The Riemann-Roch Theorem and Its Consequences Unit 15

Gil Cohen

December 24, 2024

æ

< ∃ >

- The Riemann-Roch Theorem
- 2 Classification of degree 0, 2g 2 divisors
- 3 Canonical divisors of the rational function field
- 4 The strong approximation theorem

Without further ado

Theorem 1 (Riemann-Roch)

Let F/K be a function field with genus g . Let $\mathfrak c$ be a canonical divisor of F/K. Then, for every divisor $\mathfrak a$

$$\dim \mathfrak{a} = \deg \mathfrak{a} + 1 - g + \dim(\mathfrak{c} - \mathfrak{a}).$$

Proof.

Recall that

$$\delta(\mathfrak{a}) = \dim_{\mathsf{K}} \Omega(\mathfrak{a}) = \dim_{\mathsf{K}} \mathbb{A} \Big/ (\Lambda(\mathfrak{a}) + \mathsf{F}) = g - 1 - (\deg \mathfrak{a} - \dim \mathfrak{a}).$$

Thus, it suffices to prove that

$$\delta(\mathfrak{a}) = \dim(\mathfrak{c} - \mathfrak{a}).$$

• • = • • = •

The Riemann-Roch Theorem

Proof.

Let $0 \neq \omega \in \Omega$ s.t. $\mathfrak{c} = (\omega)$. Consider the K-linear homomorphism

 $T: \mathsf{F} \to \Omega$ $x \mapsto x\omega$

We have that

$$egin{array}{lll} x \in \mathcal{L}(\mathfrak{c}-\mathfrak{a}) & \Longleftrightarrow & (x)+(\omega)-\mathfrak{a} \geq 0 \ & \Leftrightarrow & (x\omega) \geq \mathfrak{a} \ & \Leftrightarrow & x\omega \in \Omega(\mathfrak{a}). \end{array}$$

So T embeds $\mathcal{L}(\mathfrak{c} - \mathfrak{a})$ in $\Omega(\mathfrak{a})$. Since every element in $\Omega(\mathfrak{a})$ is of the form $x\omega$ for some $x \in F$, we have equality in dimensions. Thus,

$$\delta(\mathfrak{a}) = \dim_{\mathsf{K}} \Omega(\mathfrak{a}) = \dim_{\mathsf{K}} \mathcal{L}(\mathfrak{c} - \mathfrak{a}) = \dim(\mathfrak{c} - \mathfrak{a}).$$

2 Classification of degree 0, 2g - 2 divisors

3 Canonical divisors of the rational function field

Gil Cohen The Riemann-Roch Theorem and Its Consequences

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Degree and dimension of canonical divisors

Corollary 2

Let c be a canonical divisor. Then,

$$\dim \mathfrak{c} = g,$$
$$\deg \mathfrak{c} = 2g - 2.$$

Proof.

By Riemann-Roch,

$$\dim \mathfrak{a} = \deg \mathfrak{a} + 1 - g + \dim(\mathfrak{c} - \mathfrak{a}).$$

Setting $\mathfrak{a} = 0$ we get

 $1 = \dim 0 = \deg 0 + 1 - g + \dim(\mathfrak{c} - 0) = 1 - g + \dim \mathfrak{c},$

and so dim $\mathfrak{c} = \mathfrak{g}$. Again by Riemann-Roch, now applied with $\mathfrak{a} = \mathfrak{c}$,

$$g = \dim \mathfrak{c} = \deg \mathfrak{c} + 1 - g + \dim(\mathfrak{c} - \mathfrak{c}) \implies \deg \mathfrak{c} = 2g - 2.$$

Degree zero divisors

Claim 3

• If a is principal then dim a = 1 and deg a = 0.

2 If deg $\mathfrak{a} = 0$ and \mathfrak{a} is not principal then dim $\mathfrak{a} = 0$.

Proof.

For the first item, it suffices to consider $\mathfrak{a}=0$ as

 $dim(\mathfrak{a} + (x)) = dim \mathfrak{a},$ $deg(\mathfrak{a} + (x)) = deg \mathfrak{a}.$

The proof follows as dim 0 = 1, deg 0 = 0.

As for Item (2), assume that dim a > 0. Then $(x) + a \ge 0$ for some $x \ne 0$. But

$$\deg((x) + \mathfrak{a}) = \deg \mathfrak{a} = 0,$$

and so $(x) + \mathfrak{a} = 0$, namely, $\mathfrak{a} = (x^{-1})$ is principal.

э

Degree 2g - 2 divisors

$$\mathsf{Riemann}\mathsf{-}\mathsf{Roch}:\ \mathsf{dim}\ \mathfrak{a}=\mathsf{deg}\ \mathfrak{a}+1-g+\mathsf{dim}(\mathfrak{c}-\mathfrak{a}).$$

Corollary 4 (Degree 2g - 2 divisors)

If deg a = 2g - 2 and a is not canonical then dim a = g - 1.

Proof.

By Riemann-Roch with " $\mathfrak{a} = \mathfrak{c} - \mathfrak{a}$ ", and using that deg $\mathfrak{c} = 2g - 2$,

$$\dim(\mathfrak{c} - \mathfrak{a}) = \deg(\mathfrak{c} - \mathfrak{a}) + 1 - g + \dim(\mathfrak{c} - (\mathfrak{c} - \mathfrak{a}))$$

= 1 - g + dim a.

Note that $\mathfrak{c} - \mathfrak{a}$ is not principal as otherwise \mathfrak{a} would be canonical. Indeed,

$$\mathfrak{c} - \mathfrak{a} = (x) \implies \mathfrak{a} = \mathfrak{c} - (x) \in \mathcal{W}.$$

By Corollary 2, deg(c - a) = 0. Therefore, Claim 3 implies dim(c - a) = 0. Thus, dim a = g - 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We obtain a characterization of canonical divisors in terms of dimension and degree.

Lemma 5

$$\mathfrak{a} \in \mathcal{W} \iff \deg \mathfrak{a} = 2g - 2 \text{ and } \dim \mathfrak{a} = g$$

 $\iff \deg \mathfrak{a} = 2g - 2 \text{ and } \dim \mathfrak{a} \neq g - 1$

Proof.

By Corollary 2, for $\mathfrak{a} \in \mathcal{W}$ we have deg $\mathfrak{a} = 2g - 2$ and dim $\mathfrak{a} = g$.

By Corollary 4, if deg $\mathfrak{a} = 2g - 2$ and dim $\mathfrak{a} \neq g - 1$ then $\mathfrak{a} \in \mathcal{W}$.

Claim 6

If deg a < 0 then dim a = 0.

Proof.

If dim a > 0 then $(x) + a \ge 0$ for some $x \ne 0$. But,

$$\deg((x) + \mathfrak{a}) = \deg \mathfrak{a} < 0,$$

which is a contradiction to $(x) + \mathfrak{a} \ge 0$.

▶ ▲ 臣 ▶ ▲ 臣 ▶ ■ ● ���

Degree > 2g - 2 divisors

Riemann-Roch: dim $\mathfrak{a} = \deg \mathfrak{a} + 1 - g + \dim(\mathfrak{c} - \mathfrak{a})$.

Corollary 7 (Degree > 2g - 2 divisors)

If deg a > 2g - 2 then dim $a = \deg a - g + 1$.

Proof.

By Riemann-Roch with " $\mathfrak{a} = \mathfrak{c} - \mathfrak{a}$ "

$$\dim(\mathfrak{c}-\mathfrak{a}) = \deg(\mathfrak{c}-\mathfrak{a}) + 1 - g + \dim(\mathfrak{c} - (\mathfrak{c} - \mathfrak{a})).$$

By Corollary 2, deg $\mathfrak{c} = 2g - 2$ and so deg $(\mathfrak{c} - \mathfrak{a}) < 0$. Thus, dim $(\mathfrak{c} - \mathfrak{a}) = 0$ and so

$$0 = \deg \mathfrak{c} - \deg \mathfrak{a} + 1 - g + \dim \mathfrak{a}$$
$$= g - 1 + \dim \mathfrak{a} - \deg \mathfrak{a},$$

and the proof follows.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ の Q @

• • = •

÷.

- 1 The Riemann-Roch Theorem
- 2 Classification of degree 0, 2g 2 divisors
- 3 Canonical divisors of the rational function field
- 4 The strong approximation theorem

* E * * E *

Ξ.

By Lemma 5,

 $\mathfrak{a} \in \mathcal{W} \quad \Longleftrightarrow \quad \deg \mathfrak{a} = 2g - 2 \text{ and } \dim \mathfrak{a} = g.$

We saw that the genus of K(x)/K is 0, and so

$$\mathfrak{a} \in \mathcal{W} \quad \Longleftrightarrow \quad \deg \mathfrak{a} = -2 \text{ and } \dim \mathfrak{a} = 0.$$

Note that

$$\begin{split} & \deg(-2\mathfrak{p}_{\infty})=-2,\\ & \dim(-2\mathfrak{p}_{\infty})=0, \end{split}$$

and so $-2p_{\infty}$ is a canonical divisor of the rational function field.

3

Lets try to give some vague informal explanation as to why $-2p_{\infty}$ is a canonical divisor of K(x)/K.

If we wish to understand dx "at infinity" we can consider $y = \frac{1}{x}$ and then

$$rac{dx}{dy} = -rac{1}{y^2} \implies dx = -rac{1}{y^2} \cdot dy.$$

Therefore, we would like to say that dx has a pole of order 2 at y = 0, namely, at " $x = \infty$ ".

- 1 The Riemann-Roch Theorem
- 2 Classification of degree 0, 2g 2 divisors
- 3 Canonical divisors of the rational function field
- The strong approximation theorem

The strong approximation theorem

Theorem 8

Let F/K be a function field. Let $S \subseteq \mathbb{P}$ be finite and $q \in \mathbb{P} \setminus S$. For every $\mathfrak{p} \in \mathbb{P}$ let $x_{\mathfrak{p}} \in F$ and $m_{\mathfrak{p}} \in \mathbb{Z}$. Then, $\exists x \in F$ satisfying

$$\begin{array}{ll} \forall \mathfrak{p} \in \mathcal{S} & \upsilon_{\mathfrak{p}}(x - x_{\mathfrak{p}}) = m_{\mathfrak{p}} \\ \forall \mathfrak{p} \notin \mathcal{S} \cup \{\mathfrak{q}\} & \upsilon_{\mathfrak{p}}(x) \geq 0. \end{array}$$

Proof.

We will prove a weaker version in which we get an inequality for all $\mathfrak{p} \in S$ and leave it for you to obtain equality (similarly to the way we did it in the weak approximation theorem). Denote

$$\mathfrak{a} = m\mathfrak{q} - \sum_{\mathfrak{p}\in S} m_{\mathfrak{p}}\mathfrak{p},$$

for m sufficiently large so that

 $\deg \mathfrak{a} > 2g-2.$

The strong approximation theorem

Proof.

We took

$$\mathfrak{a} = m\mathfrak{q} - \sum_{\mathfrak{p}\in S} m_{\mathfrak{p}}\mathfrak{p},$$

for *m* sufficiently large so that deg a > 2g - 2. Thus,

$$\deg \mathfrak{a} - \dim \mathfrak{a} = g - 1,$$

and so

$$\mathbb{A} = \Lambda(\mathfrak{a}) + \mathsf{F}.$$

Define the adele α with

$$lpha_{\mathfrak{p}} = egin{cases} x_{\mathfrak{p}}, & \mathfrak{p} \in \mathsf{S}, \ 0, & ext{otherwise}. \end{cases}$$

The strong approximation theorem

Proof.

Recall that $A = \Lambda(\mathfrak{a}) + F$, and

$$\mathfrak{a} = m\mathfrak{q} - \sum_{\mathfrak{p} \in S} m_{\mathfrak{p}}\mathfrak{p},$$
$$\mathfrak{a}_{\mathfrak{p}} = \begin{cases} x_{\mathfrak{p}}, & \mathfrak{p} \in \mathsf{S}, \\ 0, & \text{otherwise} \end{cases}$$

So $\exists x \in \mathsf{F}$ s.t. $x - \alpha \in \Lambda(\mathfrak{a})$. Thus,

$$\forall \mathfrak{p} \in \mathbb{P} \quad v_{\mathfrak{p}}(x - \alpha) + v_{\mathfrak{p}}(\mathfrak{a}) \geq 0.$$

So $\forall \mathfrak{p} \in S$,

$$\upsilon_{\mathfrak{p}}(x-x_{\mathfrak{p}})-m_{\mathfrak{p}}\geq 0,$$

and for $\mathfrak{p} \notin S \cup {\mathfrak{q}}$,

 $v_{\mathfrak{p}}(x) \geq 0.$