Recitation 4: The Places of the Rational Function Field Scribe: Tomer Manket

1 Function Fields

Definition 1. A field extension F/K is called an *algebraic function field in one variable* over K (or simply a function field) if the following holds:

- 1. There exists $x \in F$ such that $[F:K(x)] < \infty$.
- 2. $K \subsetneq F$.
- 3. The field of constants of F/K is equal to K.

Example 2. Let K be a field and let t be transcendental over K. Then

$$K(t) := \left\{ \frac{f(t)}{g(t)} \mid f, g \in K[t], \ g \neq 0 \right\}$$

is called the field of rational functions in variable t over K. Then K(t)/K is a function field, and is called the rational function field over K.

Remark 1. For $u = \frac{f(t)}{g(t)} \in K(t)$ we define deg $u := \deg f - \deg g$ (check that it is well-defined).

Definition 3. Let F, L be fields. A *place* is a map $\varphi \colon F \to L \cup \{\infty\}$ satisfying:

- 1. $\varphi(1) = 1$.
- 2. $\varphi(a+b) = \varphi(a) + \varphi(b)$, provided that $\{\varphi(a), \varphi(b)\} \neq \{\infty\}$.
- 3. $\varphi(ab) = \varphi(a)\varphi(b)$, provided that $\{\varphi(a), \varphi(b)\} \neq \{0, \infty\}$.

A place is called *trivial* if $\varphi(a) \neq \infty$ for all $a \in F$, i.e. $\varphi(F) \subseteq L$.

Definition 4. Two places $\varphi_1 \colon F \to L_1 \cup \{\infty\}$ and $\varphi_2 \colon F \to L_2 \cup \{\infty\}$ are *equivalent* if for all $a \in F$,

 $\varphi_1(a) \neq \infty \iff \varphi_2(a) \neq \infty.$

Definition 5. A place of a function field F/K is a non-trivial place $\varphi \colon F \to L \cup \{\infty\}$ that is trivial on K. The residue field of φ is the field $\overline{F} := \varphi(F) \setminus \{\infty\}$.

Remark 2. Note that since φ is trivial on K we have $K \cong \varphi(K) \subseteq L$. Identifying $\varphi(K)$ with K via φ , we may assume that $K \subseteq L$ and that φ is the identity on K.

2 The Places of K(t)/K

What are the places $\varphi \colon K(t) \to L \cup \{\infty\}$ of the rational function field K(t)/K?

In class we have already seen one example of such places:

Example 6. Let $p(t) \in K[t]$ be a monic irreducible polynomial. Then $L := K[t]/\langle p(t) \rangle$ is a field. Let

$$\begin{aligned} \pi \colon K[t] &\to K[t] / \langle p(t) \rangle \\ g(t) &\longmapsto \overline{g(t)} := g(t) + \langle p(t) \rangle \end{aligned}$$

be the natural projection. Notice that

$$g(\overline{t}) = 0 \iff \overline{g(t)} = 0 \iff g(t) \in \langle p(t) \rangle \iff p(t) \mid g(t) \text{ in } K[t].$$

In particular, \overline{t} is a root of p(t) in L, and we can extend π to a place

$$\varphi_p \colon K(t) \to L \cup \{\infty\}$$

as follows: Given $u(t) \in K(t)$, write $u(t) = \frac{f(t)}{g(t)}$ with $f(t), g(t) \in K[t]$ coprime and define

$$\varphi_p(u(t)) := \begin{cases} \frac{f(\bar{t})}{g(\bar{t})} & p(t) \nmid g(t) \text{ in } K[t] \\ \infty & \text{otherwise} \end{cases}$$

That is, the place φ_p "substitutes" the root $\overline{t} \in L$ of p(t) in u(t).

Exercise 1. Show that if $p(t), q(t) \in K[t]$ are two distinct, monic irreducible polynomials in K[t], then the places φ_p and φ_q are not equivalent.

Theorem 7. Let $\varphi: K(t)/K \to L \cup \{\infty\}$ be a place of K(t)/K such that $\varphi(t) \neq \infty$. Then φ is equivalent to φ_p for some monic irreducible polynomial $p(t) \in K[t]$. Thus, there is a one-to-one correspondence between the monic irreducible polynomials in K[t] and the (equivalent classes of) places φ of K(t)/K in which $\varphi(t) \neq \infty$.

Proof. Let $\varphi: K(t)/K \to L \cup \{\infty\}$ be a place of K(t)/K such that $\varphi(t) \neq \infty$. By Remark 2, we may assume that $K \subseteq L$ and that φ is the identity on K. Since $\varphi(t) \neq \infty$ we have $\varphi(K[t]) \subseteq L$ and the restriction $\varphi_0 := \varphi|_{K[t]} \colon K[t] \to L$ is a ring homomorphism. Since L is a field, $\ker(\varphi_0)$ is a prime ideal of K[t]. Thus, either $\ker(\varphi_0) = \{0\}$ or $\ker(\varphi_0) = \langle p \rangle$ for some unique monic, irreducible polynomial $p \in K[t]$.

Case 1. $ker(\varphi_0) = \{0\}.$

Then for every $\frac{f}{g} \in K(t)$ we have $\varphi(g) \notin \{0, \infty\}$, hence

$$\varphi\left(\frac{f}{g}\right)\cdot\varphi(g) = \underbrace{\varphi(f)}_{\in L} \implies \varphi\left(\frac{f}{g}\right) = \frac{\varphi_0(f)}{\varphi_0(g)} \in L.$$

However, this implies that φ is trivial on K(t), which is forbidden.

Case 2. $\ker(\varphi_0) = \langle p \rangle$ for some monic, irreducible $p \in K[t]$. Let $\tau := \varphi(t)$. Then $\tau \in L$ is a root of p, as

$$\varphi(p) = p(\varphi(t)) = p(\tau) = 0$$

and if $h \in K[t]$ is such that $p \nmid h$ in K[t], then

$$\varphi(h) = h(\varphi(t)) = h(\tau) \in L^{\times}.$$

Now, every $u \in K(t)^{\times}$ has a unique representation

$$u = p^m \cdot \frac{f}{g} \tag{1}$$

with $f, g \in K[t] \setminus \{0\}$ coprime, $p \nmid f, p \nmid g$ (in K[t]) and $m \in \mathbb{Z}$. It follows that

$$\varphi(u) = \begin{cases} \frac{f(\tau)}{g(\tau)} & m = 0\\ 0 & m > 0\\ \infty & m < 0 \end{cases}$$
(2)

The corresponding valuation ring is

$$\mathcal{O}_p = \{ u \in K(t) \mid \varphi(u) \neq \infty \} = \left\{ \frac{f}{g} \mid f, g \in K[t], p \nmid g \right\}$$

so φ is equivalent to the place φ_p .

Remark 3. The maximal ideal of \mathcal{O}_p is

$$\mathfrak{m}_p = \{ u \in K(t) \mid \varphi(u) = 0 \} = \left\{ \frac{f}{g} \mid f, g \in K[t], p \nmid g, p \mid f \right\}$$

and a corresponding valuation is the *p*-adic valuation: $\nu_p(u) = m$ (where *u* admits the representation (1)).

Exercise 2. Show that the residue field $\varphi(\mathcal{O}_p)$ of the place φ defined in (2) is isomorphic to $K[t]/\langle p \rangle$. In particular, it is a finite extension of K of degree deg p.

It remains to find the places $\varphi \colon K(t)/K \to L \cup \{\infty\}$ in which $\varphi(t) = \infty$.

In this case, we must have $\varphi(t^{-1}) = 0$. Each $u \in K(t)^{\times}$ can be written as

$$u = \frac{\sum_{i=0}^{k} a_i t^i}{\sum_{j=0}^{\ell} b_j t^j}$$

with $a_k, b_\ell \neq 0$. Then

$$u = t^{k-\ell} \cdot \frac{\sum_{i=0}^{k} a_i t^{i-k}}{\sum_{j=0}^{\ell} b_j t^{j-\ell}}.$$

Note that φ maps the quotient in the RHS to $a_k/b_\ell \in K^{\times}$. Hence

$$\varphi(u) = \begin{cases} a_k/b_\ell & k = \ell \\ 0 & k < \ell \\ \infty & k > \ell \end{cases}$$

This indeed gives a place, which we denote by φ_{∞} . The corresponding valuation ring is

$$\mathcal{O}_{\infty} = \{ u \in K(t) \mid \varphi_{\infty}(u) \neq \infty \}$$
$$= \left\{ \frac{f}{g} \mid f, g \in K[t], \deg f \leq \deg g \right\}$$
$$= \left\{ u \in K(t) \mid f, g \in K[t], \deg u \leq 0 \right\}$$

and a corresponding valuation is $\nu_{\infty}(u) = -\deg(u)$. It is also clear that the residue field $\varphi_{\infty}(K(t)) \setminus \{\infty\}$ is equal to K, and that φ_{∞} is not equivalent to any φ_p where $p(t) \in K[t]$ is a monic irreducible polynomial.