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Weil Differentials

When discussing adeles, we proved that for every a ∈ D,

dimKA
/

(Λ(a) + F) = g − 1− (deg a− dim a).

To better understand the K-vector space

V = A
/

(Λ(a) + F)

we will consider its functionals

HomK(V ,K) = {α : V → K | α is K-linear}.

Equivalently, we will study K-linear maps from A to K that vanish on
Λ(a) + F.
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Weil Differentials

Definition 1 (Weil differential)

Let F/K be a function field. A Weil differential is an element

ω ∈ HomK(A,K)

that vanishes on Λ(a) + F for some a ∈ DF/K.

The set of all Weil differentials of F/K is denoted by Ω = ΩF/K.

The definition seems to have little to do with the more familiar notion of
a differential. Namely, an operator d that “differentiate” functions having
properties such as

d(f + g) = df + dg

d(fg) = f (dg) + g(df ).

In the seminar part of the course you will get the chance to learn more
about this connection. Still, we will explore this relation a bit now.
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Weil Differentials and “ordinary” differentials

Definition 2

Let F/K be a function field. A map

δ : F→ F

is a derivation of F/K if it is K-linear and it satisfies the product rule

δ(uv) = u · δ(v) + v · δ(u)

for all u, v ∈ F.
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Weil Differentials and “ordinary” differentials

Definition 3

An element x ∈ F is called a separating element of F/K provided that
F/K(x) is algebraic and separable.

Lemma 4

Let x be a separating element of F/K. Then, there exists a unique
derivation

δx : F→ F

of F/K s.t.
δx(x) = 1.

δx is called the derivation with respect to x.
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Weil Differentials and “ordinary” differentials

Definition 5

Let
DerF = {η : F→ F | η is a derivation of F/K} .

Note that DerF is an F-vector space:

(η1 + η2)(z) = η1(z) + η2(z)

(uη)(z) = u · η(z).

DerF is called the the vector space of derivations of F/K.

Lemma 6

Let x be a separating element of F/K. Then, for each η ∈ DerF we have
that

η = η(x) · δx .

In particular,
dimF DerF = 1.
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Weil Differentials and “ordinary” differentials

Definition 7

On the set

Z = {(u, x) ∈ F× F | x is a separating element}

define the relation

(u, x) ∼ (v , y) ⇐⇒ v = u · δy (x).

∼ is an equivalence relation. We write

u dx

for the class containing (u, x) and call it a differential.
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Weil Differentials and “ordinary” differentials

Definition 8

Let
∆F = {u dx | x is a separating element}

be the set of all differentials of F/K.

It turns out we can add up differentials u dx , v dy as follows: choose a
separating element z , and use the chain rule to write

u dx = (u · δz(x)) dz ,

v dy = (v · δz(y)) dz ,

and define
u dx + v dy = (u · δz(x) + v · δz(y)) dz .

Likewise,
w · (u dx) = (wu) dx ∈ ∆F,

and so ∆F is an F-vector space.
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Weil Differentials and “ordinary” differentials

Definition 9

Define the map

d : F→ ∆F

t 7→ dt

with the understanding that dt = 0 for t non-separating.

Lemma 10

Let z ∈ F be a separating element. Then, dz 6= 0, and every differential
ω ∈ ∆F can be written in the form

ω = u dz

for some u ∈ F. In particular,

dimF ∆F = 1.

Moreover, d is a derivation (though to ∆F rather than to F).
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Weil Differentials and “ordinary” differentials

Since
dimF ∆F = 1

we can define the quotient of differentials ω1 and ω2 6= 0 by

ω1

ω2
= u ∈ F,

where u is the unique element in F s.t. ω1 = uω2. In particular,

δz(y) =
dy

dz
.

The chain rule, for example, takes the form

dy

dz
=

dy

dx
· dx
dz
.
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Technicality

Let F/K be a function field. Let V be an F-vector space and W a
K-vector space.

We know that HomK(V ,W ) is a K-vector space. Indeed, if

ϕ1, ϕ2 : V →W

are K-linear then so is their sum ϕ1 + ϕ2 and aϕ1 for every a ∈ K.

That holds true even if V is a K-vector space.

As V is an F-vector space, HomK(V ,W ) is also an F-vector space.
Indeed, for a ∈ F and ϕ ∈ HomK(V ,W ), we define

(aϕ)(v) = ϕ(av).

One can show aϕ ∈ HomK(V ,W ). E.g., for b ∈ K and v ∈ V ,

(aϕ)(bv) = ϕ(abv) = b · ϕ(av) = b · (aϕ)(v).

Gil Cohen Weil Differentials



Technicality

Moreover, if a ∈ K then

(aϕ)(v) = ϕ(av) = a · ϕ(v)

and so the multiplication by an element of F as we have just defined it,
extends the good old multiplication of an element by K. In particular,
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Weil Differentials

Definition 11

Let F/K be a function field and a ∈ DF/K. We define

Ω(a) =
{
ω ∈ ΩF/K | ω(Λ(a) + F) = 0

}
.

Claim 12

∀a, b ∈ D and x ∈ F×,

1 a ≤ b =⇒ Ω(b) ⊆ Ω(a).

2 Ω(a) + Ω(b) ⊆ Ω(min(a, b)).

3 Ω(a) ∩ Ω(b) = Ω(max(a, b)).

4 xΩ(a) = Ω(a + (x)).

5 Ω = ∪a∈DΩ(a).

Left as an exercise.
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Weil Differentials

Claim 13

∀a ∈ D, Ω(a) is a subspace of HomK(A,K) as a K-vector space.

Proof.

Ω(a) is clearly closed under addition. Moreover, for x ∈ K×,

xΛ(a) = Λ(a− (x)) = Λ(a),

and so

ω ∈ Ω(a) =⇒ (xω)(Λ(a) + F) = ω(x(Λ(a) + F))

= ω(Λ(a) + F)

= 0.
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Weil Differentials

Definition 14

For a divisor a, we define the index of specialty of a by

δ(a) = dimK Ω(a),

also noting that

δ(a) = dimKA
/

(Λ(a) + F)

= g − 1− (deg a− dim a).
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Weil Differentials

Claim 15

Ω =
⋃
a∈D

Ω(a)

is an F-vector space.

Proof.

Take ω ∈ Ω and x ∈ F×. Let a ∈ D s.t. ω ∈ Ω(a). Then,

(xω)(Λ(a + (x)) + F) = ω(x(Λ(a + (x)) + F))

= ω(Λ(a) + F)

= 0.

Take ω1, ω2 ∈ Ω. Then, ω1 ∈ Ω(a1), ω2 ∈ Ω(a2), and so by Claim 12,

ω1 + ω2 ∈ Ω(min(a1, a2)) ⊆ Ω.
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Weil Differentials

Theorem 16

dimF Ω = 1.

Informally, and inaccurately, if we think of Ω as differentials
Ω = {dx | x ∈ F} then Theorem 16 is to be expected as

dy =
dy

dx
· dx .

Gil Cohen Weil Differentials



Weil Differentials

Proof.

Let ω1, ω2 ∈ Ω \ {0}. We want to find x ∈ F× s.t. ω2 = xω1. As

Ω(a) + Ω(b) ⊆ Ω(min(a, b)),

we my assume that ω1, ω2 ∈ Ω(b) for some b ∈ D.

Take a ∈ D, a < 0, with a “sufficiently low” degree d = deg a.

As a < 0 we have that

dim a = dimK L(a) = 0,

and so for a sufficiently large |d |,

δ(a) = dimK Ω(a)

= g − 1− (deg a− dim a)

= g − 1− d > 0.
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Weil Differentials

Proof.

For i = 1, 2 define the map

F→ Ω

x 7→ xωi .

These are injective K-linear maps. Further, each induces a map

Ti : L(b− a)→ Ω(a).

Indeed, if x ∈ L(b− a) then (x) + b ≥ a. Thus,

xωi ∈ xΩ(b) = Ω((x) + b) ⊆ Ω(a).
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Weil Differentials

Proof.

By Riemann’s Theorem,

g − 1 ≥ deg(b− a)− dim(b− a)

= −d + deg b− dim ImTi .

Thus, by taking |d | large enough,

dim ImTi ≥ −d + deg b− g + 1

>
1

2
(g − 1− d)

=
δ(a)

2
,

as indeed
δ(a) = g − 1− (deg a− dim a) = g − 1− d .
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Weil Differentials

Proof.

As δ(a) = dimK Ω(a) and since

dimK ImT1, dimK ImT2 >
δ(a)

2
,

the two subspaces intersect non trivially.

Therefore, ∃x1, x2 ∈ F× s.t.

x1ω1 = x2ω2

which concludes the proof.
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Weil Differentials

Consider the space of adeles which are everywhere defined (“holomorphic
adeles” if you will)

Λ(0) = {α ∈ A | υp(α) ≥ 0},

and that
Ω(0) = {ω ∈ Ω | ω(Λ(0) + F) = 0}.

We have the following characterization of the genus as the index of
specialty of the zero divisor.

Claim 17

δ(0) = dimK Ω(0) = g .

Proof.

As L(0) = K,

δ(0) = g − 1− (deg 0− dim 0) = g .

Gil Cohen Weil Differentials



Weil Differentials

Recall that

a large =⇒ Λ(a) large =⇒ Ω(a) small.

Claim 18

Ω(a) 6= {0} =⇒ dim a ≤ g .

Proof.

Take 0 6= ω ∈ Ω(a). Consider the K-monomorphism

L(a)→ Ω

x 7→ xω

Now,
xω ∈ xΩ(a) = Ω(a + (x)) ⊆ Ω(0).

Thus, by Claim 17,

dim a = dimK L(a) ≤ dimK Ω(0) = g .
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Canonical divisors

Recall that ω ∈ Ω(b) ⇐⇒ ω(Λ(b) + F) = 0, and so if ω ∈ Ω(b) then

a ≤ b =⇒ ω ∈ Ω(a).

Theorem 19

For every 0 6= ω ∈ Ω there exists a unique b ∈ D satisfying

ω ∈ Ω(a) ⇐⇒ a ≤ b.

This unique divisor b is denoted by (ω).
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Canonical divisors

Proof.

Consider a ∈ D s.t. ω ∈ Ω(a). By Claim 18, dim a ≤ g .

By Riemann’s Theorem,
deg a ≤ 2g − 1.

Thus, we can take a divisor of maximal degree b s.t. ω ∈ Ω(b). Take any
a ∈ D s.t. ω ∈ Ω(a). Then,

ω ∈ Ω(a) ∩ Ω(b) = Ω(max(a, b)).

But by the maximality of the degree of b,

deg b ≥ deg max(a, b),

and so
b = max(a, b) ≥ a.

Uniqueness is obvious.
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Canonical divisors

Recall that Ω is an F-vector space via (xω)(α) = ω(xα).

Claim 20

For 0 6= ω ∈ Ω and x ∈ F×,

(xω) = (x) + (ω).

Proof.

By Theorem 19,

xω ∈ Ω(a) ⇐⇒ ω ∈ x−1Ω(a) = Ω(a− (x))

⇐⇒ (ω) ≥ a− (x)

⇐⇒ a ≤ (x) + (ω).

But we also have, by Theorem 19, that

xω ∈ Ω(a) ⇐⇒ a ≤ (xω),

and (xω) is the unique such divisor. Thus, (xω) = (x) + (ω).
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Canonical divisors

Definition 21

A divisor of the form (ω) for ω ∈ Ω is called canonical. The set of all
canonical divisors is denoted by W.

Claim 22

W is an element of C = D/P.

This explains why we call a canonical divisor “canonical”. Perhaps a
better name would have been a canonical divisor class.
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Canonical divisors

Proof.

Take 0 6= ω ∈ Ω. By Theorem 16,

Ω = {xω | x ∈ F},

and so, by Claim 20,

W = {(ω′) | ω′ ∈ Ω}
= {(xω) | x ∈ F}
= {(x) + (ω) | x ∈ F}
= (ω) + {(x) | x ∈ F}
= (ω) + P.
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