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Tame cyclic extensions of K(x)

We now consider a function field F = K(x , y) s.t.

yn = a ·
s∏

i=1

pi (x)ni

where

1 a 6= 0;

2 The p1(x), . . . , ps(x) ∈ K[x ] are distinct, irreducible and monic;

3 n1, . . . , ns ∈ Z \ {0};
4 char(K) - n; and

5 ∀i ∈ [s] gcd(n, ni ) = 1.

E.g.,

y2 = x3 − x = x(x − 1)(x + 1),

y9 = x +
1

x
=

x2 + 1

x
(note that field arithmetics matters here.)
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Tame cyclic extensions of K(x)

Theorem 1

1 K is the full constant field of F and [F : K(x)] = n;

2 The prime divisors that correspond to p1(x), . . . , ps(x) in P(K(x))
are totally ramified in F/K(x).

3 All prime divisors q lying over p∞ ∈ P(K(x)) have ramification index
e(q/p∞) = n

d where

d = gcd

(
n,

s∑
i=1

ni deg pi (x)

)
.

4 No prime divisor other than those listed above ramify in F/K(x).

5 Finally, the genus g of F/K(x) is

g =
n − 1

2

(
−1 +

s∑
i=1

deg pi (x)

)
− d − 1

2
.
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Our example

Consider our running example, the function field F = Fq(x , y) s.t.

y2 = x3 − x = x(x − 1)(x + 1).

For concreteness, we take q = 5 and note that Theorem 1 applies as

x , x − 1, x + 1 are distinct and irreducible in F5[x ].

charF5 does not divide n = 2

Each of x , x − 1, x + 1 appears with multiplicity ni = 1 on the RHS,
which is coprime to n = 2.
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Our example

By Theorem 1, the prime divisors p0, p1, p−1 ∈ P(F5(x)) are totally
ramified.

Every prime divisor P ∈ P(F) over p∞ ∈ P(F5(x)) has ramification index
n
d = 2

d where

d = gcd

(
n,

s∑
i=1

ni deg pi (x)

)
= gcd (2, 3) = 1.

Here

p1(x) = x , p2(x) = x + 1, p3(x) = x − 1 and n1 = n2 = n3 = 1.

Thus, the ramification index is 2 and so there is a unique prime divisor
lying over p∞.

By Theorem 1, no other prime divisor ramifies in F/F5(x).
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Our example

Below is a diagram summarizing the above. We label a prime divisor p by
a local parameter (or uniformizer) of p, namely, an element t ∈ F with
υp(t) = 1. Equivalently, mp = tOp.

As for the genus, since d = 1 and n = 2, Theorem 1 yields

g(F) =
n − 1

2

(
−1 +

s∑
i=1

deg pi (x)

)
− d − 1

2
=

1

2
(−1 + 3) = 1.
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Our example

To see that y is a local parameter for p0, p1, p−1 note that for each
α ∈ {0,±1}, if we denote by Pα ∈ P(F) the prime divisor lying over pα
then

2 · υPα(y) = υPα(y2) = e(Pα/pα) · υpα(x3 − x) = e(Pα/pα),

and so we confirm that e(Pα/pα) = 2 and that

υPα(y) = 1.
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Our example

As for the prime divisor P∞/p∞,

2 · υP∞(y) = υP∞(y2) = e(P∞/p∞) · υp∞(x3 − x) = −3 · e(P∞/p∞),

and so υP∞(y) = −3. As

υP∞(x) = e(P∞/p∞) · υp∞(x) = 2 · (−1) = −2,

we get that

υP∞(y/x2) = υP∞(y)− 2 · υP∞(x) = −3− 2 · (−2) = 1.

We could have also taken x
y .
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Kummer’s Theorem

Throughout this section we consider finite separable extensions F/L of
E/K such that F = E(y).

Consider p ∈ P(E) such that

y ∈ O′p ,
⋂
P/p

OP = {z ∈ F | z is integral over Op} ,

where the last equality is a theorem we will prove. Another result states
that the minimal polynomial

ϕ(T ) =
∑

ciT
i ∈ E[T ]

of such y over E is in fact in Op[T ].

In what follows, we denote by ϕ̄(T ) ∈ Ep[T ] the projection of ϕ(T ) to
Ep[T ] (where, recall, Ep = Op/mp), namely,

ϕ̄(T ) =
∑

(ci + mp)T i =
∑

ci (p)T i =
∑

c̄iT
i .
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Kummer’s Theorem

Theorem 2 (Kummer’s Theorem)

Let F/L be a finite separable extension of E/K, and let y ∈ F be s.t.
F = E(y). Let p ∈ P(E) be s.t. y ∈ O′p.

Let ϕ(T ) ∈ Op[T ] be the minimal polynomial of y over E. Factor

ϕ̄(T ) =
r∏

i=1

γi (T )εi ∈ Ep[T ]

where γi (T ) ∈ Ep[T ] are irreducible and distinct (and εi ≥ 1).

If ε1 = · · · = εr = 1 then there are exactly r prime divisors
P1, . . . ,Pr ∈ P(F) lying over p. Moreover, for every i ∈ [r ]

1 e(Pi/p) = 1

2 f (Pi/p) = deg γi (T )

3 γi (y) ∈ mPi
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p2 and p−2

Since y2 = x3 − x and x3 − x ∈ Op2 we have that y ∈ O′p2
. Indeed,

ϕ(T ) = T 2 − (x3 − x) ∈ Op2 [T ]

is a monic polynomial that vanishes at y .

Since F/F5(x) is finite and separable, we can apply Kummer’s Theorem
(Theorem 2). We have that the projection of ϕ(T ) modulo mp2 ,

ϕ2(T ) = T 2 − (23 − 2) = T 2 − 1 = (T + 1)(T − 1).

Hence, by Kummer’s Theorem, there are two prime divisors lying over p2.
One denoted as P2,−1 for which y + 1 ∈ mP2,−1 , and the other, P2,1,
satisfies y − 1 ∈ mP2,1 .
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p2 and p−2

Is y + 1 local parameter for P2,−1?

Denote for the moment P = P2,−1. We have that

υP(y2 − 1) = υP((y + 1)(y − 1)) = υP(y + 1) + υP(y − 1).

Now,
y + 1 ∈ mP =⇒ y − 1 6∈ mP

as otherwise (y + 1)− (y − 1) = 2 ∈ mP.

Thus, υP(y − 1) = 0 (note υP(y − 1) ≥ 0 as y ∈ O′p) and so

υP(y2 − 1) = υP(y + 1).

Now,
y2 − 1 = x3 − x − 1 = (x − 2)(x2 + 2x + 3),

where x2 + 2x + 3 ∈ F5[x ] is irreducible.

Gil Cohen y2 = x3 − x over F5



p2 and p−2

To recap,
υP(y2 − 1) = υP(y + 1)

and
y2 − 1 = (x − 2)(x2 + 2x + 3),

where x2 + 2x + 3 ∈ F5[x ] is irreducible.

Therefore,

υP(y2 − 1) = e(P/p2) · υp2((x − 2)(x2 + 2x + 3)) = 1.

Thus, υP(y + 1) = 1 and so y + 1 is a local parameter for P = P2,−1.

A similar calculation shows that y − 1 is a local parameter for P2,1.
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p2 and p−2

As for p−2, since y2 = x3 − x and x3 − x ∈ Op−2 we have that y ∈ O′p−2
.

Indeed,
ϕ(T ) = T 2 − (x3 − x) ∈ Op−2 [T ]

is a monic polynomial that vanishes at y .

We have that the projection

ϕ−2(T ) = T 2 − ((−2)3 − (−2)) = T 2 + 1 = (T + 2)(T − 2).

Hence, by Kummer’s Theorem, there are two prime divisors lying over
p−2. One P−2,−2 for which y + 2 ∈ mP−2,−2 , and the other, P−2,2,
satisfies y − 2 ∈ mP−2,2 .

As before, one can show that these are local parameters.
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All rational prime divisors so far

We have N(F) = 8 rational prime divisors and recall g(F) = 1.
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Riemann-Roch spaces

We have that

(x)F5(x) = p0 − p∞,

and so

(x)F = 2P0,0 − 2P∞.

Now, for P ∈ P(F),

υP(y) 6= 0 ⇐⇒ υP(y2) 6= 0 ⇐⇒ υP(x3 − x) 6= 0

⇐⇒ υp(x3 − x) 6= 0,

where p ∈ P(F5(x)) is the prime divisor lying under P.

Thus, the poles and zeros of y are

P0,0,P1,0,P−1,0,P∞.

In fact, our previous calculations show that

(y)F = P0,0 + P1,0 + P−1,0 − 3P∞.
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Riemann-Roch spaces

In particular,

(x)F,∞ = 2P∞,

(y)F,∞ = 3P∞.

Thus,

L(0 ·P∞) = SpanF5
{1}

L(1 ·P∞) ⊇ SpanF5
{1}

L(2 ·P∞) ⊇ SpanF5
{1, x}

L(3 ·P∞) ⊇ SpanF5
{1, x , y}

L(4 ·P∞) ⊇ SpanF5

{
1, x , y , x2

}
L(5 ·P∞) ⊇ SpanF5

{
1, x , y , x2, xy

}
L(6 ·P∞) ⊇ SpanF5

{
1, x , y , x2, xy , x3

}
.

But in fact, all are equalities as we now show.

Gil Cohen y2 = x3 − x over F5



Riemann-Roch spaces

Note that dimL(1 ·P∞) = 1 by Riemann-Roch and since g(F) = 1.
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A little Goppa code

We can take the length n = 7 Goppa code over F5,

C = { (z(P0,0), z(P1,0), z(P−1,0), z(P2,1), z(P2,−1), z(P−2,2), z(P−2,−2))

| z ∈ L(r ·P∞)}.
E.g., for r = 3, as L(3 ·P∞) = Span {1, x , y}, the code is generated by

(x(P0,0), x(P1,0), x(P−1,0), x(P2,1), x(P2,−1), x(P−2,2), x(P−2,−2)) ,

(y(P0,0), y(P1,0), y(P−1,0), y(P2,1), y(P2,−1), y(P−2,2), y(P−2,−2)) ,

and the all ones vector, namely, by

(0, 1, 4, 2, 2, 3, 3) ,

(0, 0, 0, 1, 4, 2, 3) ,

(1, 1, 1, 1, 1, 1, 1) .

It has dimension k = 3 and, recall, distance

d ≥ n − k − g + 1 = 7− 3− 1 + 1 = 4.

Note MDS codes give for k = 3 on block-length n = 7 distance
7− 3 + 1 = 5. But I think (internet search...) that the above code over
F5 is optimal.
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The canonical divisor

Recall that a divisor a is canonical iff dim a = g and deg g = 2g − 2. In
our case we are looking for dimension 1, degree 0 divisor.

Thus, the zero divisor is a canonical divisor of a genus 1 function field.
Thus, the class of canonical divisors coincides with the class a principal
divisors in such function fields.

The duality between functions and differentials on genus 1 function fields
(aka elliptic curves) reflects deeper symmetries in the curve’s geometry
and arithmetic.
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