conclude that

$$
\mathcal{O}_{\mathfrak{p}}^{\prime}=\sum_{i=1}^{n} \mathcal{O}_{\mathfrak{p}} u_{i}
$$

which will almost prove the lemma (we still have to show that u_{1}, \ldots, u_{n} is a basis of F / E).

Valuation rings and their integral closures are PID

Proof

So, we wish to prove by induction on k, that $\exists u_{1}, \ldots, u_{n} \in \mathcal{O}_{\mathfrak{p}}^{\prime}$ s.t

$$
\mathcal{O}_{\mathfrak{p}}^{\prime} \cap \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} z_{i}^{*}=\sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} u_{i} .
$$

The base case $k=0$ is trivial (empty sum is 0).

Valuation rings and their integral closures are PID

Proof

So, we wish to prove by induction on k, that $\exists u_{1}, \ldots, u_{n} \in \mathcal{O}_{\mathfrak{p}}^{\prime}$ s.t

$$
\mathcal{O}_{\mathfrak{p}}^{\prime} \cap \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} z_{i}^{*}=\sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} u_{i}
$$

The base case $k=0$ is trivial (empty sum is 0).
Say that $u_{1}, \ldots, u_{k-1} \in \mathcal{O}_{\mathfrak{p}}^{\prime}$ satisfy that

$$
\mathcal{O}_{\mathfrak{p}}^{\prime} \cap \sum_{i=1}^{k-1} \mathcal{O}_{\mathfrak{p}} z_{i}^{*}=\sum_{i=1}^{k-1} \mathcal{O}_{\mathfrak{p}} u_{i}
$$

Valuation rings and their integral closures are PID

Proof

So, we wish to prove by induction on k, that $\exists u_{1}, \ldots, u_{n} \in \mathcal{O}_{\mathfrak{p}}^{\prime}$ s.t

$$
\mathcal{O}_{\mathfrak{p}}^{\prime} \cap \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} z_{i}^{*}=\sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} u_{i}
$$

The base case $k=0$ is trivial (empty sum is 0).
Say that $u_{1}, \ldots, u_{k-1} \in \mathcal{O}_{\mathfrak{p}}^{\prime}$ satisfy that

$$
\mathcal{O}_{\mathfrak{p}}^{\prime} \cap \sum_{i=1}^{k-1} \mathcal{O}_{\mathfrak{p}} z_{i}^{*}=\sum_{i=1}^{k-1} \mathcal{O}_{\mathfrak{p}} u_{i}
$$

Define

$$
J=\left\{a_{k} \in \mathcal{O}_{\mathfrak{p}} \mid \exists a_{1}, \ldots, a_{k-1} \in \mathcal{O}_{\mathfrak{p}} \quad \text { s.t. } \quad a_{1} z_{1}^{*}+\cdots+a_{k} z_{k}^{*} \in \mathcal{O}_{\mathfrak{p}}^{\prime}\right\}
$$

Observe that J is an ideal of \mathcal{O}_{p}.

Valuation rings and their integral closures are PID

Proof

$$
J=\left\{a_{k} \in \mathcal{O}_{\mathfrak{p}} \mid \exists a_{1}, \ldots, a_{k-1} \in \mathcal{O}_{\mathfrak{p}} \text { s.t. } \quad a_{1} z_{1}^{*}+\cdots+a_{k} z_{k}^{*} \in \mathcal{O}_{\mathfrak{p}}^{\prime}\right\} .
$$

Valuation rings and their integral closures are PID

Proof

$$
J=\left\{a_{k} \in \mathcal{O}_{\mathfrak{p}} \mid \exists a_{1}, \ldots, a_{k-1} \in \mathcal{O}_{\mathfrak{p}} \text { s.t. } \quad a_{1} z_{1}^{*}+\cdots+a_{k} z_{k}^{*} \in \mathcal{O}_{\mathfrak{p}}^{\prime}\right\} .
$$

As, $\mathcal{O}_{\mathfrak{p}}$ is a PID, we can write

$$
\exists a_{k} \in J \quad J=a_{k} \mathcal{O}_{p}
$$

Valuation rings and their integral closures are PID

Proof

$$
J=\left\{a_{k} \in \mathcal{O}_{\mathfrak{p}} \mid \exists a_{1}, \ldots, a_{k-1} \in \mathcal{O}_{\mathfrak{p}} \text { s.t. } \quad a_{1} z_{1}^{*}+\cdots+a_{k} z_{k}^{*} \in \mathcal{O}_{\mathfrak{p}}^{\prime}\right\} .
$$

As, $\mathcal{O}_{\mathfrak{p}}$ is a PID, we can write

$$
\exists a_{k} \in J \quad J=a_{k} \mathcal{O}_{p}
$$

Let $a_{1}, \ldots, a_{k-1} \in \mathcal{O}_{p}$ s.t.

$$
u_{k}=a_{1} z_{1}^{*}+\cdots+a_{k} z_{k}^{*} \in \mathcal{O}_{\mathfrak{p}}^{\prime}
$$

Valuation rings and their integral closures are PID

Proof

$$
J=\left\{a_{k} \in \mathcal{O}_{\mathfrak{p}} \mid \exists a_{1}, \ldots, a_{k-1} \in \mathcal{O}_{\mathfrak{p}} \text { s.t. } \quad a_{1} z_{1}^{*}+\cdots+a_{k} z_{k}^{*} \in \mathcal{O}_{\mathfrak{p}}^{\prime}\right\} .
$$

As, $\mathcal{O}_{\mathfrak{p}}$ is a PID, we can write

$$
\exists a_{k} \in J \quad J=a_{k} \mathcal{O}_{p}
$$

Let $a_{1}, \ldots, a_{k-1} \in \mathcal{O}_{\mathfrak{p}}$ s.t.

$$
u_{k}=a_{1} z_{1}^{*}+\cdots+a_{k} z_{k}^{*} \in \mathcal{O}_{\mathfrak{p}}^{\prime}
$$

By the choice of u_{k} and by the induction hypothesis, we get that

$$
\mathcal{O}_{\mathfrak{p}}^{\prime} \cap \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} z_{i}^{*} \supseteq \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} u_{i}
$$

Valuation rings and their integral closures are PID

Proof

On the other direction, take

$$
z \in \mathcal{O}_{\mathfrak{p}}^{\prime} \cap \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} z_{i}^{*}
$$

Write

$$
z=b_{1} z_{1}^{*}+\cdots+b_{k} z_{k}^{*} \quad \text { with } \quad b_{1}, \ldots, b_{k} \in \mathcal{O}_{p} .
$$

Valuation rings and their integral closures are PID

Proof

On the other direction, take

$$
z \in \mathcal{O}_{\mathfrak{p}}^{\prime} \cap \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} z_{i}^{*}
$$

Write

$$
z=b_{1} z_{1}^{*}+\cdots+b_{k} z_{k}^{*} \quad \text { with } \quad b_{1}, \ldots, b_{k} \in \mathcal{O}_{p}
$$

Thus, $b_{k} \in J=a_{k} \mathcal{O}_{\mathfrak{p}}$ and so $\exists c \in \mathcal{O}_{\mathfrak{p}}$ s.t. $b_{k}=c a_{k}$. Recall that

$$
u_{k}=a_{1} z_{1}^{*}+\cdots+a_{k} z_{k}^{*} \in \mathcal{O}_{\mathfrak{p}}^{\prime}
$$

Valuation rings and their integral closures are PID

Proof

On the other direction, take

$$
z \in \mathcal{O}_{\mathfrak{p}}^{\prime} \cap \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} z_{i}^{*}
$$

Write

$$
z=b_{1} z_{1}^{*}+\cdots+b_{k} z_{k}^{*} \quad \text { with } \quad b_{1}, \ldots, b_{k} \in \mathcal{O}_{p}
$$

Thus, $b_{k} \in J=a_{k} \mathcal{O}_{\mathfrak{p}}$ and so $\exists c \in \mathcal{O}_{\mathfrak{p}}$ s.t. $b_{k}=c a_{k}$. Recall that

$$
u_{k}=a_{1} z_{1}^{*}+\cdots+a_{k} z_{k}^{*} \in \mathcal{O}_{\mathfrak{p}}^{\prime}
$$

As $z, u_{k} \in \mathcal{O}_{\mathfrak{p}}^{\prime}$ we have that

$$
\begin{aligned}
z-c u_{k} & =\left(b_{1}-c a_{1}\right) z_{1}^{*}+\cdots+\left(b_{k-1}-c a_{k-1}\right) z_{k-1}^{*} \\
& \in \mathcal{O}_{\mathfrak{p}}^{\prime} \cap \sum_{i=1}^{k-1} \mathcal{O}_{\mathfrak{p}} z_{i}^{*}=\sum_{i=1}^{k-1} \mathcal{O}_{\mathfrak{p}} u_{i} .
\end{aligned}
$$

Valuation rings and their integral closures are PID

Proof

We conclude that

$$
z \in \sum_{i=1}^{k} \mathcal{O}_{\mathfrak{p}} u_{i}
$$

which proves the claim. Namely, $\exists u_{1}, \ldots, u_{n} \in \mathcal{O}_{\mathfrak{p}}^{\prime}$ s.t.

$$
\mathcal{O}_{\mathfrak{p}}^{\prime} \cap \sum_{i=1}^{n} \mathcal{O}_{\mathfrak{p}} z_{i}^{*}=\sum_{i=1}^{n} \mathcal{O}_{\mathfrak{p}} u_{i}
$$

and so

$$
\mathcal{O}_{\mathfrak{p}}^{\prime}=\sum_{i=1}^{n} \mathcal{O}_{\mathfrak{p}} u_{i}
$$

It remains to show that u_{1}, \ldots, u_{n} is a basis of F / E.

Valuation rings and their integral closures are PID

Proof.

Take $z \in F$. As z is algebraic over E, as before,

$$
\exists b \in \mathcal{O}_{\mathfrak{p}} \quad \text { s.t. } \quad b z \in \mathcal{O}_{\mathfrak{p}}^{\prime} .
$$

Valuation rings and their integral closures are PID

Proof.

Take $z \in F$. As z is algebraic over E, as before,

$$
\exists b \in \mathcal{O}_{\mathfrak{p}} \quad \text { s.t. } \quad b z \in \mathcal{O}_{\mathfrak{p}}^{\prime} .
$$

That is, every element z of F is of the form $\frac{a}{b}$ for $a \in \mathcal{O}_{\mathfrak{p}}^{\prime}, 0 \neq b \in \mathcal{O}_{p}$. Now,

$$
a=\sum_{i=1}^{n} c_{i} u_{i}
$$

for some $c_{1}, \ldots, c_{n} \in \mathcal{O}_{\mathfrak{p}}$ and so

$$
z=\frac{a}{b}=\sum_{i=1}^{n} \frac{c_{i}}{b} u_{i} .
$$

Valuation rings and their integral closures are PID

Proof.

Take $z \in F$. As z is algebraic over E, as before,

$$
\exists b \in \mathcal{O}_{\mathfrak{p}} \quad \text { s.t. } \quad b z \in \mathcal{O}_{\mathfrak{p}}^{\prime} .
$$

That is, every element z of F is of the form $\frac{a}{b}$ for $a \in \mathcal{O}_{\mathfrak{p}}^{\prime}, 0 \neq b \in \mathcal{O}_{p}$. Now,

$$
a=\sum_{i=1}^{n} c_{i} u_{i}
$$

for some $c_{1}, \ldots, c_{n} \in \mathcal{O}_{\mathfrak{p}}$ and so

$$
z=\frac{a}{b}=\sum_{i=1}^{n} \frac{c_{i}}{b} u_{i} .
$$

Since $c_{i}, b \in \mathcal{O}_{p}$ we have that $\frac{c_{i}}{b} \in E$, and so $F=\sum_{i=1}^{n} E u_{i}$.

Valuation rings and their integral closures are PID

Proof.

Take $z \in F$. As z is algebraic over E, as before,

$$
\exists b \in \mathcal{O}_{\mathfrak{p}} \quad \text { s.t. } \quad b z \in \mathcal{O}_{\mathfrak{p}}^{\prime} .
$$

That is, every element z of F is of the form $\frac{a}{b}$ for $a \in \mathcal{O}_{\mathfrak{p}}^{\prime}, 0 \neq b \in \mathcal{O}_{p}$. Now,

$$
a=\sum_{i=1}^{n} c_{i} u_{i}
$$

for some $c_{1}, \ldots, c_{n} \in \mathcal{O}_{\mathfrak{p}}$ and so

$$
z=\frac{a}{b}=\sum_{i=1}^{n} \frac{c_{i}}{b} u_{i} .
$$

Since $c_{i}, b \in \mathcal{O}_{\mathfrak{p}}$ we have that $\frac{c_{i}}{b} \in E$, and so $F=\sum_{i=1}^{n} E u_{i}$. This shows that u_{1}, \ldots, u_{n} spans F over E. The proof follows as $[E: F]=n$.

