Places	
Unit 6	

Gil Cohen

November 15, 2024

Gil Cohen Places

イロン イ団 と イヨン イヨン

So far

all rational functions that can be evaluated at p Valuation rings 6_P Congruence class 20 Valuations Maximal ideals VP Mp zero/pole order of all rational functions the function at p that vanish at p Places Co The evaluation Map э

Places

- Trivial and equivalent places
- 4 Basic properties
- 5 The residue field
- 6 Places and valuation rings

Example

2

★ 문 ► ★ 문 ► ...

Adjoining ∞ to a field

Let K be a field. We adjoin to K an element ∞ and extend the operations so that

$$\begin{aligned} \forall a \in \mathsf{K} & a \pm \infty = \pm \infty + a = \infty \\ \forall a \in \mathsf{K}^{\times} & a \cdot \infty = \infty \cdot a = \infty \cdot \infty = \infty \\ \forall a \in \mathsf{K} & \frac{a}{\infty} = 0 \\ \forall a \in \mathsf{K}^{\times} & \frac{a}{0} = \infty. \end{aligned}$$

Moreover, the expressions

$$\infty \pm \infty$$
 $0 \cdot \infty$ $\infty \cdot 0$ $\frac{0}{0}$ $\frac{\infty}{\infty}$

are undefined.

You should think of *a* as the result of an evaluation and interpret ∞ as evaluation was impossible due to a pole.

イロト 不同 トイヨト イヨト

In the definition, think of ${\sf F}$ as a field of functions whereas ${\sf K}$ is the field of possible evaluation outcomes at some fixed point.

Definition 1 (Place)

Let F, K be fields. A map

$$\varphi:\mathsf{F}\to\mathsf{K}\cup\{\infty\}$$

is called a place if

$$\bigcirc \ \varphi(1) = 1$$

- $\circ \varphi(ab) = \varphi(a)\varphi(b) \text{ whenever } \{\varphi(a),\varphi(b)\} \neq \{0,\infty\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Places

- Trivial and equivalent places
- 4 Basic properties
- 5 The residue field
- 6 Places and valuation rings

7 Example

回とくほとくほど

For a prime p let \mathbb{F}_p be the field of size p. Recall that $\mathbb{F}_p \cong \mathbb{Z}/p\mathbb{Z}$. Denote by $\psi : \mathbb{Z} \to \mathbb{F}_p$ the projection map $\psi(z) = z + p\mathbb{Z}$.

We extend the ring homomorphism $\boldsymbol{\psi}$ to a place

$$\varphi: \mathbb{Q} \to \mathbb{F}_p \cup \{\infty\}$$

as follows:

Given $q \in \mathbb{Q}$ write $q = \frac{a}{b}$ with $a, b \in \mathbb{Z}$ coprime.

Define,

$$arphi(q) = egin{cases} rac{\psi(a)}{\psi(b)}, & p ext{ does not divide } b; \ \infty, & ext{ otherwise.} \end{cases}$$

I leave it for you as an exercise to show that φ is indeed a place.

イロト 不得 トイヨト イヨト 二日

Let E be a field and $p(x) \in E[x]$ irreducible. Let

$$\psi: \mathsf{E}[x] \to \mathsf{L} = \mathsf{E}[x] / \langle p(x) \rangle$$

be the projection map $\psi(f(x)) = f(x) + \langle p(x) \rangle$.

We extend the ring homomorphism ψ to a place

$$\varphi:\mathsf{E}(x)\to\mathsf{L}\cup\{\infty\}$$

as follows: Given $f(x) \in E(x)$ write $f(x) = \frac{a(x)}{b(x)}$ with $a(x), b(x) \in E[x]$ coprime, and define

$$\varphi(f(x)) = \begin{cases} \frac{\psi(a(x))}{\psi(b(x))}, & p(x) \text{ does not divide } b(x); \\ \infty, & \text{otherwise.} \end{cases}$$

▲圖 医 ▲ 国 医 ▲ 国 医 …

Recall that

$$\psi: \mathsf{E}[x] \to \mathsf{L} = \mathsf{E}[x] / \langle \rho(x) \rangle$$

is the projection map $\psi(f(x)) = f(x) + \langle p(x) \rangle$.

In the special case $p(x) = x - \alpha$ we can think of ψ as "evaluating at α " since then

$$\psi: \mathsf{E}[x] \to \mathsf{L} = \mathsf{E}[x] / \langle x - \alpha \rangle \cong \mathsf{E},$$

and for every $f(x) \in E[x]$,

$$\psi(f(x)) = f(x) + \langle x - \alpha \rangle = f(\alpha) + \langle x - \alpha \rangle.$$

Moreover, note that $f(\alpha)$ is the only representative in the coset $\psi(f(x))$ that is an element of E.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Places - examples

Example

$$\psi: \mathsf{E}[x] \to \mathsf{L} = \mathsf{E}[x] / \langle x - \alpha \rangle \cong \mathsf{E}.$$

Now, $\varphi:\mathsf{E}(x)\to\mathsf{L}\cup\{\infty\}$ is given by

$$\begin{split} \varphi(f(x)) &= \begin{cases} \frac{\psi(a(x))}{\psi(b(x))}, & x - \alpha \text{ does not divide } b(x); \\ \infty, & \text{otherwise.} \end{cases} \\ &= \begin{cases} \frac{a(\alpha) + \langle x - \alpha \rangle}{b(\alpha) + \langle x - \alpha \rangle}, & b(\alpha) \neq 0; \\ \infty, & \text{otherwise.} \end{cases} \end{split}$$

Under the identification of L with E as given by

$$g(x) + \langle x - \alpha \rangle \quad \longleftrightarrow \quad g(\alpha),$$

we can write

$$arphi(f(x)) = egin{cases} rac{a(lpha)}{b(lpha)}, & b(lpha)
eq 0; \ \infty, & ext{otherwise.} \end{cases}$$

Places

2 Examples

- Trivial and equivalent places
- Basic properties
- 5 The residue field
- 6 Places and valuation rings

7 Example

回 とう キャック キャン

æ

A quick reminder re field homomorphisms.

A field homomorphism $\psi : \mathsf{F} \to \mathsf{K}$ is always a monomorphism. Indeed, as ψ is a ring homomorphism, ker ψ is an ideal of F . The only ideals of F are 0 and F . But $\varphi(1) = 1$ and so $1 \notin \ker \psi$. Thus, ker $\psi = 0$, implying ψ is a monomorphism.

By the above remark, ψ is thought of as a field embedding $F \hookrightarrow K$. Namely, we can identify F with $\varphi(F) \subseteq K$.

Definition 2

A place $\varphi : \mathsf{F} \to \mathsf{K} \cup \{\infty\}$ is called trivial if $\varphi(a) \neq \infty$ for all $a \in \mathsf{F}$.

By the above reminder, a trivial place is a field embedding, and vice versa.

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Definition 3

Two places $\varphi : F \to K \cup \{\infty\}$, $\varphi' : F \to K' \cup \{\infty\}$ are equivalent if $\forall a \in F$,

$$\varphi(a) \neq \infty \quad \iff \quad \varphi'(a) \neq \infty.$$

We note that a trivial place $\varphi : F \to K \cup \{\infty\}$ is equivalent to the identity field isomorphism $id_F : F \to F$.

For distinct $\alpha, \beta \in K$, the places $\varphi_{\alpha}, \varphi_{\beta}$ of K(x) that correspond to $x - \alpha$ and $x - \beta$ are not equivalent. Indeed,

$$\varphi_{\alpha}\left(\frac{1}{x-\alpha}\right) = \infty \qquad \varphi_{\beta}\left(\frac{1}{x-\alpha}\right) = \frac{1}{\beta-\alpha}.$$

So, distinct points in the field K give rise to distinct places of K(x). Same holds for any two distinct irreducible polynomials.

イロン 不同 とくほう イヨン しほう

Places

2 Examples

- Trivial and equivalent places
- 4 Basic properties
- 5 The residue field
- 6 Places and valuation rings

7 Example

回 ト イヨト イヨト

Claim 4

Let $\varphi: \mathsf{F} \to \mathsf{K} \cup \{\infty\}$ be a place. Then,

Proof.

As for Item (1),

$$arphi(1)=arphi(1+0)=arphi(1)+arphi(0) \quad \Rightarrow \quad arphi(0)=0.$$

<ロ> <四> <四> <四> <三</p>

$$arphi(1)=arphi(1+0)=arphi(1)+arphi(0) \quad \Rightarrow \quad arphi(0)=0.$$

In the above derivation there are two subtleties:

- $\ \ \, {\bf Q} \ \ \, \varphi(1)=1\neq\infty \ \, {\rm and} \ \, {\rm so \ the \ second \ equality \ holds}.$
- ⁽²⁾ The implication follows by "canceling $\varphi(1)$ ". However, we should be careful. $\varphi(1) = 1$ and so we need to show that

$$1 = 1 + \varphi(0) \quad \Rightarrow \quad \varphi(0) = 0.$$

If $\varphi(0) = \infty$ then $1 = 1 + \infty$ - a contradiction. Thus, $\varphi(0) \neq \infty$ and so the entire expression is in the field K which allows us to substract 1 and deduce $\varphi(0) = 0$.

イロン 不同 とくほう イヨン しほう

As for the second item, if $\varphi(a) \neq \infty$ then

$$0 = \varphi(0) = \varphi(a + (-a)) = \varphi(a) + \varphi(-a).$$

Now, if $\varphi(-a) = \infty$ then we would get

$$0=\varphi(a)+\infty$$

a contradiction. Thus, $\varphi(-a) \in \mathsf{K}$, implying $\varphi(-a) = -\varphi(a)$.

If on the other hand $\varphi(a) = \infty$ and $\varphi(-a) \neq \infty$ then the RHS is $\infty \neq 0$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

To prove the third item, we recall that

$$\varphi(a) \neq \infty \quad \iff \quad a \in \mathsf{K}.$$

Thus, our assumption implies that $a, b \in K$, and so $a + b \in K$. This then implies $\varphi(a + b) \neq \infty$.

イロト イポト イヨト イヨト

э

As for the fourth item,

$$1=\varphi(1)=\varphi(aa^{-1}).$$

If $\varphi(a) = \infty$ and $\varphi(a^{-1}) \neq 0$ then

$$1 = \varphi(aa^{-1}) = \varphi(a)\varphi(a^{-1}) = \infty.$$

Hence, $\varphi(a) = \infty \implies \varphi(a^{-1}) = 0.$

On the other hand, if $\varphi(a^{-1}) = 0$ and $\varphi(a) = c \neq \infty$ then

$$1 = \varphi(a)\varphi(a^{-1}) = c \cdot 0 = 0$$

which again is a contradiction.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Places

2 Examples

- 3 Trivial and equivalent places
- 4 Basic properties
- 5 The residue field
- 6 Places and valuation rings

7 Example

▲御▶ ▲ 臣▶ ▲ 臣▶

Claim 5

Let $\varphi: F \to K \cup \{\infty\}$ be a place. Then, $\overline{F} = \varphi(F) \setminus \{\infty\}$ is a subfield of K.

Proof.

It easy to see that $\overline{\mathsf{F}}$ is closed under addition and multiplication. E.g., if $\alpha, \beta \in \overline{\mathsf{F}}$ then $\exists a, b \in \mathsf{F}$ s.t. $\alpha = \varphi(a), \beta = \varphi(b)$. Thus,

$$\alpha + \beta = \varphi(a) + \varphi(b) = \varphi(a + b),$$

and so $\alpha + \beta \in \overline{\mathsf{F}}$.

Similarly, \overline{F} is closed under negation.

イロト 不得 トイヨト イヨト 二日

It is left to show $\bar{F} \setminus \{0\}$ is closed under multiplicative inverse.

Let $\alpha \in \overline{\mathsf{F}} \setminus \{0\}$ and let $a \in \mathsf{F}$ s.t. $\varphi(a) = \alpha$. Note that $\varphi(a^{-1}) \neq \infty$ as otherwise, Claim 4 would imply $\varphi(a) = 0$.

Thus,

$$\alpha^{-1} = \varphi(\mathbf{a})^{-1} = \varphi(\mathbf{a}^{-1}) \in \bar{\mathsf{F}},$$

where the last equality follows since

$$1 = \varphi(1) = \varphi(a \cdot a^{-1}) = \varphi(a)\varphi(a^{-1}),$$

where for the last equality we used the fact that $\varphi(a) \neq 0$. Lastly, we recall that $\varphi(1) = 1$ and so $1 \in \overline{F}$.

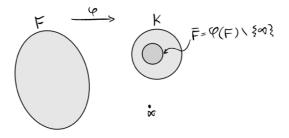
イロト イヨト イヨト 一日

Definition 6 (The residue field)

Let $\varphi : \mathsf{F} \to \mathsf{K} \cup \{\infty\}$ be a place. The field,

$$\bar{\mathsf{F}} = \varphi(\mathsf{F}) \setminus \{\infty\}$$

is called the residue field of φ .



Places

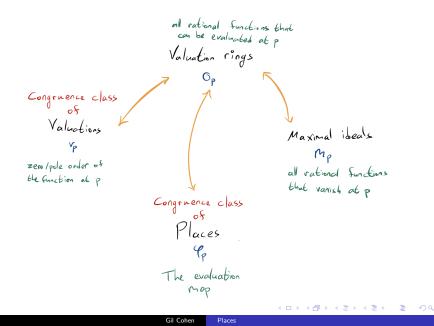
2 Examples

- 3 Trivial and equivalent places
- 4 Basic properties
- 5 The residue field
- 6 Places and valuation rings

7 Example

▲御▶ ▲ 臣▶ ▲ 臣▶

æ

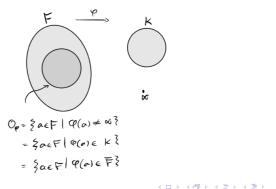


Claim 7

Let $\varphi: \mathsf{F} \to \mathsf{K} \cup \{\infty\}$ be a place. Then,

$$\mathcal{O}_{arphi} = \{ \mathbf{a} \in \mathsf{F} \mid arphi(\mathbf{a})
eq \infty \}$$

is a valuation ring with $\operatorname{Frac} \mathcal{O}_{\varphi} = \mathsf{F}.$



First, $\varphi(1) = 1$ by the definition of a place and so $1 \in \mathcal{O}_{\varphi}$.

To prove that \mathcal{O}_{φ} is closed under addition, we use Claim 4 to get

$$egin{aligned} \mathsf{a}, \mathsf{b} \in \mathcal{O}_arphi & \Longleftrightarrow & arphi(\mathsf{a}), arphi(\mathsf{b})
eq \infty \ & \Rightarrow & arphi(\mathsf{a}+\mathsf{b})
eq \infty \ & \Leftrightarrow & \mathsf{a}+\mathsf{b} \in \mathcal{O}_arphi. \end{aligned}$$

That \mathcal{O}_{φ} is closed under multiplication is proven by a similar argument. Thus, \mathcal{O}_{φ} is a subring of F.

We turn to prove that \mathcal{O}_{φ} is a valuation ring with field of fractions F.

Take $a \in F^{\times}$ with $a \notin \mathcal{O}_{\varphi}$. Then, $\varphi(a) = \infty$ and so, by Claim 4, $\varphi(a^{-1}) = 0 \neq \infty$. Thus, $a^{-1} \in \mathcal{O}_{\varphi}$. We further conclude that Frac $\mathcal{O}_{\varphi} = F$.

イロト 不得 トイヨト イヨト 二日

Claim 8

Let $\varphi : \mathsf{F} \to \mathsf{K} \cup \{\infty\}$ be a place. Then,

$$egin{array}{lll} \mathcal{O}_arphi^ imes = \{ a \in \mathsf{F} ~|~ arphi(a)
ot\in \{0,\infty\} \} \ &= \{ a \in \mathcal{O}_arphi ~|~ arphi(a)
ot\neq 0 \} \ &= \mathcal{O}_arphi \setminus \ker arphi. \end{array}$$

Proof.

By Claim 4,

$$egin{aligned} \mathbf{a} \in \mathcal{O}_{arphi}^{ imes} & \iff & \mathbf{a}, \mathbf{a}^{-1} \in \mathcal{O}_{arphi} \ & \iff & arphi(\mathbf{a}), arphi(\mathbf{a}^{-1})
eq \infty \ & \iff & arphi(\mathbf{a})
otin \{\mathbf{0}, \infty\}. \end{aligned}$$

イロン イ団 と イヨン イヨン

Claim 9

Let $\varphi, \varphi' : \mathsf{F} \to \mathsf{K} \cup \{\infty\}$ be equivalent places. Then,

$$\mathcal{O}_{\varphi} = \mathcal{O}_{\varphi'}.$$

Proof.

This is straightforward by definition. Indeed,

$$\mathcal{O}_{\varphi} = \{ \mathbf{a} \in \mathsf{F} \mid \varphi(\mathbf{a}) \neq \infty \}$$
$$= \{ \mathbf{a} \in \mathsf{F} \mid \varphi'(\mathbf{a}) \neq \infty \}$$
$$= \mathcal{O}_{\varphi'}.$$

Let K, F be fields and let $\varphi : F \to K \cup \{\infty\}$ be a place. We denote by $[\varphi]$ the equivalent class of φ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

Theorem 10

The map

$$[\varphi] \mapsto \mathcal{O}_{\varphi}$$

is a bijection between the congruence classes of places of ${\sf F}$ and valuation rings with fraction field ${\sf F}.$

Proof.

First, by Claim 9, the map is well-defined.

The one to one property is obvious. We prove that the mapping is onto.

Let R be a valuation ring with $\mathsf{Frac}\,R=\mathsf{F}.$ Let $\mathfrak m$ be R's maximal ideal and let $\mathsf{K}=\mathsf{R}/\mathfrak m.$

We extend the projection map $\psi : \mathsf{R} \to \mathsf{K}$ to F by setting $\psi(a) = \infty$ for all $a \in \mathsf{F} \setminus \mathsf{R}$. We turn to show that ψ is a place.

イロト 不得 トイヨト イヨト

Let $a, b \in F$. We wish to show that

$$\psi(\mathbf{a} + \mathbf{b}) = \psi(\mathbf{a}) + \psi(\mathbf{b})$$

whenever (at least) one of $\psi(a), \psi(b)$ is not ∞ .

Case 1. $\psi(a), \psi(b) \neq \infty$ immediately follows.

Case 2. $\psi(a) \neq \infty$ and $\psi(b) = \infty$. Then,

$$\psi(a) + \psi(b) = \psi(a) + \infty = \infty.$$

On the other hand, $a + b \notin \mathbb{R}$ as otherwise $b = (a + b) - a \in \mathbb{R}$, and so $\psi(a + b) = \infty$.

イロト 不得 トイヨト イヨト 二日

We turn to show that $\psi(ab) = \psi(a)\psi(b)$ when $\{\psi(a), \psi(b)\} \neq \{0, \infty\}$.

Case 1. $\psi(a), \psi(b) \neq \infty$ immediately follows.

Case 2. $\psi(a) = \infty$ and $\psi(b) \neq 0$. Then, $a \notin R$. Further,

$$\psi(b^{-1}) \neq \infty$$

as otherwise $\psi(b) = 0$. Thus, $b^{-1} \in \mathbb{R}$. Now, if $\psi(ab) \neq \infty$ then $ab \in \mathbb{R}$ and so

$$a = (ab)b^{-1} \in \mathsf{R},$$

in contradiction to $a \notin R$. Thus,

$$\psi(ab) = \infty = \psi(a)\psi(b).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Places

2 Examples

- Trivial and equivalent places
- 4 Basic properties
- 5 The residue field
- 6 Places and valuation rings

回 ト イヨト イヨト

Recall the example from the previous unit. Let $K = \mathbb{F}_q$, let

$$f(x,y) = y^2 - x^3 + x \in K[x,y],$$

and consider the domain

$$C_f = \mathsf{K}[x,y] \Big/ \langle f(x,y) \rangle$$

whose field of fractions is denoted by $K_f = Frac C_f$. We proved that

$$\mathcal{O}_{o} = \left\{ \frac{a(x)}{b(x)} + y \frac{c(x)}{d(x)} \mid b(0), d(0) \neq 0 \right\},$$

with the understanding that $a(T), b(T) \in K[T]$ are coprime and so are $c(T), d(T) \in K[T]$. Moreover,

$$\mathfrak{m}_{o} = \left\{ rac{a(x)}{b(x)} + y rac{c(x)}{d(x)} \mid b(0), d(0) \neq 0 \text{ and } a(0) = 0
ight\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

$$\begin{aligned} \mathcal{O}_{o} &= \left\{ \frac{a(x)}{b(x)} + y \frac{c(x)}{d(x)} \mid b(0), d(0) \neq 0 \right\}, \\ \mathfrak{m}_{o} &= \left\{ \frac{a(x)}{b(x)} + y \frac{c(x)}{d(x)} \mid b(0), d(0) \neq 0 \text{ and } a(0) = 0 \right\}. \end{aligned}$$

We claim that $\mathcal{O}_o \big/ \mathfrak{m}_o \cong K$. Indeed, consider the ring homomorphism

$$\psi:\mathcal{O}_{o}
ightarrow\mathsf{K}$$

 $rac{a(x)}{b(x)}+yrac{c(x)}{d(x)}
ightarrowrac{a(0)}{b(0)}.$

 ψ is well-defined as $b(0) \neq 0$ for every element of \mathcal{O}_{o} . Clearly, ker $\psi = \mathfrak{m}_{o}$, and so $\mathcal{O}_{o} / \mathfrak{m}_{o} \cong K$ by the first isomorphism theorem.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Following the proof of Theorem 10, we extend the projection map

$$\psi: \mathcal{O}_{\mathfrak{o}} \to \mathsf{K}$$

to

$$\varphi_{\mathfrak{o}}:\mathsf{K}_{f}\to\mathsf{K}$$

by setting $\varphi_{o}(a) = \infty$ for all $a \in K_{f} \setminus \mathcal{O}_{o}$.

Thus,

$$\varphi_{o}\left(\frac{a(x)}{b(x)} + y\frac{c(x)}{d(x)}\right) = \begin{cases} \frac{a(0)}{b(0)}, & b(0) \neq 0 \text{ and } d(0) \neq 0; \\ \infty, & \text{otherwise.} \end{cases}$$