Algebraic-Geometric Codes

Fall 2024/5

Problem Set 0: Ring Theory Refresher

Gil Cohen, Tomer Manket

Due: Not for submission

Remark. All the rings in these exercises are commutative with 1. A ring homomorphism $f: R \to S$ is a map that satisfies

- (a) f(1) = 1.
- (b) f(a+b) = f(a) + f(b) for all $a, b \in R$.
- (c) f(ab) = f(a)f(b) for all $a, b \in R$.

Problem 1. Let $I, J \leq R$. Determine if the following sets are ideals of R. If not, find the smallest ideal which contains it.

- (a) $I \cap J$.
- (b) $I \cup J$.
- (c) $I + J := \{a + b \mid a \in I, b \in J\}.$
- (d) $I * J := \{ab \mid a \in I, b \in J\}.$

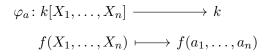
If I, J are prime, which of the above is a prime ideal? If I, J are maximal, which of the above is a maximal ideal? If I, J are principal, which of the above is a principal ideal?

Problem 2. Let R, S be rings and let $f: R \to S$ be a ring homomorphism. Which of the following statements are true? No proof needed.

- (a) If $I \triangleleft R$ then $f(I) \triangleleft S$.
- (b) If $J \triangleleft S$ then $f^{-1}(J) \triangleleft R$.
- (c) If $I \in \operatorname{Spec}(R)$ then $f(I) \in \operatorname{Spec}(S)$.
- (d) If $J \in \operatorname{Spec}(S)$ then $f^{-1}(J) \in \operatorname{Spec}(R)$.
- (e) If $I \in MaxSpec(R)$ then $f(I) \in MaxSpec(S)$.
- (f) If $J \in \operatorname{MaxSpec}(S)$ then $f^{-1}(J) \in \operatorname{MaxSpec}(R)$.
- (g) If I is a principal of R then f(I) is a principal ideal of S.
- (h) If J is a principal of S then $f^{-1}(J)$ is a principal ideal of R.

Problem 3. Characterize the ideals in R/I, i.e. describe the ideals in R/I in terms of the ideals of R.

Problem 4. Let k be a field and let $a := (a_1, \ldots, a_n) \in k^n$. In the recitation we claimed that the substitution homomorphism



is a surjective ring homomorphism with kernel

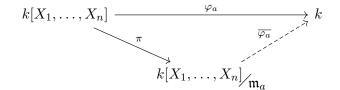
$$\ker(\varphi_a) = \langle X_1 - a_1, \dots, X_n - a_n \rangle =: \mathfrak{m}_a.$$

It is clear that $\ker(\varphi_a) \supseteq \mathfrak{m}_a$. For the opposite inclusion, it is sufficient to prove that $\mathfrak{m}_a \in \operatorname{MaxSpec}(k[X_1, \ldots, X_n])$. Show it by the following steps.

(a) Show that there exists a unique ring homomorphism

$$\overline{\varphi_a}: k[X_1,\ldots,X_n]/\mathfrak{m}_a \to k$$

such that $\varphi_a = \overline{\varphi_a} \circ \pi$, i.e. the following diagram commutes:



- (b) Show that $\overline{\varphi_a}$ is surjective.
- (c) Show that $\overline{\varphi_a}$ is injective. Hint: first show that $\pi(g(X_1, \ldots, X_n)) = \pi(g(a_1, \ldots, a_n))$ for every $g \in k[X_1, \ldots, X_n]$.
- (d) Conclude that \mathfrak{m}_a is a maximal ideal of $k[X_1, \ldots, X_n]$.

Problem 5. Let $R \subseteq S$ be integral domains. Prove or disprove:

- (a) Every irreducible element in R[x] is irreducible in S[x].
- (b) Every irreducible element in S[x] is irreducible in R[x].

Problem 6. Let R be an integral domain and let $0 \neq a \in R$.

- (a) Prove that a is prime $\iff \langle a \rangle$ is a prime ideal of R.
- (b) Prove that if a is prime then a is irreducible.

We say that R is a UFD (unique factorization domain) if every non-zero non-unit element $b \in R$ can be written as $b = p_1 \cdots p_k$ where $p_1, \ldots, p_k \in R$ are irreducible $(k \ge 1)$, and in addition if $b = q_1 \ldots q_m$ where $q_1, \ldots, q_m \in R$ are irreducible $(m \ge 1)$, then k = m and there exist a permutation $\sigma: [k] \to [k]$ and units $u_1, \ldots, u_k \in R^{\times}$ such that $q_i = u_i p_{\sigma(i)}$. (c) Show that if R is a UFD and a is irreducible, then a is prime.

Problem 7. Let $S := \mathbb{Z} + x^2 \mathbb{Z}[x] = \{a + x^2 f(x) \mid a \in \mathbb{Z}, f(x) \in \mathbb{Z}[x]\}.$

- (a) Prove that $S \subset \mathbb{Z}[x]$ is a subring.
- (b) Prove that $x^6 \in S$ can be written as a product of irreducible elements in two different ways. Conclude that S is not a UFD.
- (c) Find an irreducible element in S which is not prime in S.