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Artin’s Approximation Theorem

The main result we prove in this unit is the following.

Theorem 1 (The weak approximation theorem)

Let vq,...,v, : F* — Z be non-equivalent valuations with v;(F*) =Z
for all i € [n]. Let ay,...,a, € F and my,...,m, € Z. Then,

IxeF Vie[n wvi(x—a)=m.

What is being approximated?

Recall that a large valuation corresponds to closeness, namely,

v,-(x—a,-):m,- — |x—a;\,~:2_’"".
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Artin's Approximation Theorem and the CRT

Theorem 1 is a generalization of the Chinese Remainder Theorem.

E.g., say that we want x € Z s.t.

X =95 3
X =37 10.

Working with p-adics, this is equivalent to

va(x—=3)>5
v3(x —10) > 7,

where v, v3 are the 2-adic and 3-adic valuations.
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A lemma about discrete valuations

A valuation ring is discrete if a valuation v in the corresponding
congruence class of valuations is discrete.

Let Oy, O, be discrete valuation rings with fraction field F. Then,

01 C Oy — 01 =0, (<:> ’U1NU2)

We start by proving the following claim.

Let Oy, O, be valuation rings with fraction field F. Then, TFAE:
Q@ 0 CO;
@ VacF wvi(a)>0 = wy(a) >0
Q@ VacF wvy(a) >0 = wvy(a) > 0.
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A lemma about discrete valuations

Proof.
(1) <= (2) is straightforward.

We turn to prove (2) < (3). By (2),

VacF* wv(a ) >0 = w(at)>0,
which is equivalent to

Vae F* —wi(a) >0 = —wy(a) >0,

namely,
VaeF* wvi(a) <0 = wy(a) <0.

However, the above is equivalent to
VaeF* wy(a) >0 = wvi(a) > 0.

This establishes (2) < (3). O
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A lemma about discrete valuations

Proof of Lemma 2.
We assume O; C O, and wish to prove equality.

It suffices to prove that
’Uz(a) >0 — vl(a) > 0.

Take b € F* s.t. vp(b) > 0. Why such b exists?

Then, for every m > 1,
v2(a"b) = muy(a) + va(b) > 0.

Per our assumption O; C O, and using Claim 3, we conclude that
v1(a"b) = muyi(a) + vi(b) > 0.

As the above holds for all m > 1, it must be the case that v;(a) > 0. [
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Let v1,...,v, : F* — Z be discrete non-equivalent valuations. Then,
dx € F s.t.

v1(x) >0,
vi(x) < 0 for all 7 > 1.

The proof is by induction on n. For n =1 take, say, x = 0.
For n =2, as vy, v, are not equivalent, O,, # O,,.

Lemma 2 then implies that O,,, € O,,. Thus we can take x € Oy, \ O,,.
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Step 1

Proof.
Assume by induction that 3y € F s.t. v1(y) > 0 yet v;(y) < 0 for
i=2,....n—1.

Using the n = 2 case, 3z € F s.t. v1(z) > 0 yet v,(z) < 0.

Consider the element
x=y+2z"

for m > 1 to be chosen s.t.
vi(z™) = mui(z) # vily)

for all i > 2 with v;(z) # 0.
We have that

v1(x) = vi(y + z™) > min(v1(y), mvi(z)) > 0.
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Step 1

Fori=2,...,n—1,
vi(y + 2™) > min(v;(y), mvi(z)).
Recall that v;(y) < 0. If v;(z) = 0 then, by the strict triangle inequality,
vily +2) = min(vi(y), mui(z)) < 0.
If, on the other hand, v;(z) # 0 then, by the choice of m,
vi(y) # mui(z),

and so
vi(y + z™) = min(v;(y), mvi(z)) < 0.
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Proof.
Lastly,

vn(y + 2™) > min(v,(y), mun(2)).
As v,(z) < 0, we can choose m large enough so that mu,(z) < v,(y).

Hence, by the strict triangle inequality,

vp(y +2™) = min(vp(y), mua(z)) < 0.
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Let vy,...,v, : F* — Z be discrete non-equivalent valuations. Then,
dx € F s.t.

Ul(X) > Oa
vi(x) < 0 for all i > 1.

By Claim 4, 9z € F s.t.
UI(Z) 2 07
vi(z) < 0 for all i > 1.

Take y € F with v1(y) > 0, and set x = z™y for m large enough. Then,
v1(x) = mui(z) + vi(y) >0

and for / > 1, taking m large enough,
vi(zMy) = mvi(z) + vi(y) < 0.



Let vy,...,v, : F* — Z be non-equivalent valuations. Then, for every
my,...,m, € Z Ix € F st

vi(x — 1) > my,

vi(x) > m;.
By Claim 5, dy € F s.t.

vi(y) > 0,
vi(y) < 0 for all i > 1.

Then, for m > 1 to be chosen later on, we get

vi(1+y™) =0,
U,‘(]. + y"’) = mv,-(y) < 0.
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Define

Then, for large enough m,
m

1+ ym

vi(x — 1) = vy (— ) = muy(y) > my,

and for j > 1,

vi(x) = —vi(1+y™) = —mui(y) > m;.
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Let v1,...,v, : F* — Z be non-equivalent discrete valuations. Let
a,...,ap € Fand my,...,m, € Z. Then,

IxeF Vie[n wvilx—a)>m.
If a3 =--- = a, = 0 we can take x = 0. Otherwise, for i € [n], define

Ti = min v,-(aj) e 7.
J€ln]

By Claim 6, Vj € [n] 3x; € F s.t.
vj(x; — 1) > mj — 7

vi(xj) > m; — 7; for all i # j.
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Step 4

Proof.
Vj € [n] 3x; € F s.t.
v —1) > mj —7;

vi(xj) > mj —7; for all i # j.
Thus, for i # j,
vi(ajx;) = vi(a;) + vi(x;) > 7 + (mj — 77) = m;.

Define x = a;x; + - - - + anx,. Then,

x—a; = (x—a;x;) + (a;x; — a;) = Z ajxj + ai(xi — 1).

JF#i

Since

vi(ai(xi — 1)) = vi(a;) + vi(xi — 1) > 77 + m; — 7; > m;,
we conclude that v;(x — a;) > m;.
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Step 5

We are now in a position to prove Theorem 1.

Proof.
By Claim 7,

dyeF Vie[n vi(y—a)>m;.

Now, for each i take b; € F s.t. v;(b;) = m;, and apply Claim 7 again to
conclude
JzeF Vie[n] wvi(z—b)>m.

Define
X=y+2z

We have that
x—a=y+z—a=(y—a)+(z—b)+b,
and so, by the strict triangle inequality,
vi(x — a;) = min(vi(y — a;), vi(z — b;), vi(b;)) = m;.
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