Weil Differentials Unit 14

Gil Cohen

December 17, 2024

イロン イ団 と イヨン イヨン

∃ 990

2 Weil Differentials and "ordinary" differentials

Gil Cohen Weil Differentials

イロン イヨン イヨン イヨン

= 990

When discussing adeles, we proved that for every $\mathfrak{a}\in\mathcal{D},$

$$\dim_{\mathsf{K}} \mathbb{A} / (\Lambda(\mathfrak{a}) + \mathsf{F}) = g - 1 - (\deg \mathfrak{a} - \dim \mathfrak{a}).$$

To better understand the K-vector space

$$V = \mathbb{A} \Big/ (\Lambda(\mathfrak{a}) + \mathsf{F})$$

we will consider its functionals

$$Hom_{\mathsf{K}}(\mathsf{V},\mathsf{K}) = \{ \alpha : \mathsf{V} \to \mathsf{K} \mid \alpha \text{ is K-linear} \}.$$

Equivalently, we will study K-linear maps from ${\rm A}$ to K that vanish on $\Lambda(\mathfrak{a})+\mathsf{F}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

Definition 1 (Weil differential)

Let F/K be a function field. A Weil differential is an element

 $\omega \in \mathsf{Hom}_{\mathsf{K}}(\mathbb{A},\mathsf{K})$

that vanishes on $\Lambda(\mathfrak{a}) + F$ for some $\mathfrak{a} \in \mathcal{D}_{F/K}$.

The set of all Weil differentials of F/K is denoted by $\Omega=\Omega_{F/K}.$

The definition seems to have little to do with the more familiar notion of a differential. Namely, an operator d that "differentiate" functions having properties such as

$$d(f+g) = df + dg$$

$$d(fg) = f(dg) + g(df).$$

In the seminar part of the course you will get the chance to learn more about this connection. Still, we will explore this relation a bit now.

・ロト ・四ト ・ヨト ・ヨー

Weil differentials

2 Weil Differentials and "ordinary" differentials

Back to Weil Differentials

4 Canonical divisors

イロト イロト イヨト イヨト

Ξ.

Let F/K be a function field. A map

 $\delta:\mathsf{F}\to\mathsf{F}$

is a derivation of F/K if it is K-linear and it satisfies the product rule

$$\delta(uv) = u \cdot \delta(v) + v \cdot \delta(u)$$

for all $u, v \in F$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

An element $x \in F$ is called a separating element of F/K provided that F/K(x) is algebraic and separable.

Lemma 4

Let \boldsymbol{x} be a separating element of $\mathsf{F}/\mathsf{K}.$ Then, there exists a unique derivation

$$\delta_x : \mathsf{F} \to \mathsf{F}$$

of F/K s.t.

$$\delta_x(x)=1.$$

 δ_x is called the derivation with respect to x.

・ 同 ト ・ ヨ ト ・ ヨ ト

Weil Differentials and "ordinary" differentials

Definition 5

Let

$$\mathsf{Der}_\mathsf{F} = \left\{ \eta:\mathsf{F}\to\mathsf{F} \ | \ \eta \text{ is a derivation of } \mathsf{F}/\mathsf{K} \right\}.$$

Note that Der_F is an F-vector space:

$$(\eta_1 + \eta_2)(z) = \eta_1(z) + \eta_2(z) \ (u\eta)(z) = u \cdot \eta(z).$$

 Der_F is called the the vector space of derivations of F/K .

Lemma 6

Let x be a separating element of $\mathsf{F}/\mathsf{K}.$ Then, for each $\eta\in\mathsf{Der}_\mathsf{F}$ we have that

$$\eta = \eta(\mathbf{x}) \cdot \delta_{\mathbf{x}}.$$

In particular,

 $\dim_{\mathsf{F}} \mathsf{Der}_{\mathsf{F}} = 1.$

A B + A B +
 A
 B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

э

On the set

$$Z = \{(u, x) \in \mathsf{F} \times \mathsf{F} \mid x \text{ is a separating element}\}\$$

define the relation

$$(u,x) \sim (v,y) \iff v = u \cdot \delta_y(x).$$

 \sim is an equivalence relation. We write

u dx

for the class containing (u, x) and call it a differential.

э.

Let

$$\Delta_{\mathsf{F}} = \{ u \, dx \mid x \text{ is a separating element} \}$$

be the set of all differentials of $\mathsf{F}/\mathsf{K}.$

It turns out we can add up differentials $u \, dx$, $v \, dy$ as follows: choose a separating element z, and use the chain rule to write

$$u \, dx = (u \cdot \delta_z(x)) \, dz,$$

$$v \, dy = (v \cdot \delta_z(y)) \, dz,$$

and define

$$u dx + v dy = (u \cdot \delta_z(x) + v \cdot \delta_z(y)) dz.$$

Likewise,

$$w\cdot (u\,dx)=(wu)\,dx\in \Delta_{\mathsf{F}},$$

and so Δ_{F} is an F-vector space.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Weil Differentials and "ordinary" differentials

Definition 9

Define the map

$$d: \mathsf{F} o \Delta_\mathsf{F}$$

 $t \mapsto dt$

with the understanding that dt = 0 for t non-separating.

Lemma 10

Let $z \in F$ be a separating element. Then, $dz \neq 0$, and every differential $\omega \in \Delta_F$ can be written in the form

 $\omega = u \, dz$

for some $u \in F$. In particular,

$$\dim_{\mathsf{F}} \Delta_{\mathsf{F}} = 1.$$

Moreover, d is a derivation (though to Δ_F rather than to F).

Since

$$\dim_F \Delta_F = 1$$

we can define the quotient of differentials ω_1 and $\omega_2 \neq 0$ by

$$\frac{\omega_1}{\omega_2} = u \in \mathsf{F},$$

where u is the unique element in F s.t. $\omega_1 = u\omega_2$. In particular,

$$\delta_z(y)=\frac{dy}{dz}.$$

The chain rule, for example, takes the form

$$\frac{dy}{dz} = \frac{dy}{dx} \cdot \frac{dx}{dz}.$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Weil differentials

Weil Differentials and "ordinary" differentials

3 Back to Weil Differentials

4 Canonical divisors

イロン イロン イヨン イヨン

æ

Technicality

Let F/K be a function field. Let V be an F-vector space and W a K-vector space.

We know that $Hom_{K}(V, W)$ is a K-vector space. Indeed, if

$$\varphi_1, \varphi_2 : V \to W$$

are K-linear then so is their sum $\varphi_1 + \varphi_2$ and $a\varphi_1$ for every $a \in K$.

That holds true even if V is a K-vector space.

As V is an F-vector space, $\operatorname{Hom}_{\mathsf{K}}(V, W)$ is also an F-vector space. Indeed, for $a \in \mathsf{F}$ and $\varphi \in \operatorname{Hom}_{\mathsf{K}}(V, W)$, we define

$$(a\varphi)(v) = \varphi(av).$$

One can show $a\varphi \in \operatorname{Hom}_{\mathsf{K}}(V, W)$. E.g., for $b \in \mathsf{K}$ and $v \in V$,

$$(a\varphi)(bv) = \varphi(abv) = b \cdot \varphi(av) = b \cdot (a\varphi)(v).$$

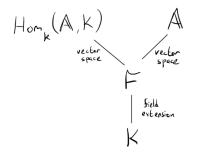
・ロト ・ 一下・ ・ ヨト・

Technicality

Moreover, if $a \in K$ then

$$(a\varphi)(v) = \varphi(av) = a \cdot \varphi(v)$$

and so the multiplication by an element of F as we have just defined it, extends the good old multiplication of an element by K. In particular,



イロト 不得 トイヨト イヨト

Let F/K be a function field and $\mathfrak{a}\in\mathcal{D}_{\mathsf{F}/\mathsf{K}}.$ We define

$$\Omega(\mathfrak{a}) = \left\{ \omega \in \Omega_{\mathsf{F}/\mathsf{K}} \, \mid \, \omega(\Lambda(\mathfrak{a}) + \mathsf{F}) = \mathsf{0} \right\}.$$

Claim 12

 $\forall \mathfrak{a}, \mathfrak{b} \in \mathcal{D} \text{ and } x \in \mathsf{F}^{\times},$ $\mathfrak{a} \leq \mathfrak{b} \implies \Omega(\mathfrak{b}) \subseteq \Omega(\mathfrak{a}).$

•
$$x\Omega(\mathfrak{a}) = \Omega(\mathfrak{a} + (x)).$$

$$\ \ \, \mathfrak{Q} = \cup_{\mathfrak{a}\in\mathcal{D}} \Omega(\mathfrak{a}).$$

Left as an exercise.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

Claim 13

 $\forall \mathfrak{a} \in \mathcal{D}, \, \Omega(\mathfrak{a}) \text{ is a subspace of } \mathsf{Hom}_{\mathsf{K}}(\mathbb{A},\mathsf{K}) \text{ as a } \mathsf{K}\text{-vector space}.$

Proof.

 $\Omega(\mathfrak{a})$ is clearly closed under addition. Moreover, for $x \in \mathsf{K}^{ imes}$,

$$x\Lambda(\mathfrak{a}) = \Lambda(\mathfrak{a} - (x)) = \Lambda(\mathfrak{a}),$$

and so

$$\omega \in \Omega(\mathfrak{a}) \implies (x\omega)(\Lambda(\mathfrak{a}) + \mathsf{F}) = \omega(x(\Lambda(\mathfrak{a}) + \mathsf{F}))$$
$$= \omega(\Lambda(\mathfrak{a}) + \mathsf{F})$$
$$= 0.$$

イロト 不得 トイヨト イヨト

For a divisor \mathfrak{a} , we define the index of specialty of \mathfrak{a} by

 $\delta(\mathfrak{a}) = \dim_{\mathsf{K}} \Omega(\mathfrak{a}),$

also noting that

$$\delta(\mathfrak{a}) = \dim_{\mathsf{K}} \mathbb{A} / (\Lambda(\mathfrak{a}) + \mathsf{F})$$
$$= g - 1 - (\deg \mathfrak{a} - \dim \mathfrak{a}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

Weil Differentials

Claim 15

$$\Omega = \bigcup_{\mathfrak{a} \in \mathcal{D}} \Omega(\mathfrak{a})$$

is an F-vector space.

Proof.

Take $\omega \in \Omega$ and $x \in F^{\times}$. Let $\mathfrak{a} \in \mathcal{D}$ s.t. $\omega \in \Omega(\mathfrak{a})$. Then,

$$(x\omega)(\Lambda(\mathfrak{a} + (x)) + \mathsf{F}) = \omega(x(\Lambda(\mathfrak{a} + (x)) + \mathsf{F}))$$
$$= \omega(\Lambda(\mathfrak{a}) + \mathsf{F})$$
$$= 0.$$

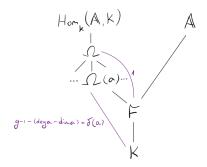
Take $\omega_1, \omega_2 \in \Omega$. Then, $\omega_1 \in \Omega(\mathfrak{a}_1)$, $\omega_2 \in \Omega(\mathfrak{a}_2)$, and so by Claim 12,

 $\omega_1 + \omega_2 \in \Omega(\min(\mathfrak{a}_1, \mathfrak{a}_2)) \subseteq \Omega.$

Weil Differentials

Theorem 16

 $dim_F\,\Omega=1.$



Informally, and inaccurately, if we think of Ω as differentials $\Omega = \{ dx \mid x \in F \}$ then Theorem 16 is to be expected as

$$dy = \frac{dy}{dx} \cdot dx.$$

《曰》《卽》《臣》《臣》

- 22

Let $\omega_1, \omega_2 \in \Omega \setminus \{0\}$. We want to find $x \in \mathsf{F}^{\times}$ s.t. $\omega_2 = x\omega_1$. As $\Omega(\mathfrak{a}) + \Omega(\mathfrak{b}) \subseteq \Omega(\min(\mathfrak{a}, \mathfrak{b})),$

we my assume that $\omega_1, \omega_2 \in \Omega(\mathfrak{b})$ for some $\mathfrak{b} \in \mathcal{D}$.

Take $\mathfrak{a} \in \mathcal{D}$, $\mathfrak{a} < 0$, with a "sufficiently low" degree $d = \deg \mathfrak{a}$. As $\mathfrak{a} < 0$ we have that

 $\dim \mathfrak{a} = \dim_{\mathsf{K}} \mathcal{L}(\mathfrak{a}) = 0,$

and so for a sufficiently large |d|,

$$egin{aligned} &\mathcal{G}(\mathfrak{a}) = \dim_{\mathsf{K}} \Omega(\mathfrak{a}) \ &= g - 1 - (\deg \mathfrak{a} - \dim \mathfrak{a}) \ &= g - 1 - d > 0. \end{aligned}$$

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

For i = 1, 2 define the map

$$F \rightarrow \Omega$$

 $x \mapsto x \omega_i$

These are injective K-linear maps. Further, each induces a map

$$T_i:\mathcal{L}(\mathfrak{b}-\mathfrak{a})
ightarrow\Omega(\mathfrak{a}).$$

Indeed, if $x \in \mathcal{L}(\mathfrak{b} - \mathfrak{a})$ then $(x) + \mathfrak{b} \ge \mathfrak{a}$. Thus,

 $x\omega_i\in x\Omega(\mathfrak{b})=\Omega((x)+\mathfrak{b})\subseteq\Omega(\mathfrak{a}).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

By Riemann's Theorem,

$$egin{aligned} g-1 \geq \mathsf{deg}(\mathfrak{b}-\mathfrak{a}) - \mathsf{dim}(\mathfrak{b}-\mathfrak{a}) \ &= -d + \mathsf{deg}\,\mathfrak{b} - \mathsf{dim}\,\mathsf{Im}\,\mathcal{T}_i. \end{aligned}$$

Thus, by taking |d| large enough,

$$egin{aligned} \dim \operatorname{\mathsf{Im}} \mathcal{T}_i \geq -d + \operatorname{\mathsf{deg}} \mathfrak{b} - g + 1 \ &> rac{1}{2}(g-1-d) \ &= rac{\delta(\mathfrak{a})}{2}, \end{aligned}$$

as indeed

$$\delta(\mathfrak{a}) = g - 1 - (\deg \mathfrak{a} - \dim \mathfrak{a}) = g - 1 - d.$$

イロト イヨト イヨト イヨト

= 990

As $\delta(\mathfrak{a}) = \dim_{\mathsf{K}} \Omega(\mathfrak{a})$ and since

$$\dim_{\mathsf{K}} \operatorname{Im} T_1, \dim_{\mathsf{K}} \operatorname{Im} T_2 > \frac{\delta(\mathfrak{a})}{2},$$

the two subspaces intersect non trivially.

```
Therefore, \exists x_1, x_2 \in \mathsf{F}^{\times} s.t.
```

$$x_1\omega_1 = x_2\omega_2$$

which concludes the proof.

<ロ> <四> <四> <四> <三</p>

Weil Differentials

Consider the space of adeles which are everywhere defined ("holomorphic adeles" if you will)

$$\Lambda(\mathbf{0}) = \{ \alpha \in \mathbb{A} \mid v_{\mathfrak{p}}(\alpha) \geq \mathbf{0} \},\$$

and that

$$\Omega(0) = \{ \omega \in \Omega \ | \ \omega(\Lambda(0) + \mathsf{F}) = 0 \}.$$

We have the following characterization of the genus as the index of specialty of the zero divisor.

Claim 17

 $\delta(0) = \dim_{\mathsf{K}} \Omega(0) = g.$

Proof.

As $\mathcal{L}(0) = K$,

$$\delta(0) = g - 1 - (\deg 0 - \dim 0) = g.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Weil Differentials

Recall that

$$\mathfrak{a} ext{ large } \implies \Lambda(\mathfrak{a}) ext{ large } \implies \Omega(\mathfrak{a}) ext{ small.}$$

Claim 18

$$\Omega(\mathfrak{a}) \neq \{0\} \implies \dim \mathfrak{a} \leq g.$$

Proof.

Take $0 \neq \omega \in \Omega(\mathfrak{a})$. Consider the K-monomorphism

$$\mathcal{L}(\mathfrak{a}) o \Omega \ x \mapsto x \omega$$

Now,

$$x\omega \in x\Omega(\mathfrak{a}) = \Omega(\mathfrak{a} + (x)) \subseteq \Omega(0).$$

Thus, by Claim 17,

$$\dim \mathfrak{a} = \dim_{\mathsf{K}} \mathcal{L}(\mathfrak{a}) \leq \dim_{\mathsf{K}} \Omega(0) = g.$$

Weil differentials

Weil Differentials and "ordinary" differentials

Back to Weil Differentials

イロト イロト イヨト イヨト

æ

Canonical divisors

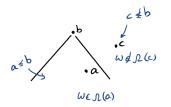
Recall that $\omega \in \Omega(\mathfrak{b}) \iff \omega(\Lambda(\mathfrak{b}) + \mathsf{F}) = 0$, and so if $\omega \in \Omega(\mathfrak{b})$ then $\mathfrak{a} \leq \mathfrak{b} \implies \omega \in \Omega(\mathfrak{a}).$

Theorem 19

For every $0 \neq \omega \in \Omega$ there exists a unique $\mathfrak{b} \in \mathcal{D}$ satisfying

$$\omega \in \Omega(\mathfrak{a}) \quad \iff \quad \mathfrak{a} \leq \mathfrak{b}.$$

This unique divisor \mathfrak{b} is denoted by (ω) .



Canonical divisors

Proof.

Consider $\mathfrak{a} \in \mathcal{D}$ s.t. $\omega \in \Omega(\mathfrak{a})$. By Claim 18, dim $\mathfrak{a} \leq g$.

By Riemann's Theorem,

$$\deg \mathfrak{a} \leq 2g-1.$$

Thus, we can take a divisor of maximal degree \mathfrak{b} s.t. $\omega \in \Omega(\mathfrak{b})$. Take any $\mathfrak{a} \in \mathcal{D}$ s.t. $\omega \in \Omega(\mathfrak{a})$. Then,

$$\omega \in \Omega(\mathfrak{a}) \cap \Omega(\mathfrak{b}) = \Omega(\max(\mathfrak{a},\mathfrak{b})).$$

But by the maximality of the degree of \mathfrak{b} ,

 $\deg \mathfrak{b} \geq \deg \max(\mathfrak{a}, \mathfrak{b}),$

and so

$$\mathfrak{b} = \max(\mathfrak{a}, \mathfrak{b}) \geq \mathfrak{a}.$$

Uniqueness is obvious.

< ロ > < 同 > < 回 > < 回 >

Canonical divisors

Recall that Ω is an F-vector space via $(x\omega)(\alpha) = \omega(x\alpha)$.

Claim 20

For $0 \neq \omega \in \Omega$ and $x \in \mathsf{F}^{\times}$,

$$(x\omega) = (x) + (\omega).$$

Proof.

By Theorem 19,

$$egin{aligned} & x\omega\in\Omega(\mathfrak{a}) & \iff & \omega\in x^{-1}\Omega(\mathfrak{a})=\Omega(\mathfrak{a}-(x))\ & \iff & (\omega)\geq\mathfrak{a}-(x)\ & \iff & \mathfrak{a}\leq(x)+(\omega). \end{aligned}$$

But we also have, by Theorem 19, that

$$x\omega\in\Omega(\mathfrak{a})$$
 \iff $\mathfrak{a}\leq(x\omega),$

and $(x\omega)$ is the unique such divisor. Thus, $(x\omega) = (x) + (\omega)$.

A divisor of the form (ω) for $\omega \in \Omega$ is called canonical. The set of all canonical divisors is denoted by \mathcal{W} .

Claim 22

 ${\mathcal W}$ is an element of ${\mathsf C}={\mathcal D}/{\mathcal P}.$

This explains why we call a canonical divisor "canonical". Perhaps a better name would have been a canonical divisor class.

イロト 不得 トイヨト イヨト 二日

Take $0 \neq \omega \in \Omega$. By Theorem 16,

$$\Omega = \{ x\omega \ | \ x \in \mathsf{F} \},$$

and so, by Claim 20,

$$W = \{(\omega') \mid \omega' \in \Omega\}$$

= $\{(x\omega) \mid x \in \mathsf{F}\}$
= $\{(x) + (\omega) \mid x \in \mathsf{F}\}$
= $(\omega) + \{(x) \mid x \in \mathsf{F}\}$
= $(\omega) + \mathcal{P}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○