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Prime divisors

Definition 1

Let F/K be a function field. A prime divisor p of F/K is a congruence
class of places of F/K.

We denote

P = PF/K = {p | p is a prime divisor of F/K} .

So
p = [ϕ] ↔ Op ↔ mp ↔ [υ]p.

We proved that all valuations in [υ]p are discrete. Further, every
υ1, υ2 ∈ [υ]p are equal up to a proper normalization. Thus, we pick the
unique valuation in [υ]p that is onto and denote it by

υp : F→ Z ∪ {∞}.
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Pseudo divisors

Definition 2

Let F/K be a function field. We denote by D̃F/K the set of formal
expressions of the form ∑

p∈PF/K

npp,

where np ∈ Z for all p ∈ PF/K.

Alternatively, D̃ is the set of functions P→ Z.

The elements of D̃ are called pseudo divisors.

In some parts of the literature, one writes this in multiplicative form∏
p∈P

pnp

to make the resemblance to factorization more explicit.
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Pseudo divisors

Note that D̃ is a group via the component-wise addition rule∑
p∈P

npp +
∑
p∈P

mpp =
∑
p∈P

(np + mp)p.

For q ∈ P we define υq : D̃ → Z by

υq

∑
p∈P

npp

 = nq.

Note that υq is a group homomorphism.
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Partial order on pseudo divisors

We define a partial order on D̃ by

a ≤ b ⇐⇒ ∀p ∈ P υp(a) ≤ υp(b).

We define

max(a, b) =
∑
p∈P

max(υp(a), υp(b))p ∈ D̃,

min(a, b) =
∑
p∈P

min(υp(a), υp(b))p ∈ D̃.

We further note that

a ≤ b =⇒ a + c ≤ b + c.

Gil Cohen Divisors and Riemann-Roch Spaces



Overview

1 Overview

2 Prime divisors

3 Pseudo divisors

4 Divisors

5 Principal divisors

6 Riemann-Roch spaces

Gil Cohen Divisors and Riemann-Roch Spaces



Divisors

Definition 3 (Divisors)

Let F/K be a function field, and D̃ = D̃F/K. An element a ∈ D̃ is called a
divisor if υp(a) = 0 for all but finitely many p ∈ P. In this case, we say
that υp(a) = 0 almost always.

The set of divisors of F/K is denoted by D = DF/K.

Note that D is a subgroup of D̃.
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Degree of divisors

Definition 4

Let F/K be a function field. The degree of a prime divisor p ∈ P, denoted
deg p, is defined to be degϕ where ϕ : F→ L ∪ {∞} is any place that
corresponds to p. That is,

deg p =
[
O
/
m : K

]
.

We extend this definition to a general divisor a ∈ D by setting

deg(a) =
∑
p∈P

υp(a) deg p.

Observe that deg : D → Z is a group homomorphism that preserves the
partial order, that is,

a ≤ b =⇒ deg a ≤ deg b.
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Principal divisors

For x ∈ F× we define
(x) =

∑
p∈P

υp(x)p.

Recall that a valuation of F/K is trivial on K and is non-trivial on F.
Thus,

x ∈ K× ⇐⇒ (x) = 0.

In the rational function field K(x)/K,

(x) = p0 − p∞,(
x3

x − 1

)
= 3p0 − p1 − 2p∞.
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Principal divisors

In our ongoing example y2 = x3 − x , for characteristic 6= 2,

(x) = 2p0,0 − 2p∞,

(y) = p0,0 + p1,0 + p−1,0 − 3p∞,(
x

y

)
= p0,0 + p∞ − p1,0 − p−1,0,

whereas in characteristic 2,

(y) = p0,0 + 2p1,0 − 3p∞.

Gil Cohen Divisors and Riemann-Roch Spaces



Overview

1 Overview

2 Prime divisors

3 Pseudo divisors

4 Divisors

5 Principal divisors

6 Riemann-Roch spaces

Gil Cohen Divisors and Riemann-Roch Spaces



Riemann-Roch spaces

Let S ⊆ P. For a ∈ D̃ we define aS ∈ D̃ by

υp(aS) =

{
υp(a), p ∈ S ;

0, otherwise.

Further define

L(a,S) = {x ∈ F | ∀p ∈ S υp(x) + υp(a) ≥ 0}
=
{
x ∈ F× | (x)S + aS ≥ 0

}
∪ {0},

and

L(a) = L(a,P) = {x ∈ F | ∀p ∈ P υp(x) + υp(a) ≥ 0}
=
{
x ∈ F× | (x) + a ≥ 0

}
∪ {0}.

Definition 5

If a ∈ D we call L(a) a Riemann-Roch space.
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Riemann-Roch spaces

Claim 6

Let F/K be a function field. Let a ∈ D̃ and S ⊆ P. Then, L(a,S) is a
K-vector space, a subspace of F.

Proof.

0 ∈ L(a,S) by definition.

Now, if x , y ∈ L(a,S) then

∀p ∈ P υp(x), υp(y) ≥ −υp(a),

and so

∀p ∈ P υp(x + y) ≥ min(υp(x), υp(y)) ≥ −υp(a).

Thus, x + y ∈ L(a,S).

Since υp(x) = 0 for every x ∈ K×, L(a,S) is closed under multiplication
by a scalar.
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Riemann-Roch spaces

Definition 7

For a divisor a ∈ D we denote

dim a = dimK L(a).

Claim 8

For every a ∈ D̃ and S1,S2 ⊆ P,

S1 ⊆ S2 =⇒ L(a,S2) ⊆ L(a,S1).

In particular, L(a) ⊆ L(a,S).

The proof is straightforward by the definitions.
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Riemann-Roch spaces

Note that for every x ∈ F×, the map F→ F mapping y 7→ xy is K-linear.

Claim 9

For every a ∈ D̃, S ⊆ P, and x ∈ F×,

xL(a,S) = L(a− (x),S).

Proof.

y ∈ xL(a,S) ⇐⇒ y

x
∈ L(a,S)

⇐⇒ ∀p ∈ S υp(y/x) + υp(a) ≥ 0

⇐⇒ ∀p ∈ S υp(y)− υp(x) + υp(a) ≥ 0

⇐⇒ ∀p ∈ S υp(y)− υp((x)) + υp(a) ≥ 0

⇐⇒ ∀p ∈ S υp(y) + υp(a− (x)) ≥ 0

⇐⇒ y ∈ L(a− (x),S).
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Riemann-Roch spaces

Lemma 10

Let S ⊆ P finite and a, b ∈ D̃ s.t. a ≤ b ( =⇒ L(a,S) ⊆ L(b,S)). Then,

dimK L(b,S)
/
L(a,S) = deg bS − deg aS .

Proof.

First, we may assume that a = aS , b = bS since L(a,S) = L(aS ,S).

It suffices to consider the case b = a + p for some prime divisor p ∈ P.
To see this, recall that by the third isomorphism theorem, if
V1 ⊆ V2 ⊆ V3 are K-vector spaces then

dimK V3

/
V1 = dimK V3

/
V2 + dimK V2

/
V1.

Thus, it suffices to prove that for p ∈ S s.t. a ≤ a + p ≤ b we have

dimK L(a + p,S)
/
L(a,S) = deg p.
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Riemann-Roch spaces

Proof.

By the weak approximation theorem (WAT), ∃x ∈ F s.t.

∀q ∈ S υq(x) = υq(a + p).

Equivalently,
(x)S = (a + p)S .

By Claim 9,

xL(a + p,S) = L(a + p− (x),S) = L(0,S),

xL(a,S) = L(a− (x),S) = L(−p,S).

Thus, it suffices to prove that

dimK L(0,S)
/
L(−p,S) = deg p.
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Riemann-Roch spaces

Proof.

To summarize, we wish to prove

dimK L(0,S)
/
L(−p,S) = deg p.

Note that as p ∈ S ,

L(0,S) ⊆ L(0, {p}) = Op.

Denote Fp = Op

/
mp. We will show that restricting the projection map

Op → Fp to L(0,S), namely,

ϕ : L(0,S)→ Fp

x 7→ x + mp

is onto with kerϕ = L(−p,S). This will complete the proof as, recall,

deg p = [Fp : K] = dimK Fp.
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Riemann-Roch spaces

Proof.

We start by proving that

ϕ : L(0,S)→ Fp

x 7→ x + mp

is onto. Take x̄ ∈ Fp and x ∈ Op s.t. ϕ(x) = x̄ . By WAT, ∃y ∈ F s.t.

υp(y − x) > 0,

υq(y) ≥ 0 ∀q ∈ S \ {p}.

Thus,
υp(y) ≥ min(υp(x), υp(y − x)) ≥ 0,

and so y ∈ L(0,S). As ϕ(y − x) = 0,

ϕ(y) = ϕ(x) = x̄ .

ϕ is therefore onto.
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Riemann-Roch spaces

Proof.

ϕ : L(0,S)→ Fp

x 7→ x + mp

We turn to prove that kerϕ = L(−p,S).

To see this, take x ∈ L(0,S) and note that

ϕ(x) = 0 ⇐⇒ υp(x) > 0

⇐⇒ x ∈ L(−p,S).
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Riemann-Roch spaces

Claim 11

Let a ∈ D, a < 0. Then, L(a) = 0.

Proof.

To prove the claim, recall that for every x ∈ F \ K there are valuations
υ, υ′ of F/K s.t. υ(x) > 0 yet υ′(x) < 0.

Take x ∈ L(a). Then,

∀p ∈ P υp(x) ≥ −υp(a) ≥ 0 =⇒ x ∈ K.

However, a < 0 and so ∃q ∈ P s.t. υq(a) < 0 and so υq(x) > 0.
whereas υq(K×) = 0. Thus, x = 0.
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Riemann-Roch spaces

Claim 12

L(0) = K.

Proof.

All valuations of F/K are trivial on K and so K ⊆ L(0).

On the other hand, if x ∈ L(0) then υp(x) ≥ 0 for all p ∈ P, and so
x ∈ K.
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Riemann-Roch spaces

Claim 13

Let a ≤ b be divisors, and let S ⊆ P be the set of all prime divisors
appearing in a, b. Then,

L(b) ∩ L(a,S) = L(a).

Proof.

Clearly, L(a) ⊆ L(b) and L(a) ⊆ L(a,S).

For the other direction, take x ∈ L(b) ∩ L(a,S). Then,

∀p ∈ S υp(x) + υp(a) ≥ 0.

It remains to argue about p 6∈ S . But, then υp(a) = υp(b) = 0 and since
x ∈ L(b) we have

υp(x) + υp(a) = υp(x) + 0 = υp(x) + υp(b) ≥ 0.
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Recall: the second isomorphism theorem for vector spaces

Let U,V be K -vector spaces. Then, U + V and U ∩ V are also K-vector
spaces, and

(V + U)
/
U ∼= V

/
V ∩ U.

Gil Cohen Divisors and Riemann-Roch Spaces



Riemann-Roch spaces

Lemma 14

For divisors a ≤ b,

dimK L(b)
/
L(a) ≤ deg b− deg a.

Proof.

Let S ⊆ P be the set of all prime divisors appearing in a, b. Note
|S | <∞.

By Lemma 10,

dimK L(b,S)
/
L(a,S) = deg bS − deg aS .
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Riemann-Roch spaces

Proof.

dimK L(b,S)
/
L(a,S) = deg bS − deg aS .

The proof then follows as the diagram shows that

L(b)
/
L(a) ≤ L(b,S)

/
L(a,S).
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Riemann-Roch spaces

We are now in a position to prove that Riemann-Roch spaces are of finite
dimension as K-vector spaces.

Corollary 15

For every a ∈ D, dim a <∞.

Proof.

Let b < 0 a divisor. By Lemma 14,

dimK L(a)
/
L(min(a, b)) ≤ deg a− deg min(a, b).

But Claim 11 implies

L(min(a, b)) ⊆ L(b) = 0.

Thus,
dim a = dimK L(a) ≤ deg a− deg min(a, b) <∞.
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Riemann-Roch spaces

Another corollaries of Lemma 14 is

Corollary 16

For every a, b ∈ D,

a ≤ b =⇒ deg a− dim a ≤ deg b− dim b.

We will soon prove that

sup
a∈DF/K

(deg a− dim a) <∞.

This will lead to the definition of the genus of a function field.
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Riemann-Roch spaces

Based on Lemma 14 we can strengthen Corollary 15 for non-negative
divisors.

Corollary 17

For every a ∈ D, a ≥ 0 we have

dim a ≤ deg a + 1.

The proof is left as an exercise.
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Example

Consider the rational function field F = Fq(x)/Fq.

For r ∈ N, L(rp∞) consists of all f (x) ∈ Fq(x) s.t.

υ∞(f (x)) ≥ −r ,
υp(f (x)) ≥ 0 ∀p ∈ P \ {p∞}.

The second condition implies that f (x) ∈ Fq[x ].

The first condition then implies deg f (x) ≤ r .

Hence, L(rp∞) is the Fq-vector space of polynomials of degree ≤ r .
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Riemann-Roch spaces

Exercise. Prove that for every a ∈ D, a ≥ 0, and k ≥ 1 integer,

dim((k − 1)a) ≤ dim(ka) ≤ dim((k − 1)a) + deg a.
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