Artin's Approximation Theorem Unit 8

Gil Cohen

November 18, 2024

Artin's Approximation Theorem

The main result we prove in this unit is the following.

Theorem 1 (The weak approximation theorem)

Let $\upsilon_1, \ldots, \upsilon_n : \mathsf{F}^{\times} \to \mathbb{Z}$ be non-equivalent valuations with $\upsilon_i(\mathsf{F}^{\times}) = \mathbb{Z}$ for all $i \in [n]$. Let $a_1, \ldots, a_n \in \mathsf{F}$ and $m_1, \ldots, m_n \in \mathbb{Z}$. Then,

$$\exists x \in F \quad \forall i \in [n] \quad v_i(x - a_i) = m_i.$$

What is being approximated?

Recall that a large valuation corresponds to closeness, namely,

$$v_i(x-a_i)=m_i \implies |x-a_i|_i=2^{-m_i}.$$

Artin's Approximation Theorem and the CRT

Theorem 1 is a generalization of the Chinese Remainder Theorem.

E.g., say that we want $x \in \mathbb{Z}$ s.t.

$$x \equiv_{2^5} 3$$

 $x \equiv_{3^7} 10$.

Working with p-adics, this is equivalent to

$$v_2(x-3) \ge 5$$

 $v_3(x-10) \ge 7$,

where v_2, v_3 are the 2-adic and 3-adic valuations.

A lemma about discrete valuations

A valuation ring is discrete if a valuation υ in the corresponding congruence class of valuations is discrete.

Lemma 2

Let $\mathcal{O}_1, \mathcal{O}_2$ be discrete valuation rings with fraction field F. Then,

$$\mathcal{O}_1 \subseteq \mathcal{O}_2 \quad \Longrightarrow \quad \mathcal{O}_1 = \mathcal{O}_2 \quad (\iff v_1 \sim v_2)$$

We start by proving the following claim.

Claim 3

Let $\mathcal{O}_1, \mathcal{O}_2$ be valuation rings with fraction field F. Then, TFAE:

A lemma about discrete valuations

Proof.

 $(1) \iff (2)$ is straightforward.

We turn to prove $(2) \iff (3)$. By (2),

$$\forall \mathbf{a} \in \mathsf{F}^{\times} \quad v_1(\mathbf{a}^{-1}) \geq 0 \implies v_2(\mathbf{a}^{-1}) \geq 0,$$

which is equivalent to

$$\forall a \in \mathsf{F}^{\times} \quad -v_1(a) \geq 0 \implies -v_2(a) \geq 0,$$

namely,

$$\forall a \in \mathsf{F}^{\times} \quad v_1(a) \leq 0 \implies v_2(a) \leq 0.$$

However, the above is equivalent to

$$\forall a \in \mathsf{F}^{\times} \quad v_2(a) > 0 \implies v_1(a) > 0.$$

This establishes (2) \iff (3).

A lemma about discrete valuations

Proof of Lemma 2.

We assume $\mathcal{O}_1 \subseteq \mathcal{O}_2$ and wish to prove equality.

It suffices to prove that

$$v_2(a) \geq 0 \implies v_1(a) \geq 0.$$

Take $b \in F^{\times}$ s.t. $\upsilon_2(b) > 0$. Why such b exists?

Then, for every $m \ge 1$,

$$\upsilon_2(a^mb)=m\upsilon_2(a)+\upsilon_2(b)>0.$$

Per our assumption $\mathcal{O}_1 \subseteq \mathcal{O}_2$ and using Claim 3, we conclude that

$$\upsilon_1(a^mb)=m\upsilon_1(a)+\upsilon_1(b)>0.$$

As the above holds for all $m \ge 1$, it must be the case that $v_1(a) \ge 0$.

Claim 4

Let $v_1, \dots, v_n : \mathsf{F}^{\times} \to \mathbb{Z}$ be discrete non-equivalent valuations. Then, $\exists x \in \mathsf{F} \text{ s.t.}$

$$v_1(x) \ge 0,$$

 $v_i(x) < 0$ for all $i > 1.$

Proof.

The proof is by induction on n. For n = 1 take, say, x = 0.

For n=2, as v_1,v_2 are not equivalent, $\mathcal{O}_{v_1} \neq \mathcal{O}_{v_2}$.

Lemma 2 then implies that $\mathcal{O}_{v_1} \nsubseteq \mathcal{O}_{v_2}$. Thus we can take $x \in \mathcal{O}_{v_1} \setminus \mathcal{O}_{v_2}$.

Proof.

Assume by induction that $\exists y \in F$ s.t. $v_1(y) \ge 0$ yet $v_i(y) < 0$ for i = 2, ..., n - 1.

Using the n=2 case, $\exists z \in F$ s.t. $v_1(z) \ge 0$ yet $v_n(z) < 0$.

Consider the element

$$x = y + z^m$$

for $m \ge 1$ to be chosen s.t.

$$\upsilon_i(z^m) = m\upsilon_i(z) \neq \upsilon_i(y)$$

for all $i \geq 2$ with $v_i(z) \neq 0$.

We have that

$$\upsilon_1(x)=\upsilon_1(y+z^m)\geq \min(\upsilon_1(y),m\upsilon_1(z))\geq 0.$$

Proof.

For i = 2, ..., n - 1,

$$v_i(y+z^m) \geq \min(v_i(y), mv_i(z)).$$

Recall that $v_i(y) < 0$. If $v_i(z) = 0$ then, by the strict triangle inequality,

$$\upsilon_i(y+z^m)=\min(\upsilon_i(y),m\upsilon_i(z))<0.$$

If, on the other hand, $v_i(z) \neq 0$ then, by the choice of m,

$$v_i(y) \neq mv_i(z),$$

and so

$$\upsilon_i(y+z^m)=\min(\upsilon_i(y),m\upsilon_i(z))<0.$$

Proof.

Lastly,

$$\upsilon_n(y+z^m)\geq \min(\upsilon_n(y),m\upsilon_n(z)).$$

As $v_n(z) < 0$, we can choose m large enough so that $mv_n(z) < v_n(y)$.

Hence, by the strict triangle inequality,

$$\upsilon_n(y+z^m)=\min(\upsilon_n(y),m\upsilon_n(z))<0.$$

Claim 5

Let $v_1,\ldots,v_n:\mathsf{F}^{\times}\to\mathbb{Z}$ be discrete non-equivalent valuations. Then, $\exists x\in\mathsf{F}$ s.t.

$$v_1(x) > 0,$$

 $v_i(x) < 0 \text{ for all } i > 1.$

Proof.

By Claim 4, $\exists z \in F$ s.t.

$$v_1(z) \ge 0$$
,
 $v_i(z) < 0$ for all $i > 1$.

Take $y \in F$ with $v_1(y) > 0$, and set $x = z^m y$ for m large enough. Then,

$$\upsilon_1(x) = m\upsilon_1(z) + \upsilon_1(y) > 0$$

and for i > 1, taking m large enough,

$$\upsilon_i(z^m y) = m\upsilon_i(z) + \nu_i(y) < 0.$$

Claim 6

Let $v_1, \ldots, v_n : \mathsf{F}^\times \to \mathbb{Z}$ be non-equivalent valuations. Then, for every $m_1, \ldots, m_n \in \mathbb{Z}$ $\exists x \in \mathsf{F}$ s.t.

$$v_1(x-1) > m_1,$$

$$v_i(x) > m_i.$$

Proof.

By Claim 5, $\exists y \in F$ s.t.

$$v_1(y) > 0,$$

 $v_i(y) < 0 \text{ for all } i > 1.$

Then, for $m \ge 1$ to be chosen later on, we get

$$v_1(1+y^m) = 0,$$

 $v_i(1+y^m) = mv_i(y) < 0.$

Proof.

$$v_1(1+y^m) = 0,$$

 $v_i(1+y^m) = mv_i(y) < 0.$

Define

$$x=\frac{1}{1+y^m}.$$

Then, for large enough m,

$$v_1(x-1) = v_1\left(-\frac{y^m}{1+y^m}\right) = mv_1(y) > m_1,$$

and for i > 1,

$$\upsilon_i(x) = -\upsilon_i(1+y^m) = -m\upsilon_i(y) > m_i.$$

Claim 7

Let $v_1, \ldots, v_n : \mathsf{F}^{\times} \to \mathbb{Z}$ be non-equivalent discrete valuations. Let $a_1, \ldots, a_n \in \mathsf{F}$ and $m_1, \ldots, m_n \in \mathbb{Z}$. Then,

$$\exists x \in \mathsf{F} \quad \forall i \in [n] \quad \upsilon_i(x - a_i) > m_i.$$

Proof.

If $a_1 = \cdots = a_n = 0$ we can take x = 0. Otherwise, for $i \in [n]$, define

$$\tau_i = \min_{j \in [n]} \upsilon_i(a_j) \in \mathbb{Z}.$$

By Claim 6, $\forall j \in [n] \exists x_j \in F \text{ s.t.}$

$$v_j(x_j - 1) > m_j - \tau_j$$

 $v_i(x_j) > m_i - \tau_i$ for all $i \neq j$.

Proof.

 $\forall j \in [n] \ \exists x_j \in F \text{ s.t.}$

$$v_j(x_j - 1) > m_j - \tau_j$$

 $v_i(x_j) > m_i - \tau_i$ for all $i \neq j$.

Thus, for $i \neq j$,

$$\upsilon_i(a_jx_j)=\upsilon_i(a_j)+\upsilon_i(x_j)>\tau_i+(m_i-\tau_i)=m_i.$$

Define $x = a_1x_1 + \cdots + a_nx_n$. Then,

$$x - a_i = (x - a_i x_i) + (a_i x_i - a_i) = \sum_{j \neq i} a_j x_j + a_i (x_i - 1).$$

Since

$$\upsilon_i(a_i(x_i-1))=\upsilon_i(a_i)+\upsilon_i(x_i-1)>\tau_i+m_i-\tau_i>m_i,$$

we conclude that $v_i(x - a_i) > m_i$.

We are now in a position to prove Theorem 1.

Proof.

By Claim 7,

$$\exists y \in \mathsf{F} \quad \forall i \in [n] \quad \upsilon_i(y - a_i) > m_i.$$

Now, for each i take $b_i \in F$ s.t. $v_i(b_i) = m_i$, and apply Claim 7 again to conclude

$$\exists z \in \mathsf{F} \quad \forall i \in [n] \quad \upsilon_i(z-b_i) > m_i.$$

Define

$$x = y + z$$
.

We have that

$$x - a_i = y + z - a_i = (y - a_i) + (z - b_i) + b_i$$

and so, by the strict triangle inequality,

$$v_i(x-a_i) = \min(v_i(y-a_i), v_i(z-b_i), v_i(b_i)) = m_i.$$

