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Weil Differentials

When discussing adeles, we proved that for every a € D,
dim A /(A(a) + F) = g — 1 — (dega — dima).
To better understand the K-vector space
V=A/(\@a)+F)
we will consider its functionals
Homk(V,K) = {a: V — K | ais K-linear}.

Equivalently, we will study K-linear maps from A to K that vanish on
A(a) +F.
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Weil Differentials

Definition 1 (Weil differential)
Let F/K be a function field. A Weil differential is an element

w € Homk (A, K)
that vanishes on A(a) 4 F for some a € Df k.
The set of all Weil differentials of F/K is denoted by Q = QF k.

The definition seems to have little to do with the more familiar notion of
a differential. Namely, an operator d that “differentiate” functions having
properties such as

d(f +g) = df + dg
d(fg) = f(dg) + g(df).

In the seminar part of the course you will get the chance to learn more
about this connection. Still, we will explore this relation a bit now.
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Weil Differentials and “ordinary” differentials

Definition 2
Let F/K be a function field. A map

0:F—=F
is a derivation of F/K if it is K-linear and it satisfies the product rule
d(uv) =u-6(v)+v-d(u)

for all u,v € F.
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Weil Differentials and “ordinary” differentials

An element x € F is called a separating element of F/K provided that
F/K(x) is algebraic and separable.

Lemma 4

Let x be a separating element of F/K. Then, there exists a unique
derivation
0x:F—F

of F/K s.t.
Ox(x) =1.

0x is called the derivation with respect to x.
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Weil Differentials and “ordinary” differentials

Let

Derg = {n: F — F | 5 is a derivation of F/K} .

Note that Derg is an F-vector space:

(m +m2)(2) = m(2) +n2(2)
(un)(2) = u-n(2).

Derr is called the the vector space of derivations of F/K.

Lemma 6

Let x be a separating element of F/K. Then, for each n) € Derg we have
that

n = n(x) - Ox.
In particular,
dimg Derg = 1.
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Weil Differentials and “ordinary” differentials

Definition 7
On the set

Z ={(u,x) € F x F | x is a separating element}
define the relation
(u,x) ~(v,y) <= v=u-J,(x).
~ is an equivalence relation. We write
u dx

for the class containing (u, x) and call it a differential.
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Weil Differentials and “ordinary” differentials

Definition 8
Let

Ar = {udx | x is a separating element}
be the set of all differentials of F/K.

It turns out we can add up differentials u dx, v dy as follows: choose a
separating element z, and use the chain rule to write

udx = (u-0,(x)) dz,
vdy = (v-d.(y))dz,

and define
udx+vdy = (u-d,(x)+ v-d,(y)) dz.

Likewise,
w - (udx) = (wu) dx € Af,

and so Af is an F-vector space.
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Weil Differentials and “ordinary” differentials

Define the map

d:F— Af
t— dt

with the understanding that dt = 0 for t non-separating.

Lemma 10

Let z € F be a separating element. Then, dz # 0, and every differential
w € Af can be written in the form

w=udz
for some u € F. In particular,
dim,: AF =1.

Moreover, d is a derivation (though to Ag rather than to F).

Gil Cohen Weil Differentials



Weil Differentials and “ordinary” differentials

Since
dim,: AF =1

we can define the quotient of differentials wy and wy # 0 by

w1
— =ueF,
[%%)

where u is the unique element in F s.t. w; = uw,. In particular,

dy

0,(y) = —=.

(v) 4

The chain rule, for example, takes the form

dy dy dx

dz  dx dz’
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Technicality

Let F/K be a function field. Let V be an F-vector space and W a
K-vector space.

We know that Homk(V, W) is a K-vector space. Indeed, if
©$1,P2 . VW

are K-linear then so is their sum 3 + 2 and ap; for every a € K.
That holds true even if V is a K-vector space.

As V is an F-vector space, Homg(V, W) is also an F-vector space.
Indeed, for a € F and ¢ € Homk(V, W), we define

(ap)(v) = p(av).

One can show ap € Homk(V, W). E.g., for be Kand v € V,

(ap)(bv) = p(abv) = b- p(av) = b- (ap)(v).
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Technicality

Moreover, if a € K then

(ap)(v) = p(av) = a- o(v)

and so the multiplication by an element of F as we have just defined it,
extends the good old multiplication of an element by K. In particular,

Ho (AK) A
=

field

extepsion

K
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Weil Differentials

Definition 11

Let F/K be a function field and a € Dg k. We define

Q(a) = {OJ & QF/K | LU(/\(U.) aF F) = 0} o

Claim 12

Va,b € D and x € F*,
Q@ a<b = Q(b) CQa).
Q@ Q(a) + Q(b) C Q(min(a, b)).
Q@ Q(a) NQ(b) = Q(max(a, b)).
Q@ xQ(a) = Q(a + (x)).
Q@ Q= UuepQ(a).

Left as an exercise.
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Weil Differentials

Claim 13

Va € D, Q(a) is a subspace of Homk (A, K) as a K-vector space.

Q(a) is clearly closed under addition. Moreover, for x € K*,

xN(a) = N(a — (x)) = A(a),
and so

weQa) = (xw)(A(a)+F)=w(x(A(a)+F))
— w(Aa) +F)
=0.
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Weil Differentials

Definition 14

For a divisor a, we define the index of specialty of a by
§(a) = dimk Q(a),
also noting that

6(a) = dimi A / (A(a) + F)
=g—1—(dega —dima).

Gil Cohen Weil Differentials



Weil Differentials

Q=[] Q)

acD

is an F-vector space.

Take w € Q and x € F*. Let a € D s.t. w € Q(a). Then,

(xw)(Ma + (x)) + F) = w(x(A(a + (x)) +F))
= w(A(a) +F)
=0.

Take wy,wy € Q. Then, w; € Q(a1), wa € Q(az), and so by Claim 12,

w1 + w2 € Q(min(ay, a2)) C Q.
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Weil Differentials

Theorem 16
dimF Q=1.

Hor (A k)

m/

g~ ega—dino = bS] ‘
K
Informally, and inaccurately, if we think of € as differentials
Q = {dx | x € F} then Theorem 16 is to be expected as

dy
dy = — - dx.
y dx X
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Weil Differentials

Let wy,wy € 2\ {0}. We want to find x € F* s.t. wp = xwy. As
Q(a) + (b) C Qmin(a, b)),

we my assume that wq,wp € Q(b) for some b € D.
Take a € D, a < 0, with a “sufficiently low” degree d = dega.

As a < 0 we have that
dima = dimk £(a) = 0,

and so for a sufficiently large |d|,

d(a) = dimk Q(a)
=g—1—(dega—dima)
=g—1—-d>0.
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Weil Differentials

For i = 1,2 define the map

F—Q

X > XWj.
These are injective K-linear maps. Further, each induces a map
Ti: L(b—a) = Q(a).
Indeed, if x € £(b — a) then (x) +b > a. Thus,

xw; € xQ(b) = Q((x) + b) C Q(a).
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Weil Differentials

Proof.
By Riemann's Theorem,

g —1>deg(b—a)—dim(b—a)
= —d+degb —dimImT;.
Thus, by taking |d| large enough,
dimImT; > —d + degh — g + 1
> 1(g —1-d)

2
_ )
==
as indeed
d(a)=g—1—(dega—dima)=g—1—d.
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Weil Differentials

Proof.
As §(a) = dimk Q(a) and since

)
dimk Im Ty, dimg ImT, > %,

the two subspaces intersect non trivially.
Therefore, Ix1, xo € F* s.t.
X1Ww1 = XoW»?

which concludes the proof. O
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Weil Differentials

Consider the space of adeles which are everywhere defined (“holomorphic
adeles” if you will)

A©) = fa € A | vy(a) > 0},

and that
Q(0) = {w € Q | w(A(0) +F) =0}

We have the following characterization of the genus as the index of
specialty of the zero divisor.

Claim 17

9(0) =dimk (0) = g

K

As L(0) =
5(0) =g — 1 — (deg0 — dim0) =
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Weil Differentials

Recall that

alarge = A(a)large = Q(a) small.

Claim 18

Qa) #{0} = dima<g.

Take 0 # w € Q(a). Consider the K-monomorphism

L(a) = Q

X = Xw

Now,
xw € xQ(a) = Q(a + (x)) € Q(0).

Thus, by Claim 17,
dima = dimk £(a) < dimk Q(0) = g.
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Canonical divisors

Recall that w € Q(b) <= w(A(b) +F) =0, and so if w € Q(b) then

a<b = weQa).

Theorem 19

For every 0 £ w € Q there exists a unique b € D satisfying
weQa <= a<hb.

This unique divisor b is denoted by (w).

>/ \\ R

we @
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Canonical divisors

Proof.
Consider a € D s.t. w € Q(a). By Claim 18, dima < g.

By Riemann's Theorem,
dega <2g — 1.

Thus, we can take a divisor of maximal degree b s.t. w € Q(b). Take any
a € Dst we Qa). Then,

w € Q(a) NQ(b) = Q(max(a, b)).
But by the maximality of the degree of b,
deg b > deg max(a, b),

and so
b = max(a, b) > a.

Uniqueness is obvious. O
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Canonical divisors

Recall that Q is an F-vector space via (xw)

(@ E A

For 0 #w € Q and x € F%,
(xw) = (x) + ().

By Theorem 19,

xw € Qa) <= wex Q)= (x))
= ( )>a—(x)
= a<(X)+(w)

But we also have, by Theorem 19, that
xw € Qa) <= a<(xw),

and (xw) is the unique such divisor. Thus, (xw) = (x) + (w). O
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Canonical divisors

Definition 21

A divisor of the form (w) for w € Q is called canonical. The set of all
canonical divisors is denoted by W.

Claim 22

W is an element of C = D/P.

This explains why we call a canonical divisor “canonical”. Perhaps a
better name would have been a canonical divisor class.
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Canonical divisors

Take 0 # w € Q. By Theorem 16,
Q= {xw | x€F},
and so, by Claim 20,

W={() | e}
={(xw) | x € F}
={(x)+ (w) | x€F}
=(w) +{(x) | x€F}
= (w)+P.
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