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Tame cyclic extensions of K(x)

We now consider a function field F = K(x, y) s.t.
y"=a- HP,‘(X)"'
i=1

where
Q a#0;
@ The pi(x),...,ps(x) € K[x] are distinct, irreducible and monic;
Q@ m,...,ns € Z\ {0};
@ char(K) { n; and
Q Vi€ [s] ged(n, n;) =1.
Eg.

y2=x>—x=x(x—1)(x+ 1),

1 241 . . .
y=x+== s (note that field arithmetics matters here.)
X X
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Tame cyclic extensions of K(x)

Q@ K is the full constant field of F and [F : K(x)] = n;

@ The prime divisors that correspond to pi(x), ..., ps(x) in P(K(x))
are totally ramified in F /K(x).

@ Al prime divisors q lying over po, € P(K(x)) have ramification index

n

e(q/poc) = 4§ where

d = ged (n, Z n; deg p;(x)) .
i=1

@ No prime divisor other than those listed above ramify in F /K(x).
@ Finally, the genus g of F/K(x) is

n—1 ° d—1
§=— <—1+Zdegpi(x)>—2~

i=1
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Our example

Consider our running example, the function field F = F4(x, y) s.t.
y?=x3 —x=x(x—1)(x +1).

For concreteness, we take g = 5 and note that Theorem 1 applies as
@ x,x —1,x+ 1 are distinct and irreducible in Fs[x].
@ charF5 does not divide n =2

@ Each of x,x — 1, x + 1 appears with multiplicity n; = 1 on the RHS,
which is coprime to n = 2.
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Our example

By Theorem 1, the prime divisors pg, p1,p—1 € P(Fs(x)) are totally
ramified.

Every prime divisor 3 € P(F) over po € P(Fs5(x)) has ramification index

n_"2
Hfdwhere

—gcd( Zn,degp, > =gcd(2,3) =1

Here
pi(x)=x, p(x) =x+1, ps(x)=x—1and m=m=n3 =1

Thus, the ramification index is 2 and so there is a unique prime divisor
lying over po.

By Theorem 1, no other prime divisor ramifies in F/F5(x).
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Our example

Below is a diagram summarizing the above. We label a prime divisor p by
a local parameter (or uniformizer) of p, namely, an element ¢t € F with
vp(t) = 1. Equivalently, m, = tO,.

G Y y y Y2

\'—F;(x) X X~ X+ SIZ

As for the genus, since d =1 and n = 2, Theorem 1 yields

g(F)=n1<1+ZdegP, ) dglzé(71+3):1.
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Our example

e oy y y Y Wx
0= =2 o=2 €=2
P?; (x) X X-I X+I Lx
Q P‘ P" FN

To see that y is a local parameter for pg,p1,p_1 note that for each
a € {0,£1}, if we denote by B, € P(F) the prime divisor lying over p,
then

2. UB, (}/) =Up, (y2) = e(ma/pa) *Up, (X3 - X) = e(f‘pa/pa)a
and so we confirm that e(P./pa) = 2 and that

vy, (y) = 1.
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Our example

. Gop Y y Y Yx
o=a e=2 e=2 e=a
6o X X-1 X+ 3'<‘
R R P P

As for the prime divisor Poo /Poc,
2-vp. (¥) = 3. (v?) = e(Poo/Poo) - o (0 = x) = =3+ &(Poo /Poo);
and so vy__(y) = —3. As
U (%) = e(Poo /Poc) Vo () =2+ (-1) = =2,
we get that

Vg (y/x*) = vp (y)—2-vp_(x)=—-3-2-(-2)=1

We could have also taken ;‘7
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Kummer's Theorem

Throughout this section we consider finite separable extensions F/L of
E/K such that F = E(y).

Consider p € P(E) such that

y € O; £ ﬂ Og = {z € F | z is integral over O, },
PB/p

where the last equality is a theorem we will prove. Another result states
that the minimal polynomial

p(T)=> T €E[T]
of such y over E is in fact in Op[T].

In what follows, we denote by @(T) € E,[T] the projection of ¢(T) to
Eo[T] (where, recall, E, = O, /m,), namely,

o(T) = Z(Ci+mp)Ti = Zc, p)T’ = ZC,T'
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Kummer's Theorem

Theorem 2 (Kummer's Theorem)

Let F/L be a finite separable extension of E/K, and let y € F be s.t.
F=E(y). Letp € P(E) bes.t. y€O,.

Let o(T) € Oy[T] be the minimal polynomial of y over E. Factor
a(T) = [[n(T)7 € ElT]
i=1

where ~;(T) € E,[T] are irreducible and distinct (and ¢; > 1).

Ifey =--+- =€, =1 then there are exactly r prime divisors
B, ..., B, € P(F) lying over p. Moreover, for every i € [r]
Q e(Pi/p) =1

Q f(Pi/p) = degi(T)
o FYi(y) € my;
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Since y* = x> — x and x* — x € Oy, we have that y € O],. Indeed,
P(T) = T? = (x> = x) € Op,[T]

is a monic polynomial that vanishes at y.

Since F/F5(x) is finite and separable, we can apply Kummer's Theorem
(Theorem 2). We have that the projection of ¢(T) modulo m,,,

(T)=T?—(22-2)=T?>-1=(T+1)(T-1).

Hence, by Kummer's Theorem, there are two prime divisors lying over p,.
One denoted as P, 1 for which y +1 € mgy, _,, and the other, Py 1,
satisfies y — 1 € mg, ;.
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Is y + 1 local parameter for Bo 17

Denote for the moment B =P, _;. We have that
vp(y? = 1) = vp((y + )(y = 1)) = vp(y + 1) + vp(y — 1).

Now,
y+1€mq3 - y—1¢m«;3

as otherwise (y +1) — (y — 1) = 2 € myp.
Thus, v (y — 1) =0 (note vp(y — 1) > 0 as y € Oy) and so

vp(y® —1) = vp(y +1).

Now,
yP—1=x3—x—-1=(x—2)(x* +2x +3),

where x? + 2x + 3 € Fs[x] is irreducible.
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To recap,
vp(y? = 1) = vp(y +1)
and
y?—1=(x—-2)(x*+2x+3),
where x> + 2x + 3 € Fs[x] is irreducible.

Therefore,

vp(y? — 1) = e(B/pa) - vpa((x ~ 2)( +2x +3)) = 1.

Thus, vp(y+1) =1 and so y + 1 is a local parameter for P = P> _1.

A similar calculation shows that y — 1 is a local parameter for B> ;.
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As for p_», since y? = x3 —x and x3 — x € O,_, we have that y € Oy,
Indeed,
P(T) =T = (x* = x) € 0p_,[T]

is a monic polynomial that vanishes at y.

We have that the projection
pa(T) = T2 = (-2 = (-2)) = T2+ 1= (T +2)(T - 2).

Hence, by Kummer's Theorem, there are two prime divisors lying over
p_o. One P_, _, for which y +2 € my_, _,, and the other, P_» ),
satisfies y —2 € my_,,.

As before, one can show that these are local parameters.
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All rational prime divisors so far

We have N(F) = 8 rational prime divisors and recall g(F) =1

oo Buo e B B, Bor Bn D

A i y Y Y/x2 y- y4 - 42
0=a =2 e=2 e=a \ /
FF;(x) X X X+ ‘)l? X~ X+ o
f i P Pa P Pa
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Riemann-Roch spaces

We have that

(X)]F5(X) =90 — Poo,
and so
(x)F = 2%0,0 — 2Peo-
Now, for 8 € P(F),

vp(y) 20 <= up(y)#£0 = ovgp(x*—x)#0
= u(*—x)#£0,
where p € P(F5(x)) is the prime divisor lying under .
Thus, the poles and zeros of y are
PBo,0, B1,0, B-1,0, Poo-
In fact, our previous calculations show that
(¥)F =PBo,0 + P10 +P-1,0 — 3P
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Riemann-Roch spaces

In particular,

(X)F,oo = 2%007
(y)F,oo = 3%00

Thus,

L(0-Po) = Spang, {1}

L(1-Poo) 2 Spang, {1}

L(2-Po) 2 Spang, {1, x}

L(3-Poo) 2 Spang, {1,x,y}

L(4-Poo) 2 Spang, {1,x,y,x2}
L(5-Poo) 2 Spang, {1,X,y,x2,xy}
L(6-Poo) 2 Spang, {1,x7y,x27xy7x3} .

But in fact, all are equalities as we now show.
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Riemann-Roch spaces

cleg—clim ="
|
Aeg 0 / 2 2g-2 29~ 29
cl°\ g/ =1 +1
" / canon cal - 6%‘ g g-
oELemﬂsa

Note that dim £(1 - B.) = 1 by Riemann-Roch and since g(F) = 1.

J%ﬂl‘m’, =0

c{eé( ) A 2 S

v A A 2 S
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A little Goppa code

We can take the length n =7 Goppa code over Fs,

C = {(2(Po,0), 2(P1,0), 2(PB-1,0), 2(B2,1), 2(P2,-1), 2(B-2.2), 2(P-2,-2))
| z€ L(r PBoo)}-
E.g., for r =3, as £L(3-Pw) = Span {1, x, y}, the code is generated by

(x(Po,0) x(P1,0), x(P-1,0), x(P2,1), x(B2,-1), x(P-22), x(P-2,-2)) ,
(¥ (FBo,0): ¥ (PB1.0): ¥(PB-1,0): ¥y (B2,1), ¥ (B2,-1), y(B-2,2), ¥ (B-2,-2)) ,
and the all ones vector, namely, by
(0,1,4,2,2,3,3),
(0,0,0,1,4,2,3),
(1,1,1,1,1,1,1).
It has dimension kK = 3 and, recall, distance
d>n—k—g+1=7-3-1+1=4.

Note MDS codes give for k = 3 on block-length n = 7 distance
7 —3+1=5. But | think (internet search...) that the above code over

Fs is optimal.
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The canonical divisor

Recall that a divisor a is canonical iff dima =g and degg =2g — 2. In
our case we are looking for dimension 1, degree 0 divisor.

Thus, the zero divisor is a canonical divisor of a genus 1 function field.
Thus, the class of canonical divisors coincides with the class a principal
divisors in such function fields.

The duality between functions and differentials on genus 1 function fields
(aka elliptic curves) reflects deeper symmetries in the curve's geometry
and arithmetic.
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