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Prime divisors

Definition 1

Let F/K be a function field. A prime divisor p of F/K is a congruence
class of places of F/K.

We denote
P =Pr/x ={p | p is a prime divisor of F/K} .
So

We proved that all valuations in [v], are discrete. Further, every
v1, U2 € [v], are equal up to a proper normalization. Thus, we pick the
unique valuation in [v], that is onto and denote it by

vyt F = Z U {oo}.
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Pseudo divisors

Definition 2

Let F/K be a function field. We denote by ZSF/K the set of formal
expressions of the form
D b,

PEPE/k

where ny, € Z for all p € P k.

Alternatively, D is the set of functions P — Z.
The elements of D are called pseudo divisors.

In some parts of the literature, one writes this in multiplicative form

[I»™

peP

to make the resemblance to factorization more explicit.
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Pseudo divisors

Note that D is a group via the component-wise addition rule

D omp Y mp=> (ny+ my)p.

peP peP peEP

ForquP’wedeﬁnevq:ﬁ—)Zby

Vg anp = nq.

peP

Note that vq is a group homomorphism.
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Partial order on pseudo divisors

We define a partial order on D by

a<b <<= VpeP wvy(a) <uvy(b).

We define
max(a, b) Z max(vp(a), vy (b))p € D,
peP
min(a, b) Zmln (vp(a),vp(b))p € D.
peP

We further note that

a<b — a+c<b+ec.
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Divisors

Definition 3 (Divisors)

Let F/K be a function field, and D= 15F/K. An element a € D is called a
divisor if v,(a) = 0 for all but finitely many p € P. In this case, we say
that v, (a) = 0 almost always.

The set of divisors of F/K is denoted by D = D k.

Note that D is a subgroup of D.
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Degree of divisors

Definition 4

Let F/K be a function field. The degree of a prime divisor p € PP, denoted
degp, is defined to be deg ¢ where ¢ : F — LU {oo} is any place that
corresponds to p. That is,

degp = [@/m:K].
We extend this definition to a general divisor a € D by setting

deg(a Z vy (a) degp.

peP

Observe that deg : D — Z is a group homomorphism that preserves the
partial order, that is,

a<b = dega<degh.
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Principal divisors

For x € F* we define

(x) = ZUP(X)P~

peP

Recall that a valuation of F/K is trivial on K and is non-trivial on F.
Thus,
xeK* <= (x)=0.

In the rational function field K(x)/K,

(X) =90 — Poos
3
( >:3P0—Pl—213c>o-

x—1
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Principal divisors

3

In our ongoing example y? = x3 — x, for characteristic # 2,

(x) = 2p0,0 — 2P0,
(¥) =poo+P1,0+P-1,0 — 3o,

X
() = 10,0 + Poc —P1,0 —P-1,0
y
whereas in characteristic 2,

(¥) = Ppo,o + 2010 — 3Pc-
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Riemann-Roch spaces

Let SCP. Forace D we define as € D by

y(as) = {“"(“)’ P

0, otherwise.
Further define

L(a,S)={x€F | VpeS vy(x)+ vyp(a) >0}
={xeF*| (x)s+as >0} uU{0},
and
L(a)=L(a,P)={xeF | VpeP vy(x)+vy(a) >0}
={xeF*| (x)+a>0}uU{0}.

Definition 5

If a € D we call £(a) a Riemann-Roch space.
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Riemann-Roch spaces

Let F/K be a function field. Let a € D and S C P. Then, £(a,S) is a
K-vector space, a subspace of F.

0 € L(a,S) by definition.
Now, if x,y € L(a, S) then

VpeP vp(x),vp(y) > —vp(a),
and so
VpeP wvp(x+y) > min(vp(x),vp(y)) > —vp(a).

Thus, x +y € L(a,S).

Since v, (x) = 0 for every x € K*, L(a,S) is closed under multiplication
by a scalar. O
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Riemann-Roch spaces

For a divisor a € D we denote

dima = dimk L(a).
For every a € D and 51,5, C P,
55CS = L(a,5)C L(a,5).
In particular, £(a) C L(a,S).

The proof is straightforward by the definitions.
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Riemann-Roch spaces

Note that for every x € F*, the map F — F mapping y — xy is K-linear.

For everyaeﬁ, SCP, and x € F*,

xL(a,S) = L(a—(x),S).

Yy
; € ;C(a, 5)

VpeS vy(y/x)+ vp(a) >0
VpeS vp(y)— vp(x)+ vp(a) >0
VpeS uy(y) = vp((x)) + vpla) > 0
P S vp(y) +vp(a—(x)) =0

y € L(a—(x),5).

y € xL(a, S)

Freeey

Gil Cohen Divisors and Riemann-Roch Spaces



Riemann-Roch spaces

Let S C P finiteand a,b € D s.t. a < b (= L(a,S) C L(b,S)). Then,

dimg £(b, 5)/£(a, S) = degbs — degas.

First, we may assume that a = as, b = bs since L(a, S) = L(as, S).

It suffices to consider the case b = a + p for some prime divisor p € P.
To see this, recall that by the third isomorphism theorem, if
Vi C V, C V3 are K-vector spaces then

dimgk V3/V1 = dimg V3/V2 + dimg Vz/VI.
Thus, it suffices to prove that for p € Ss.it. a <a+p < b we have
dimg L(a +p, 5)/£(a, S) = degp.



Riemann-Roch spaces

Proof.
By the weak approximation theorem (WAT), 3x € F s.t.

VgeS wvg(x) =uvq(a+p).

Equivalently,
(x)s = (a+p)s.
By Claim 9,

xL(a+p,5) = L(a+p—(x),5) = £(0,5),
xL(a,5) = L(a = (x),S) = L(=p, 5)-

Thus, it suffices to prove that

dimg £(0, S)/[:(_p’ S) = degp.
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Riemann-Roch spaces

To summarize, we wish to prove

dimg £(0, 5)/5(_;3, S) = degp.
Note that as p € S,

Denote F, = Op/mp. We will show that restricting the projection map
O, — F, to £(0,5), namely,

v:L(0,S) = F,
X = X+ my

is onto with ker o = L(—p, S). This will complete the proof as, recall,
degp = [Fp : K] = dimk Fy.



Riemann-Roch spaces

We start by proving that

¢ :L(0,5) = F,
X=X +my

is onto. Take X € F, and x € O, s.t. ¢(x) =X. By WAT, 3y € F s.t.

vp(y —x) >0,
vg(y) >0 Vqe S\ {p}.

Thus,
Up(y) = min(vp(x), vp(y —x)) >0,
and so y € £(0,S5). As o(y —x) =0,
p(y) = p(x) = x.
 is therefore onto.
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Riemann-Roch spaces

0:L(0,S)—F,
X=X +my

We turn to prove that ker o = L(—p, S).

To see this, take x € £(0,S) and note that

P(x)=0 <<= wup(x)>0
— xe/L(-p,S).
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Riemann-Roch spaces

Claim 11

Let a € D, a < 0. Then, £(a) = 0.

To prove the claim, recall that for every x € F \ K there are valuations
v,v" of F/K s.t. v(x) > 0 yet v'(x) < 0.

Take x € L(a). Then,

VpeP wvp(x)>—vp(a) >0 = xekK

However, a < 0 and so 3q € P s.t. v4(a) < 0 and so v4(x) > 0.
whereas vg(K*) = 0. Thus, x = 0.
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Riemann-Roch spaces

Claim 12

£(0) = K.

All valuations of F/K are trivial on K and so K C £(0).

On the other hand, if x € £(0) then v,(x) > 0 for all p € P, and so
x € K.
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Riemann-Roch spaces

Claim 13

Let a < b be divisors, and let S C IP be the set of all prime divisors
appearing in a,b. Then,

L(b) N L(a,S) = L(a).

Clearly, £(a) C £(b) and L(a) C L(a, S).
For the other direction, take x € £(b) N L(a, S). Then,

VpeS wp(x)+ vp(a) >0.

It remains to argue about p ¢ S. But, then vy(a) = v,(b) = 0 and since
x € L(b) we have

Up(x) + vp(a) = vp(x) + 0 = vy(x) + vy (b) > 0.
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Recall: the second isomorphism theorem for vector spaces

Let U, V be K-vector spaces. Then, U+ V and UN V are also K-vector
spaces, and

(V+U)/U% V/\/mu.

Gil Cohen Divisors and Riemann-Roch Spaces



Riemann-Roch spaces

For divisors a < b,

dimg ﬁ([’)/ﬁ(a) < degb — dega.

Let S C P be the set of all prime divisors appearing in a,b. Note
|S| < o0.

By Lemma 10,

dimg £(b, 5)/[Z(a, S) = degbs — degas.
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Riemann-Roch spaces

dimg £(b, 5)/£(a, S) = degbs — degas.

The proof then follows as the diagram shows that

£(0) / £(a) < £(6.5) / £(a, ).

k(b S)

o(b)a dlag)
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Riemann-Roch spaces

We are now in a position to prove that Riemann-Roch spaces are of finite
dimension as K-vector spaces.

Corollary 15

For every a € D, dima < co.

Let b < 0 a divisor. By Lemma 14,

dimg ﬁ(a)/ﬁ(min(a, b)) < dega — deg min(a, b).
But Claim 11 implies
L(min(a, b)) C L(b) = 0.

Thus,
dima = dimk £(a) < dega — deg min(a, b) < co.
O



Riemann-Roch spaces

Another corollaries of Lemma 14 is

Corollary 16

For every a,b € D,
a<b = dega—dima<degb—dimb.
We will soon prove that

sup (dega —dima) < oco.
aEDF/K

This will lead to the definition of the genus of a function field.
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Riemann-Roch spaces

Based on Lemma 14 we can strengthen Corollary 15 for non-negative
divisors.

Corollary 17
For every a € D, a > 0 we have

dima < dega+ 1.

The proof is left as an exercise.
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Consider the rational function field F = Fg(x)/Fq.
For r € N, L(rpoo) consists of all f(x) € Fq(x) s.t

veo(f(x)) = =

up(F(x)) = 0 Vp € P\ {poc}-
The second condition implies that f(x) € Fq[x].
The first condition then implies deg f(x) < r.

Hence, L£(rpoo) is the Fq-vector space of polynomials of degree < r.
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Riemann-Roch spaces

Exercise. Prove that for every a € D, a > 0, and k > 1 integer,

dim((k — 1)a) < dim(ka) < dim((k — 1)a) + dega.
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