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1 Rings and Ideals

Definition 1. A commutative ring with identity is a set (R, +,-,0,1) such that
e (R,+) is an abelian group.
e (R,-) is a commutative monoid.
e The multiplication is distributive with respect to addition, i.e.
a-(b+c)=a-b+a-c for all a,b,c € R.

Example 2. The ring of integers Z, a field k, the polynomial ring R[X71,...,X,] over a
ring R.

Definition 3. An ideal of a ring R is a subgroup I < (R, +) such that for every r € R and
a € I we have ra € I. We denote I < R.

Example 4. nZ < Z. A field k has only trivial ideals - {0} and k.
Example 5. Let k be a field and let S C k™. Define
I(S) :={f € k[X1,...,Xn] | f(p)=0forall pe S}.
Then I(S) < k[X1,...,X,]. Note that if S; C Sy then I(S7) D I(S2).
Definition 6. A proper ideal I < R is prime if for every a,b € R,
abel = aclorbel.

The spectrum of R is
Spec(R) :={I <R | I is prime}.

Definition 7. A proper ideal I < R is maximal if there is no proper ideal J < R such that
I C J. The mazximal spectrum of R is

MaxSpec(R) := {I <R | I is maximal}.
Definition 8. An ideal I < R is called principal if there exists a € R such that

I =(a):=Ra={ra|r e R}.



Claim 9. P< R is prime <= R/P is an integral domain.

Proof.

P is prime <= for every a,b € R,
abe P = (a€e PV beP)
< for every a,b € R,
ab=0 = (@a=0V b=0)
<= R/P is an integral domain.

Claim 10. P < R is mazximal <= R/P is a field.

Proof. Left as an exercise. O
Corollary 11. Every mazimal ideal is prime, i.e. MaxSpec(R) C Spec(R).

Example 12. The ideal (z) is maximal in R[z], since R[z]/(x) = R. More generally, if & is
a field and a := (aq,...,a,) € k", then m, := (X7 —ay,..., X, — a,) is a maximal ideal of
k[ X1,...,X,] as
E[Xq,...,X5] ~
n/<X1—a1,...,Xn—an> =k.

This follows from the first isomorphism theorem, as the substitution homomorphism

0ot k[ X1, Xp] — k
f(Xl, . ,Xn) _ f(al, e ,an)
is surjective and ker ¢, = m,. The inclusion m, C ker ¢, clearly holds. For the opposite

inclusion, suppose f € ker ¢, and consider the Taylor expansion of f(Xjy,...,X,) around
a, which takes the form

deg f
f= Z biy,in (X1 —a) - (Xp —an)™, by, €E.
i14...4+in=0
Then f(ai,...,a,) =0 = bo,.0=0 = f € m,. Another, more algebraic way to show

it is presented in Problem Set 0. The following example shows that not all the maximal
ideals of k[X,..., X,,] are of the form m, for a € k".

Example 13. The ideal {22 + 1) is also maximal in R[z], since R[z]/{z? + 1) = C.

However, when k is algebraically closed then every maximal ideal in k[X1,..., X,] is of the
form (X; — aq,..., X, — ay,) for some (ay,...,a,) € k™. This follows from Hilbert’s Null-
stellensatz which is a famous result in commutative algebra. Thus, when k is algebraically
closed we have a bijection



MaxSpec(k[X1, ..., Xn]) +— k"

We will focus on the special cases n = 1 and n = 2. But first, let us recall some definitions.
Definition 14. Let R be an integral domain and let 0 # a € R. Then

e ¢ is a unit if there exists b € R such that ab = 1. Denote the set of units by R*.

e ais prime if a ¢ R* and for every b,c € R,

albc = albora|ec

e a is irreducible if a ¢ R* and for every b, c € R,
a=bc = be R* or c € R*.
Claim 15. Let R be an integral domain and let 0 # a € R. Then
(a) is prime <= a is prime = a is irreducible.
Moreover, if R is a PID, then

(a) is prime <= a is prime <= a is irreducible <= (a) is maximal.

Let k be an algebraically closed field.
Corollary 16. MaxSpec(k[z]) = {(x —a) | a € k} and Spec(k[z]) = MaxSpec(k[z]) U{0}.

We proceed to the (more interesting) case of plane curves.
Claim 17. Let f € F[z,y] be a non-constant polynomial and let
Z(f) = {(a,b) € F x F'| f(a,b) = 0}.

Then Z(f) is infinite. In particular, Z(f) # 0.

Proof. Left as an exercise. O

Claim 18. Let f € Flz,y| be a non-constant polynomial. Then the ideal (f) of F|x,y] is
not mazimal.

Proof. By Claim 17 there exists a point (a,b) € F x F such that f(a,b) = 0. Let M :=
(v —a,y — b) <« F[z,y]. Then M is a maximal ideal of F[z,y] (as it is the kernel of the
substitution homomorphism ¢,y : Flz,y] — F).

Now consider M := M N F[xz,y]. It is easy to check that M is a proper ideal of F[z,y]'.

'In fact, M is a maximal ideal of F'[z,y]. To see this, consider the restriction of ¢4 ) to F'[z,y]. Its kernel
is exactly M and its image is F[a,b], which is an algebraic field extension of F. By the first isomorphism

theorem, %> y]/M 2 Fla, b].



Observe that f(a,b) = 0 implies that f € ker(¢(,p)) = M. Hence f € M N Flz,y] = M
and so (f) € M. If (f) G M then we are done, so assume (f) = M. Let p, € F[z] be the
minimal polynomial of a € F. Since (z — a) | p, in Fx], we have p, € M N Flz,y] = M.
Hence p, € (f), i.e. there exists g € F[x,y] such that p, = fg. It follows that f,g € F[z],
and since p, is irreducible in F[z] and f is non-constant, g must be constant. Therefore

Flawl = Pl v = (Flal Y ) = (Fla)ly).

But the latter is not a field, so (f) is not maximal in F|z,y]. O

Remark. In the above proof we showed that (f) C M. As mentioned in the footnote, M
is a maximal ideal of F[z,y]. Since (f) is not maximal, we must have (f) & M.

Claim 19. Let A be a UFD and let M be a mazimal ideal in Aly]. If M is not principal,
then M NA#D0.

Proof. Let us prove by contra-positive that if M N A = 0 then M is principal. Consider the
field L := A[y]/M and the natural projection ¢: Aly] — L. The restriction ¢|4: A — L is
injective, as ker(p|4) = M NA = 0. Thus, if K = Frac(A), we may extend ¢ to an injection

¢: K[y] — L via
- i\ . - p(ai) i
@ < biy> = ; o) ° "

The kernel of ¢ is a non-trivial prime ideal of K[y| that contains M. Hence M C ker(p) =
(f(y)) for some monic irreducible f € K[y]. Multiplying f by an appropriate constant to
clear the denominators of the coefficients, we may assume that f € A[y| is primitive. Now,
if g € M then g € (f), i.e. f|gin KJy]. Since f,g € Aly] and f is primitive, it follows from
Gauss’ Lemma that f | g in Afy]. Thus, M C (f) in Aly]. As M is maximal, we conclude
that M = (f) in Aly]. O

Corollary 20. Let M be a mazimal ideal in klx,y]. Then M N k[x] # 0.
Proposition 21. Let M be a mazimal ideal in k[z,y]. Then there exists a point (a,b) € k?

such that M = (x —a, y — b).

Proof. Let P := M N k[z]. Note that P is a prime ideal of k[z], and by Corollary 20 it
is non-zero. By Corollary 16, P = (z — a) for some a € k. Hence z —a € P C M. By
symmetry there also exists b € k such that y — b € M. It follows that (z —a, y —b) C M,
and since both are maximal they must be equal. O

Corollary 22. Let f € k[z,y] be an irreducible polynomial and let Cy := k[x,y]/<f> Then
the map

Ir: Z(f) —=—— MaxSpec(C})

(a,b) —— I¢(a,b) := (x —a, y—b)



s a bijection.

Proof. The map Iy is well-defined: Let m: k[z,y] — C} denote the natural quotient map.
If (a,b) € Z(f) then f(a,b) = 0so (f) C (x —a,y —b) =: M. Hence I¢(a,b) = (M) €
MaxSpec(Cf).

e Injectivity: Suppose If(a,b) = If(c,d). Then (x —a) — (z—c) = c—a € If(a,b).

Since If(a,b) # k[z,y] we must have c —a = 0, i.e. ¢ — a € (f) which implies that
¢—a=0,1ie. a=c Similarly, b = d and therefore (a,b) = (¢, d).

e Surjectivity: Let M € MaxSpec(Cy). Then M = w(M) for some maximal ideal
M of klz,y] with (f) € M. By Proposition 21 there exists (a,b) € k? such that
M = (z —a,y—"b). Since f(z,y) € M we find that f(a,b) = 0 so that (a,b) € Z(f).

Hence, I¢(a,b) = M.

O



