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1 Rings and Ideals

Definition 1. A commutative ring with identity is a set (R,+, ·, 0, 1) such that

• (R,+) is an abelian group.

• (R, ·) is a commutative monoid.

• The multiplication is distributive with respect to addition, i.e.

a · (b+ c) = a · b+ a · c for all a, b, c ∈ R.

Example 2. The ring of integers Z, a field k, the polynomial ring R[X1, . . . , Xn] over a
ring R.

Definition 3. An ideal of a ring R is a subgroup I ≤ (R,+) such that for every r ∈ R and
a ∈ I we have ra ∈ I. We denote I ⊴ R.

Example 4. nZ ⊴ Z. A field k has only trivial ideals - {0} and k.

Example 5. Let k be a field and let S ⊆ kn. Define

I(S) := {f ∈ k[X1, . . . , Xn] | f(p) = 0 for all p ∈ S}.

Then I(S) ⊴ k[X1, . . . , Xn]. Note that if S1 ⊆ S2 then I(S1) ⊇ I(S2).

Definition 6. A proper ideal I ◁ R is prime if for every a, b ∈ R,

ab ∈ I =⇒ a ∈ I or b ∈ I.

The spectrum of R is
Spec(R) := {I ◁ R | I is prime}.

Definition 7. A proper ideal I ◁ R is maximal if there is no proper ideal J ◁ R such that
I ⊊ J . The maximal spectrum of R is

MaxSpec(R) := {I ◁ R | I is maximal}.

Definition 8. An ideal I ⊴ R is called principal if there exists a ∈ R such that

I = ⟨a⟩ := Ra = {ra | r ∈ R}.
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Claim 9. P ◁ R is prime ⇐⇒ R/P is an integral domain.

Proof.

P is prime ⇐⇒ for every a, b ∈ R,

ab ∈ P =⇒ (a ∈ P ∨ b ∈ P )

⇐⇒ for every a, b ∈ R,

ab = 0 =⇒ (a = 0 ∨ b = 0)

⇐⇒ R/P is an integral domain.

Claim 10. P ◁ R is maximal ⇐⇒ R/P is a field.

Proof. Left as an exercise.

Corollary 11. Every maximal ideal is prime, i.e. MaxSpec(R) ⊆ Spec(R).

Example 12. The ideal ⟨x⟩ is maximal in R[x], since R[x]/⟨x⟩ ∼= R. More generally, if k is
a field and a := (a1, . . . , an) ∈ kn, then ma := ⟨X1 − a1, . . . , Xn − an⟩ is a maximal ideal of
k[X1, . . . , Xn] as

k[X1, . . . , Xn]⧸⟨X1 − a1, . . . , Xn − an⟩
∼= k.

This follows from the first isomorphism theorem, as the substitution homomorphism

φa : k[X1, . . . , Xn] k

f(X1, . . . , Xn) f(a1, . . . , an)

is surjective and kerφa = ma. The inclusion ma ⊆ kerφa clearly holds. For the opposite
inclusion, suppose f ∈ kerφa and consider the Taylor expansion of f(X1, . . . , Xn) around
a, which takes the form

f =

deg f∑
i1+...+in=0

bi1,...,in(X1 − a1)
i1 · · · (Xn − an)

in , bi1,...,in ∈ k.

Then f(a1, . . . , an) = 0 =⇒ b 0,...,0 = 0 =⇒ f ∈ ma. Another, more algebraic way to show
it is presented in Problem Set 0. The following example shows that not all the maximal
ideals of k[X1, . . . , Xn] are of the form ma for a ∈ kn.

Example 13. The ideal ⟨x2 + 1⟩ is also maximal in R[x], since R[x]/⟨x2 + 1⟩ ∼= C.

However, when k is algebraically closed then every maximal ideal in k[X1, . . . , Xn] is of the
form ⟨X1 − a1, . . . , Xn − an⟩ for some (a1, . . . , an) ∈ kn. This follows from Hilbert’s Null-
stellensatz which is a famous result in commutative algebra. Thus, when k is algebraically
closed we have a bijection
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MaxSpec(k[X1, . . . , Xn]) kn
∼=

We will focus on the special cases n = 1 and n = 2. But first, let us recall some definitions.

Definition 14. Let R be an integral domain and let 0 ̸= a ∈ R. Then

• a is a unit if there exists b ∈ R such that ab = 1. Denote the set of units by R×.

• a is prime if a /∈ R× and for every b, c ∈ R,

a | bc =⇒ a | b or a | c.

• a is irreducible if a /∈ R× and for every b, c ∈ R,

a = bc =⇒ b ∈ R× or c ∈ R×.

Claim 15. Let R be an integral domain and let 0 ̸= a ∈ R. Then

⟨a⟩ is prime ⇐⇒ a is prime =⇒ a is irreducible.

Moreover, if R is a PID, then

⟨a⟩ is prime ⇐⇒ a is prime ⇐⇒ a is irreducible ⇐⇒ ⟨a⟩ is maximal.

Let k be an algebraically closed field.

Corollary 16. MaxSpec(k[x]) = {⟨x− a⟩ | a ∈ k} and Spec(k[x]) = MaxSpec(k[x]) ∪ {0}.

We proceed to the (more interesting) case of plane curves.

Claim 17. Let f ∈ F [x, y] be a non-constant polynomial and let

Z(f) := {(a, b) ∈ F × F | f(a, b) = 0}.

Then Z(f) is infinite. In particular, Z(f) ̸= ∅.

Proof. Left as an exercise.

Claim 18. Let f ∈ F [x, y] be a non-constant polynomial. Then the ideal ⟨f⟩ of F [x, y] is
not maximal.

Proof. By Claim 17 there exists a point (a, b) ∈ F × F such that f(a, b) = 0. Let M :=
⟨x − a, y − b⟩ ◁ F [x, y]. Then M is a maximal ideal of F [x, y] (as it is the kernel of the
substitution homomorphism φ(a,b) : F [x, y] → F ).

Now consider M := M ∩ F [x, y]. It is easy to check that M is a proper ideal of F [x, y]1.

1In fact, M is a maximal ideal of F [x, y]. To see this, consider the restriction of φ(a,b) to F [x, y]. Its kernel
is exactly M and its image is F [a, b], which is an algebraic field extension of F . By the first isomorphism

theorem, F [x, y]⧸M ∼= F [a, b].
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Observe that f(a, b) = 0 implies that f ∈ ker(φ(a,b)) = M . Hence f ∈ M ∩ F [x, y] = M
and so ⟨f⟩ ⊆ M . If ⟨f⟩ ⫋ M then we are done, so assume ⟨f⟩ = M . Let pa ∈ F [x] be the
minimal polynomial of a ∈ F . Since (x − a) | pa in F [x], we have pa ∈ M ∩ F [x, y] = M .
Hence pa ∈ ⟨f⟩, i.e. there exists g ∈ F [x, y] such that pa = fg. It follows that f, g ∈ F [x],
and since pa is irreducible in F [x] and f is non-constant, g must be constant. Therefore

F [x, y]⧸⟨f⟩ =
F [x, y]⧸⟨pa⟩

∼=
(
F [x]⧸⟨pa⟩

)
[y] ∼= (F [a])[y].

But the latter is not a field, so ⟨f⟩ is not maximal in F [x, y].

Remark. In the above proof we showed that ⟨f⟩ ⊆ M . As mentioned in the footnote, M
is a maximal ideal of F [x, y]. Since ⟨f⟩ is not maximal, we must have ⟨f⟩ ⫋ M .

Claim 19. Let A be a UFD and let M be a maximal ideal in A[y]. If M is not principal,
then M ∩A ̸= 0.

Proof. Let us prove by contra-positive that if M ∩A = 0 then M is principal. Consider the
field L := A[y]/M and the natural projection φ : A[y] → L. The restriction φ|A : A → L is
injective, as ker(φ|A) = M ∩A = 0. Thus, if K = Frac(A), we may extend φ to an injection
φ̃ : K[y] → L via

φ̃

(
n∑

i=0

ai
bi
yi

)
:=

n∑
i=0

φ(ai)

φ(bi)
φ(y)i.

The kernel of φ̃ is a non-trivial prime ideal of K[y] that contains M . Hence M ⊆ ker(φ̃) =
⟨f(y)⟩ for some monic irreducible f ∈ K[y]. Multiplying f by an appropriate constant to
clear the denominators of the coefficients, we may assume that f ∈ A[y] is primitive. Now,
if g ∈ M then g ∈ ⟨f⟩, i.e. f | g in K[y]. Since f, g ∈ A[y] and f is primitive, it follows from
Gauss’ Lemma that f | g in A[y]. Thus, M ⊆ ⟨f⟩ in A[y]. As M is maximal, we conclude
that M = ⟨f⟩ in A[y].

Corollary 20. Let M be a maximal ideal in k[x, y]. Then M ∩ k[x] ̸= 0.

Proposition 21. Let M be a maximal ideal in k[x, y]. Then there exists a point (a, b) ∈ k2

such that M = ⟨x− a, y − b⟩.

Proof. Let P := M ∩ k[x]. Note that P is a prime ideal of k[x], and by Corollary 20 it
is non-zero. By Corollary 16, P = ⟨x − a⟩ for some a ∈ k. Hence x − a ∈ P ⊆ M . By
symmetry there also exists b ∈ k such that y − b ∈ M . It follows that ⟨x− a, y − b⟩ ⊆ M ,
and since both are maximal they must be equal.

Corollary 22. Let f ∈ k[x, y] be an irreducible polynomial and let Cf := k[x, y]⧸⟨f⟩. Then

the map

If : Z(f) MaxSpec(Cf )

(a, b) If (a, b) := ⟨x− a, y − b⟩

≈
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is a bijection.

Proof. The map If is well-defined: Let π : k[x, y] → Cf denote the natural quotient map.
If (a, b) ∈ Z(f) then f(a, b) = 0 so ⟨f⟩ ⊆ ⟨x − a, y − b⟩ =: M . Hence If (a, b) = π(M) ∈
MaxSpec(Cf ).

• Injectivity: Suppose If (a, b) = If (c, d). Then (x− a) − (x− c) = c− a ∈ If (a, b).
Since If (a, b) ̸= k[x, y] we must have c− a = 0, i.e. c − a ∈ ⟨f⟩ which implies that
c− a = 0, i.e. a = c. Similarly, b = d and therefore (a, b) = (c, d).

• Surjectivity: Let M ∈ MaxSpec(Cf ). Then M = π(M) for some maximal ideal
M of k[x, y] with ⟨f⟩ ⊆ M . By Proposition 21 there exists (a, b) ∈ k2 such that
M = ⟨x− a, y − b⟩. Since f(x, y) ∈ M we find that f(a, b) = 0 so that (a, b) ∈ Z(f).
Hence, If (a, b) = M .
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