Recitation 7: The Hermitian Function Field

Scribe: Tomer Manket

1 The Hermitian Function Field

Let p be a prime and $q = p^2$.

Example 1. $\mathbb{F}_q/\mathbb{F}_p$ is a field extension of degree 2. Its Galois group is $G = \{ \text{Id}, \text{Frob} \}$ where $\text{Frob}(x) = x^p$ is the Frobenius automorphism. Thus, for every $\alpha \in \mathbb{F}_q$ we have

$$\operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_p}(\alpha) = \sum_{\sigma \in G} \sigma(\alpha) = \alpha^p + \alpha$$

and

$$N_{\mathbb{F}_q/\mathbb{F}_p}(\alpha) = \prod_{\sigma \in G} \sigma(\alpha) = \alpha^p \cdot \alpha = \alpha^{p+1}$$

In what follows, we write Tr and N for $\operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_p}$ and $\operatorname{N}_{\mathbb{F}_q/\mathbb{F}_p}$, respectively.

Theorem 2. Let $E = \mathbb{F}_q(x)[y]/(y^p + y - x^{p+1})$. Then $E/\mathbb{F}_q(x)$ is a field extension of degree p, and E/\mathbb{F}_q is a function field, called the Hermitian function field.

Remark 1. The corresponding curve

$$\{(x,y) \in \mathbb{F}_q \times \mathbb{F}_q \mid y^p + y = x^{p+1}\} = \{(x,y) \in \mathbb{F}_q \times \mathbb{F}_q \mid \operatorname{Tr}(y) = \mathcal{N}(x)\}$$

is called the Hermitian curve.

We would like to find all the degree one places of E/\mathbb{F}_q . First, observe that if φ is such a place then its residue field is $\overline{E} = \mathbb{F}_q$, hence $\varphi|_{\mathbb{F}_q(x)}$ (which is a place of $\mathbb{F}_q(x)/\mathbb{F}_q$) is also of degree 1.

Recall that the valuations that correspond to degree one places in $\mathbb{F}_q(x)/\mathbb{F}_q$ are ν_{∞} and $\nu_{\alpha} := \nu_{x-\alpha}$ for $\alpha \in \mathbb{F}_q$. Thus we need to consider the extensions of these valuations to E. We begin with the possible extensions of ν_{∞} to E.

Let ν be an such a (discrete) extension. Since $\nu_{\infty}(x) = -1 < 0$ we must have $\nu(x) < 0$. Moreover,

$$\nu(y^p + y) = \nu(x^{p+1}) = (p+1)\nu(x) < 0.$$

Thus we must have $\nu(y) < 0$ (otherwise $y \in \mathcal{O}_{\nu}$ which implies $y^p + y \in \mathcal{O}_{\nu}$). Hence $\nu(y^p) = p\nu(y) < \nu(y)$ and by the strict triangle inequality, $\nu(y^p + y) = p\nu(y)$. Therefore we obtain

$$p\nu(y) = (p+1)\nu(x) < 0 \implies p \mid \nu(x)$$

Writing $\nu(x) = -c \cdot p$ for some $c \in \mathbb{N}^+$, we get $\nu(y) = -c \cdot (p+1)$.

Claim. $v(E^{\times}) = c\mathbb{Z}$.

Proof of the Claim. On the one hand, $\nu\left(\frac{x}{y}\right) = \nu(x) - \nu(y) = c$ so that $c\mathbb{Z} \subseteq \nu(E^{\times})$.

On the other hand, $\{1, y, y^2, \ldots, y^{p-1}\}$ is a basis of E over $\mathbb{F}_q(x)$, hence every element $a \in E^{\times}$ can be written as $a = \sum_{i=0}^{p-1} a_i(x)y^i$, where $a_i(t) \in \mathbb{F}_q(t)$ not all zero. It is easy to check that if $a_i(t) \neq 0$ then $\nu(a_i(x)) = \deg a_i \cdot \nu(x)$ (where $\deg \frac{f}{q} := \deg f - \deg g$). Hence

$$\nu(a_i(x)y^i) = \nu(a_i(x)) + \nu(y^i)$$

= deg $a_i \cdot \nu(x) + i\nu(y)$
= $-c \cdot [\deg a_i \cdot p + i(p+1)] \in c\mathbb{Z}$

In particular, if $0 \le i < j \le p-1$ are such that $a_i(x), a_j(x) \ne 0$ then $\nu(a_i(x)y^i) \ne \nu(a_j(x)y^j)$. Indeed, modulo cp the LHS is equivalent to -ci and the RHS to -cj, and

$$-ci \not\equiv -cj \mod (cp)$$
 as $i \not\equiv j \mod p$

Thus, by the strict triangle inequality we get that $\nu(a) = \nu(a_k(x)y^k)$ for some $0 \le k \le p-1$, and in particular $\nu(a) \in c\mathbb{Z}$.

Replacing ν with the equivalent valuation $\nu' := \frac{1}{c}\nu$, we may assume w.l.o.g that $\nu(E^{\times}) = \mathbb{Z}$, with $\nu(x) = -p$ and $\nu(y) = -(p+1)$. Up to equivalence, this is the only valuation of Ewhich extends v_{∞} . In order to find the degree of the corresponding place P_{∞} , note that $\nu(\mathbb{F}_q(x)^{\times}) = p\mathbb{Z}$, so the ramification index is $(\nu(E^{\times}) : \nu(\mathbb{F}_q(x)^{\times})) = (\mathbb{Z} : p\mathbb{Z}) = p$. By the two indices lemma,

$$[\overline{E}:\overline{\mathbb{F}_q(x)}] \cdot \left(\nu(E^{\times}):\nu(\mathbb{F}_q(x)^{\times})\right) \le [E:\mathbb{F}_q(x)]$$

that is,

$$[\overline{E}:\mathbb{F}_q]\cdot p \le p \implies \deg P_{\infty} = [\overline{E}:\mathbb{F}_q] \le 1$$

hence deg $P_{\infty} = 1$.

It remains to check the extensions of the valuations of the form $v_{\alpha} = v_{x-\alpha}$ where $\alpha \in \mathbb{F}_q$. In this case the corresponding place $\varphi_{\alpha} \colon \mathbb{F}_q(x) \to \mathbb{F}_q \cup \{\infty\}$ satisfies $\varphi_{\alpha}(x) = \alpha$. We are looking for extension $\varphi \colon E \to \mathbb{F}_q \cup \{\infty\}$ with $\varphi|_{\mathbb{F}_q(x)} = \varphi_{\alpha}$. Any such extension must satisfy

$$\varphi(y^p + y) = \varphi(x^{p+1}) = \alpha^{p+1}.$$

In particular, $y \in \mathcal{O}_{\varphi}$ (i.e. $\varphi(y) \in \mathbb{F}_q$) and $\varphi(y)^p + \varphi(y) = \alpha^{p+1}$, that is, $\operatorname{Tr}(\varphi(y)) = \operatorname{N}(\alpha)$. **Claim.** Let $\beta \in \mathbb{F}_p$. Then the equation $t^p + t = \beta$ has p distinct roots in \mathbb{F}_q . Proof of the Claim. For $\beta = 0$ the equation is $t^p + t = 0$, i.e. $\operatorname{Tr}(t) = 0$. As $\operatorname{Tr}: \mathbb{F}_q \to \mathbb{F}_p$ is a linear map, its kernel is a subspace $S_0 \subseteq \mathbb{F}_q$ of size at most p. For $\beta \neq 0$, the set of solutions S_β is either empty or an affine subspace of \mathbb{F}_q (of the form $t_0 + S_0$, where $t_0^p + t_0 = \beta$). Since $\mathbb{F}_q = \bigsqcup_{\beta \in \mathbb{F}_p} S_\beta$, it must be that $|S_\beta| = p$ for all $\beta \in \mathbb{F}_p$.

Now, let $\beta = \mathcal{N}(\alpha) \in \mathbb{F}_p$. Then there are p distinct elements $\beta_1, \ldots, \beta_p \in \mathbb{F}_q$ such that $\operatorname{Tr}(\beta_i) = \beta$. Check that each one of them gives rise to a degree one place $\varphi_i \colon E \to \mathbb{F}_q \cup \{\infty\}$ which extends φ_α and satisfies

$$\varphi_i(x) = \alpha \text{ and } \varphi_i(y) = \beta_i.$$

Moreover, any two such places are not equivalent.

Overall, we found that the number of degree one places of E/\mathbb{F}_q is $N = 1 + q \cdot p = p^3 + 1$ (one which extends ν_{∞} , and for each $\alpha \in \mathbb{F}_q$ another p which extends ν_{α}).