Algebraic Geometric Codes

Recitation 14

Shir Peleg

Tel Aviv University
June 7, 2022

A Tower over \mathbb{F}_{4}

Consider the tower $\mathcal{T}_{1}:=F_{0}=\mathbb{F}_{4}\left(x_{0}\right) \subseteq F_{1}=\mathbb{F}_{4}\left(x_{0}, x_{1}\right) \subseteq \ldots$ over \mathbb{F}_{4} defined by the equation

$$
Y^{3}=\frac{X^{3}}{X^{2}+X+1} .
$$

i.e in each step we have $x_{i}^{3}=\frac{x_{i-1}^{3}}{x_{i-1}^{2}+x_{i-1}+1}$.

A Tower over \mathbb{F}_{4}

Consider the tower $\mathcal{T}_{1}:=F_{0}=\mathbb{F}_{4}\left(x_{0}\right) \subseteq F_{1}=\mathbb{F}_{4}\left(x_{0}, x_{1}\right) \subseteq \ldots$ over \mathbb{F}_{4} defined by the equation

$$
Y^{3}=\frac{X^{3}}{X^{2}+X+1} .
$$

i.e in each step we have $x_{i}^{3}=\frac{x_{i-1}^{3}}{x_{i-1}^{2}+x_{i-1}+1}$.

We will study this tower, in two ways.

Rational places

F_{0} has 5 rational places: $\mathfrak{p}_{\infty}, \mathfrak{p}_{0}, \mathfrak{p}_{1}, \mathfrak{p}_{\delta}, \mathfrak{p}_{\delta+1}$. How do they split in F_{1} ?.

- $\mathfrak{p}_{\infty}: v_{\infty}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=-1$. Thus $\tilde{v}_{\infty}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=-e(\mathfrak{P} / \mathfrak{p})$.

Rational places

F_{0} has 5 rational places: $\mathfrak{p}_{\infty}, \mathfrak{p}_{0}, \mathfrak{p}_{1}, \mathfrak{p}_{\delta}, \mathfrak{p}_{\delta+1}$. How do they split in F_{1} ?.

- $\mathfrak{p}_{\infty}: v_{\infty}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=-1$. Thus $\tilde{v}_{\infty}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=-e(\mathfrak{P} / \mathfrak{p})$. On the other hand $\tilde{v}_{\infty}\left(x_{1}^{3}\right)=3 \tilde{v}_{\infty}\left(x_{1}\right)$ and $e(\mathfrak{P} / \mathfrak{p}) \leq\left[F_{1}: F_{0}\right] \leq 3$.

Rational places

F_{0} has 5 rational places: $\mathfrak{p}_{\infty}, \mathfrak{p}_{0}, \mathfrak{p}_{1}, \mathfrak{p}_{\delta}, \mathfrak{p}_{\delta+1}$. How do they split in F_{1} ?.

- $\mathfrak{p}_{\infty}: v_{\infty}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=-1$. Thus $\tilde{v}_{\infty}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=-e(\mathfrak{P} / \mathfrak{p})$. On the other hand $\tilde{v}_{\infty}\left(x_{1}^{3}\right)=3 \tilde{v}_{\infty}\left(x_{1}\right)$ and $e(\mathfrak{P} / \mathfrak{p}) \leq\left[F_{1}: F_{0}\right] \leq 3$. Thus $e(\mathfrak{P} / \mathfrak{p})=3$. We can write \mathfrak{P}_{∞} the unique place over \mathfrak{P}_{∞}. It satisfies $v_{\mathfrak{F}}^{\infty}\left(x_{1}\right)=-1$.

Rational places

F_{0} has 5 rational places: $\mathfrak{p}_{\infty}, \mathfrak{p}_{0}, \mathfrak{p}_{1}, \mathfrak{p}_{\delta}, \mathfrak{p}_{\delta+1}$. How do they split in F_{1} ?.

- $\mathfrak{p}_{\infty}: v_{\infty}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=-1$. Thus $\tilde{v}_{\infty}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=-e(\mathfrak{P} / \mathfrak{p})$. On the other hand $\tilde{v}_{\infty}\left(x_{1}^{3}\right)=3 \tilde{v}_{\infty}\left(x_{1}\right)$ and $e(\mathfrak{P} / \mathfrak{p}) \leq\left[F_{1}: F_{0}\right] \leq 3$. Thus $e(\mathfrak{P} / \mathfrak{p})=3$. We can write \mathfrak{P}_{∞} the unique place over \mathfrak{P}_{∞}. It satisfies $v_{\mathfrak{P}_{\infty}}\left(x_{1}\right)=-1$.
- \mathfrak{p}_{0} : here, Kummers theorem will not help as the corresponding polynomial is $Y^{3}-\mathfrak{p}_{0}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=Y^{3}-0$ which promises use one place.

Rational places

F_{0} has 5 rational places: $\mathfrak{p}_{\infty}, \mathfrak{p}_{0}, \mathfrak{p}_{1}, \mathfrak{p}_{\delta}, \mathfrak{p}_{\delta+1}$. How do they split in F_{1} ?.

- $\mathfrak{p}_{\infty}: v_{\infty}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=-1$. Thus $\tilde{v}_{\infty}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=-e(\mathfrak{P} / \mathfrak{p})$. On the other hand $\tilde{v}_{\infty}\left(x_{1}^{3}\right)=3 \tilde{v}_{\infty}\left(x_{1}\right)$ and $e(\mathfrak{P} / \mathfrak{p}) \leq\left[F_{1}: F_{0}\right] \leq 3$. Thus $e(\mathfrak{P} / \mathfrak{p})=3$. We can write \mathfrak{P}_{∞} the unique place over \mathfrak{P}_{∞}. It satisfies $v_{\mathfrak{F}_{\infty}}\left(x_{1}\right)=-1$.
- \mathfrak{p}_{0} : here, Kummers theorem will not help as the corresponding polynomial is $Y^{3}-\mathfrak{p}_{0}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=Y^{3}-0$ which promises use one place. Fortunately, we can write $\left(\frac{x_{1}}{x_{0}}\right)^{3}=\frac{1}{x_{0}^{2}+x_{0}+1}$. Thus from Kummers theorem \mathfrak{p}_{0} splits completely, into $\mathfrak{P}_{0}^{1}, \mathfrak{P}_{0}^{2}, \mathfrak{P}_{0}^{3}$ where $\mathfrak{P}_{0}^{i}\left(x_{1}\right)=0$, and $\mathfrak{P}_{0}^{i}\left(\frac{x_{1}}{x_{0}}\right) \in\{1, \delta, \delta+1\}$.

Rational places

F_{0} has 5 rational places: $\mathfrak{p}_{\infty}, \mathfrak{p}_{0}, \mathfrak{p}_{1}, \mathfrak{p}_{\delta}, \mathfrak{p}_{\delta+1}$. How do they split in F_{1} ?.

- $\mathfrak{p}_{\delta}, p_{\delta+1}: v_{\delta+i}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=-1$. Thus $\tilde{v}_{\delta+i}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=-e(\mathfrak{P} / \mathfrak{p})$.

Rational places

F_{0} has 5 rational places: $\mathfrak{p}_{\infty}, \mathfrak{p}_{0}, \mathfrak{p}_{1}, \mathfrak{p}_{\delta}, \mathfrak{p}_{\delta+1}$. How do they split in F_{1} ?.

- $\mathfrak{p}_{\delta}, p_{\delta+1}: v_{\delta+i}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=-1$. Thus $\tilde{v}_{\delta+i}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=-e(\mathfrak{P} / \mathfrak{p})$. On the other hand $\tilde{v}_{\delta+i}\left(x_{1}^{3}\right)=3 \tilde{v}_{\delta+i}\left(x_{1}\right)$ and $e(\mathfrak{P} / \mathfrak{p}) \leq\left[F_{1}: F_{0}\right] \leq 3$.

Rational places

F_{0} has 5 rational places: $\mathfrak{p}_{\infty}, \mathfrak{p}_{0}, \mathfrak{p}_{1}, \mathfrak{p}_{\delta}, \mathfrak{p}_{\delta+1}$. How do they split in F_{1} ?.

- $\mathfrak{p}_{\delta}, p_{\delta+1}: v_{\delta+i}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=-1$. Thus $\tilde{v}_{\delta+i}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=-e(\mathfrak{P} / \mathfrak{p})$. On the other hand $\tilde{v}_{\delta+i}\left(x_{1}^{3}\right)=3 \tilde{v}_{\delta+i}\left(x_{1}\right)$ and $e(\mathfrak{P} / \mathfrak{p}) \leq\left[F_{1}: F_{0}\right] \leq 3$. Thus $e(\mathfrak{P} / \mathfrak{p})=3$. We can write $\mathfrak{P}_{\delta+i}$ the unique place over $\mathfrak{P}_{\delta+i}$. It satisfies $v_{\mathfrak{F}}^{\infty}\left(x_{1}\right)=-1$.

Rational places

F_{0} has 5 rational places: $\mathfrak{p}_{\infty}, \mathfrak{p}_{0}, \mathfrak{p}_{1}, \mathfrak{p}_{\delta}, \mathfrak{p}_{\delta+1}$. How do they split in F_{1} ?.

- $\mathfrak{p}_{\delta}, p_{\delta+1}: v_{\delta+i}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=-1$. Thus $\tilde{v}_{\delta+i}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=-e(\mathfrak{P} / \mathfrak{p})$. On the other hand $\tilde{v}_{\delta+i}\left(x_{1}^{3}\right)=3 \tilde{v}_{\delta+i}\left(x_{1}\right)$ and $e(\mathfrak{P} / \mathfrak{p}) \leq\left[F_{1}: F_{0}\right] \leq 3$. Thus $e(\mathfrak{P} / \mathfrak{p})=3$. We can write $\mathfrak{P}_{\delta+i}$ the unique place over $\mathfrak{P}_{\delta+i}$. It satisfies $v_{\mathfrak{F}_{\infty}}\left(x_{1}\right)=-1$.
- \mathfrak{p}_{1} : From Kummers theorem \mathfrak{p}_{1} splits completely, into $\mathfrak{P}_{1,1}, \mathfrak{P}_{1, \delta} \mathfrak{P}_{1, \delta+1}$ where $\mathfrak{P}_{0, t}\left(x_{1}\right)=t$.

Rational places

F_{0} has 5 rational places: $\mathfrak{p}_{\infty}, \mathfrak{p}_{0}, \mathfrak{p}_{1}, \mathfrak{p}_{\delta}, \mathfrak{p}_{\delta+1}$. How do they split in F_{1} ?.

- $\mathfrak{p}_{\delta}, p_{\delta+1}: v_{\delta+i}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=-1$. Thus $\tilde{v}_{\delta+i}\left(\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}\right)=-e(\mathfrak{P} / \mathfrak{p})$. On the other hand $\tilde{v}_{\delta+i}\left(x_{1}^{3}\right)=3 \tilde{v}_{\delta+i}\left(x_{1}\right)$ and $e(\mathfrak{P} / \mathfrak{p}) \leq\left[F_{1}: F_{0}\right] \leq 3$. Thus $e(\mathfrak{P} / \mathfrak{p})=3$. We can write $\mathfrak{P}_{\delta+i}$ the unique place over $\mathfrak{P}_{\delta+i}$. It satisfies $v_{\mathfrak{F}_{\infty}}\left(x_{1}\right)=-1$.
- \mathfrak{p}_{1} : From Kummers theorem \mathfrak{p}_{1} splits completely, into $\mathfrak{P}_{1,1}, \mathfrak{P}_{1, \delta} \mathfrak{P}_{1, \delta+1}$ where $\mathfrak{P}_{0, t}\left(x_{1}\right)=t$.
Finally, From Kummers theorem no place of degree ≥ 2 can be ramified (as it is not a zero or pole of $\frac{x_{0}^{3}}{x_{0}^{2}+x_{0}+1}$).

Illustration

Illustration

$$
n_{i} \geq 3^{i}
$$

As all the places above \mathfrak{p}_{0} splits fully.

$$
n_{i} \geq 3^{i}
$$

As all the places above \mathfrak{p}_{0} splits fully.

$$
\operatorname{deg}\left(\operatorname{Diff}\left(F_{i} / F_{i-1}\right)\right)=\sum_{\mathfrak{p} \text { ramified } \in \mathbb{P}\left(F_{i-1}\right)}(e(\mathfrak{P} / \mathfrak{p})-1) \cdot \operatorname{deg}(\mathfrak{p})
$$

$$
n_{i} \geq 3^{i}
$$

As all the places above \mathfrak{p}_{0} splits fully.

$$
\operatorname{deg}\left(\operatorname{Diff}\left(F_{i} / F_{i-1}\right)\right)=\sum_{\mathfrak{p} \text { ramified } \in \mathbb{P}\left(F_{i-1}\right)}(e(\mathfrak{P} / \mathfrak{p})-1) \cdot \operatorname{deg}(\mathfrak{p})
$$

$=2 \cdot$ number of ramified places. $=2 \cdot(3+2 \cdot(i-1))=4 \cdot i+2$

$$
n_{i} \geq 3^{i}
$$

As all the places above \mathfrak{p}_{0} splits fully.

$$
\operatorname{deg}\left(\operatorname{Diff}\left(F_{i} / F_{i-1}\right)\right)=\sum_{\mathfrak{p} \text { ramified } \in \mathbb{P}\left(F_{i-1}\right)}(e(\mathfrak{P} / \mathfrak{p})-1) \cdot \operatorname{deg}(\mathfrak{p})
$$

$=2 \cdot$ number of ramified places. $=2 \cdot(3+2 \cdot(i-1))=4 \cdot i+2$
Therefore, $2 g_{i}-2=3\left(2 g_{i-1}-2\right)+2+4 \cdot i \Rightarrow g_{i}=3 g_{i-1}+2 \cdot i-1$

$$
n_{i} \geq 3^{i}
$$

As all the places above \mathfrak{p}_{0} splits fully.

$$
\operatorname{deg}\left(\operatorname{Diff}\left(F_{i} / F_{i-1}\right)\right)=\sum_{\mathfrak{p} \text { ramified } \in \mathbb{P}\left(F_{i-1}\right)}(e(\mathfrak{P} / \mathfrak{p})-1) \cdot \operatorname{deg}(\mathfrak{p})
$$

$=2 \cdot$ number of ramified places. $=2 \cdot(3+2 \cdot(i-1))=4 \cdot i+2$
Therefore, $2 g_{i}-2=3\left(2 g_{i-1}-2\right)+2+4 \cdot i \Rightarrow g_{i}=3 g_{i-1}+2 \cdot i-1$ implies that

$$
g_{i}=3^{i}-i-1
$$

$$
n_{i} \geq 3^{i}
$$

As all the places above \mathfrak{p}_{0} splits fully.

$$
\operatorname{deg}\left(\operatorname{Diff}\left(F_{i} / F_{i-1}\right)\right)=\sum_{\mathfrak{p} \text { ramified } \in \mathbb{P}\left(F_{i-1}\right)}(e(\mathfrak{P} / \mathfrak{p})-1) \cdot \operatorname{deg}(\mathfrak{p})
$$

$=2 \cdot$ number of ramified places. $=2 \cdot(3+2 \cdot(i-1))=4 \cdot i+2$
Therefore, $2 g_{i}-2=3\left(2 g_{i-1}-2\right)+2+4 \cdot i \Rightarrow g_{i}=3 g_{i-1}+2 \cdot i-1$ implies that

$$
g_{i}=3^{i}-i-1
$$

Therefore

$$
\lambda\left(\mathcal{T}_{1}\right) \geq \lim _{i \rightarrow \infty} \frac{3^{i}}{3^{i}-i-1}=1=\sqrt{4}-1
$$

Simpler calculation

Recall,

Definition 1

Let \mathcal{F} be a tower over \mathbb{F}_{q}. The set
$\operatorname{Split}(\mathcal{F})=\left\{\mathfrak{p} \in \mathbb{P}_{1}\left(F_{0}\right) \mid \mathfrak{p}\right.$ splits completely in all extesnions $\left.F_{i} / F_{0}\right\}$
is called the splitting locus of \mathcal{F}.

Simpler calculation

Recall,

Definition 1

Let \mathcal{F} be a tower over \mathbb{F}_{q}. The set

$$
\operatorname{Split}(\mathcal{F})=\left\{\mathfrak{p} \in \mathbb{P}_{1}\left(F_{0}\right) \mid \mathfrak{p} \text { splits completely in all extesnions } F_{i} / F_{0}\right\}
$$

is called the splitting locus of \mathcal{F}.
Let F / L be an extension of E / K. A prime divisor \mathfrak{p} of E / K is said to ramify in the extension F / L of E / K if $\exists \mathfrak{P} / \mathfrak{p}$ s.t. $e(\mathfrak{P} / \mathfrak{p})>1$.

Definition 2

Let \mathcal{F} be a tower over \mathbb{F}_{q}. The set

$$
\operatorname{Ram}(\mathcal{F})=\left\{\mathfrak{p} \in \mathbb{P}\left(F_{0}\right) \mid \mathfrak{p} \text { is ramified in } F_{i} / F_{0} \text { for some } i \geq 1\right\}
$$

is called the ramification locus of \mathcal{F}.

Simpler calculation

We saw in class that in Kummer extensions, if we denote $r=\sum_{p \in \operatorname{Ram}(\mathcal{F})} \operatorname{deg} \mathfrak{p}$ and $s=|\operatorname{Split}(\mathcal{F})|$ then

$$
\lambda(\mathcal{F}) \geq \frac{2 s}{r-2}
$$

Simpler calculation

We saw in class that in Kummer extensions, if we denote $r=\sum_{p \in \operatorname{Ram}(\mathcal{F})} \operatorname{deg} \mathfrak{p}$ and $s=|\operatorname{Split}(\mathcal{F})|$ then

$$
\lambda(\mathcal{F}) \geq \frac{2 s}{r-2}
$$

In our example \mathcal{T}_{1} we have that:
$\operatorname{Ram}(\mathcal{F})=\left\{\mathfrak{p}_{\infty}, \mathfrak{p}_{1}, \mathfrak{p}_{\delta}, \mathfrak{p}_{\delta+1}\right\}$ and $\operatorname{Split}(\mathcal{F})=\left\{\mathfrak{p}_{0}\right\}$, and so:

$$
\lambda\left(\mathcal{T}_{1}\right) \geq \frac{2 \cdot 1}{4-2}
$$

Simpler calculation

We saw in class that in Kummer extensions, if we denote $r=\sum_{p \in \operatorname{Ram}(\mathcal{F})} \operatorname{deg} \mathfrak{p}$ and $s=|\operatorname{Split}(\mathcal{F})|$ then

$$
\lambda(\mathcal{F}) \geq \frac{2 s}{r-2}
$$

In our example \mathcal{T}_{1} we have that:
$\operatorname{Ram}(\mathcal{F})=\left\{\mathfrak{p}_{\infty}, \mathfrak{p}_{1}, \mathfrak{p}_{\delta}, \mathfrak{p}_{\delta+1}\right\}$ and $\operatorname{Split}(\mathcal{F})=\left\{\mathfrak{p}_{0}\right\}$, and so:

$$
\lambda\left(\mathcal{T}_{1}\right) \geq \frac{2 \cdot 1}{4-2}
$$

Consider the variable transform $z_{i}=\frac{1}{x_{i}}$. We have here that $F_{i}=F_{i-1}\left(z_{i}\right)$ and the tower is defined by the equation

$$
y^{3}=(x+1)^{3}-1
$$

The tower \mathcal{T}_{2}

Let ℓ be a prime power and $q=\ell^{r}$ for $r \geq 2$. Let $m=\frac{q-1}{\ell-1}$, note that m and ℓ are coprime.

The tower \mathcal{T}_{2}

Let ℓ be a prime power and $q=\ell^{r}$ for $r \geq 2$. Let $m=\frac{q-1}{\ell-1}$, note that m and ℓ are coprime. We will show that the sequence $\mathcal{T}_{2}=\left(F_{0}, F_{1}, \ldots\right)$ that is recursively defined by

$$
Y^{m}=(X+1)^{m}-1
$$

is a tower over \mathbb{F}_{q}. So, we need to prove that
(1) $F_{i} \neq F_{i+1}$;
(2) F_{i+1} / F_{i} is separable
(3) \mathbb{F}_{q} is the constant field of F_{i}; and
(c) $g\left(F_{j}\right) \geq 2$ for some j.

The tower \mathcal{T}_{2}

To prove Items $1,2,3$ using a claim from class we will find, for each $i \in \mathbb{N}$

$$
\mathfrak{p}_{i} \in \mathbb{P}\left(F_{i}\right), \mathfrak{P}_{i} \in \mathbb{P}\left(F_{i+1}\right) \quad \text { s.t. } \quad \mathfrak{P}_{i} / \mathfrak{p}_{i} \quad \text { and } \quad e\left(\mathfrak{P}_{i} / \mathfrak{p}_{i}\right)=m .
$$

The tower \mathcal{T}_{2}

To prove Items $1,2,3$ using a claim from class we will find, for each $i \in \mathbb{N}$

$$
\mathfrak{p}_{i} \in \mathbb{P}\left(F_{i}\right), \mathfrak{P}_{i} \in \mathbb{P}\left(F_{i+1}\right) \quad \text { s.t. } \quad \mathfrak{P}_{i} / \mathfrak{p}_{i} \quad \text { and } \quad e\left(\mathfrak{P}_{i} / \mathfrak{p}_{i}\right)=m .
$$

Let \mathfrak{p}_{0} be the unique zero of x_{0} in $F_{0}=\mathbb{F}_{q}\left(x_{0}\right)$. Let $\mathfrak{P}_{0} / \mathfrak{p}_{0}$ in $\mathbb{P}\left(F_{1}\right)$. We have that

$$
m \cdot v_{\mathfrak{P}_{0}}\left(x_{1}\right)=v_{\mathfrak{P}_{0}}\left(x_{1}^{m}\right)=e\left(\mathfrak{P}_{0} / \mathfrak{p}_{0}\right) \cdot v_{\mathfrak{p}_{\mathfrak{o}}}\left(\left(x_{0}+1\right)^{m}-1\right)=e\left(\mathfrak{P}_{0} / \mathfrak{p}_{0}\right)
$$

Thus, using also the fundamental equality, $e\left(\mathfrak{P}_{0} / \mathfrak{p}_{0}\right)=m$ as desired.

The tower \mathcal{T}_{2}

To prove Items $1,2,3$ using a claim from class we will find, for each $i \in \mathbb{N}$

$$
\mathfrak{p}_{i} \in \mathbb{P}\left(F_{i}\right), \mathfrak{P}_{i} \in \mathbb{P}\left(F_{i+1}\right) \quad \text { s.t. } \quad \mathfrak{P}_{i} / \mathfrak{p}_{i} \quad \text { and } \quad e\left(\mathfrak{P}_{i} / \mathfrak{p}_{i}\right)=m .
$$

Let \mathfrak{p}_{0} be the unique zero of x_{0} in $F_{0}=\mathbb{F}_{q}\left(x_{0}\right)$. Let $\mathfrak{P}_{0} / \mathfrak{p}_{0}$ in $\mathbb{P}\left(F_{1}\right)$. We have that

$$
m \cdot v_{\mathfrak{P}_{0}}\left(x_{1}\right)=v_{\mathfrak{P}_{0}}\left(x_{1}^{m}\right)=e\left(\mathfrak{P}_{0} / \mathfrak{p}_{0}\right) \cdot v_{\mathfrak{p}_{\mathfrak{o}}}\left(\left(x_{0}+1\right)^{m}-1\right)=e\left(\mathfrak{P}_{0} / \mathfrak{p}_{0}\right)
$$

Thus, using also the fundamental equality, $e\left(\mathfrak{P}_{0} / \mathfrak{p}_{0}\right)=m$ as desired. Moreover, note that $v_{\mathfrak{F}_{0}}\left(x_{1}\right)=1$ and so we can iterate this argument for all $i \in \mathbb{N}$.

The tower \mathcal{T}_{2}

To prove Items $1,2,3$ using a claim from class we will find, for each $i \in \mathbb{N}$

$$
\mathfrak{p}_{i} \in \mathbb{P}\left(F_{i}\right), \mathfrak{P}_{i} \in \mathbb{P}\left(F_{i+1}\right) \quad \text { s.t. } \quad \mathfrak{P}_{i} / \mathfrak{p}_{i} \quad \text { and } \quad e\left(\mathfrak{P}_{i} / \mathfrak{p}_{i}\right)=m .
$$

Let \mathfrak{p}_{0} be the unique zero of x_{0} in $F_{0}=\mathbb{F}_{q}\left(x_{0}\right)$. Let $\mathfrak{P}_{0} / \mathfrak{p}_{0}$ in $\mathbb{P}\left(F_{1}\right)$. We have that

$$
m \cdot v_{\mathfrak{P}_{0}}\left(x_{1}\right)=v_{\mathfrak{P}_{0}}\left(x_{1}^{m}\right)=e\left(\mathfrak{P}_{0} / \mathfrak{p}_{0}\right) \cdot v_{\mathfrak{p}_{0}}\left(\left(x_{0}+1\right)^{m}-1\right)=e\left(\mathfrak{P}_{0} / \mathfrak{p}_{0}\right)
$$

Thus, using also the fundamental equality, $e\left(\mathfrak{P}_{0} / \mathfrak{p}_{0}\right)=m$ as desired. Moreover, note that $v_{\mathfrak{F}_{0}}\left(x_{1}\right)=1$ and so we can iterate this argument for all $i \in \mathbb{N}$. item 4 will follow from the general analysis of $\operatorname{Split}\left(\mathcal{T}_{2}\right), \operatorname{Ram}\left(\mathcal{T}_{2}\right)$.

Ramification in recursive towers

Lemma 3

Let $\mathcal{F}=\left(F_{0}, F_{1}, \ldots\right)$ be a recursive tower over \mathbb{F}_{q} defined by the equation

$$
f(Y)=h(X)
$$

with a basic function field F. Define

$$
\Lambda_{0}:=\left\{x(\mathfrak{p}) \mid \mathfrak{p} \in \mathbb{F}_{q}(x) \text { is ramified in } \mathbb{F}_{q}(x, y) / \mathbb{F}_{q}(x)\right\} \subseteq \overline{\mathbb{F}_{q}} \cup\{\infty\}
$$

Suppose that $\Lambda \subseteq \overline{\mathbb{F}_{q}} \cup\{\infty\}$ satisfies:
(1) $\Lambda_{0} \subseteq \Lambda$; and
(2) $\forall \beta \in \Lambda$, any solution $\alpha \in \overline{\mathbb{F}_{q}} \cup\{\infty\}$ to the equation $f(\beta)=h(\alpha)$ in fact satisfies $\alpha \in \Lambda$.
Then, the ramification locus $\operatorname{Ram}(\mathcal{F})$ is finite and

$$
\operatorname{Ram}(\mathcal{F}) \subseteq\left\{\mathfrak{p} \in \mathbb{P}\left(\mathbb{F}_{q}\left(x_{0}\right)\right) \mid x_{0}(\mathfrak{p}) \in \Lambda\right\}
$$

Λ for \mathcal{T}_{2}

First we note that $(x+1)^{m}-1$ splits into different prime factors as $\operatorname{gcd}\left((x+1)^{m}-1, m(x+1)^{m-1}\right)=1$. Thus, this is a tame cyclic extension and

$$
\Lambda_{0}=\left\{\beta \in \overline{\mathbb{F}_{q}} \mid(\beta+1)^{m}=1\right\}
$$

Λ for \mathcal{T}_{2}

First we note that $(x+1)^{m}-1$ splits into different prime factors as $\operatorname{gcd}\left((x+1)^{m}-1, m(x+1)^{m-1}\right)=1$. Thus, this is a tame cyclic extension and

$$
\Lambda_{0}=\left\{\beta \in \overline{\mathbb{F}_{q}} \mid(\beta+1)^{m}=1\right\}
$$

First we note that $\Lambda_{0} \subseteq \mathbb{F}_{q}$. Recall that $\operatorname{Gal}\left(\mathbb{F}_{q} / \mathbb{F}_{\ell}\right)=\left(\operatorname{Frob}_{\ell}^{i}\right)_{i=0}^{r-1}$.
Therefore, for $x \in \mathbb{F}_{q}$

$$
\operatorname{Norm}_{\mathbb{F}_{\ell}}(x)=\prod x^{\ell^{i}}=x^{\sum \ell^{i}}=x^{m} .
$$

Λ for \mathcal{T}_{2}

First we note that $(x+1)^{m}-1$ splits into different prime factors as $\operatorname{gcd}\left((x+1)^{m}-1, m(x+1)^{m-1}\right)=1$. Thus, this is a tame cyclic extension and

$$
\Lambda_{0}=\left\{\beta \in \overline{\mathbb{F}_{q}} \mid(\beta+1)^{m}=1\right\}
$$

First we note that $\Lambda_{0} \subseteq \mathbb{F}_{q}$. Recall that $\operatorname{Gal}\left(\mathbb{F}_{q} / \mathbb{F}_{\ell}\right)=\left(\operatorname{Frob}_{\ell}^{i}\right)_{i=0}^{r-1}$.
Therefore, for $x \in \mathbb{F}_{q}$

$$
\operatorname{Norm}_{\mathbb{F}_{\ell}}(x)=\prod x^{x^{i}}=x^{\sum \ell^{i}}=x^{m} .
$$

Finally, as $\operatorname{Norm}_{\mathbb{F}_{\ell}}: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{F}_{\ell}^{\times}$is a group homomorphism there are exactly $m=\frac{q-1}{l-1}$ solutions to the equation $\operatorname{Norm}(x)=1$ in \mathbb{F}_{q}, which are all the solutions.

Λ for \mathcal{T}_{2}

First we note that $(x+1)^{m}-1$ splits into different prime factors as $\operatorname{gcd}\left((x+1)^{m}-1, m(x+1)^{m-1}\right)=1$. Thus, this is a tame cyclic extension and

$$
\Lambda_{0}=\left\{\beta \in \overline{\mathbb{F}_{q}} \mid(\beta+1)^{m}=1\right\}
$$

First we note that $\Lambda_{0} \subseteq \mathbb{F}_{q}$. Recall that $\operatorname{Gal}\left(\mathbb{F}_{q} / \mathbb{F}_{\ell}\right)=\left(\operatorname{Frob}_{\ell}^{i}\right)_{i=0}^{r-1}$.
Therefore, for $x \in \mathbb{F}_{q}$

$$
\operatorname{Norm}_{\mathbb{F}_{\ell}}(x)=\prod x^{\ell^{i}}=x^{\sum \ell^{i}}=x^{m}
$$

Finally, as $\operatorname{Norm}_{\mathbb{F}_{\ell}}: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{F}_{\ell}^{\times}$is a group homomorphism there are exactly $m=\frac{q-1}{\ell-1}$ solutions to the equation $\operatorname{Norm}(x)=1$ in \mathbb{F}_{q}, which are all the solutions.
Let $\beta \in \mathbb{F}_{q}$, then and therefore, $\beta^{m}=\operatorname{Norm}_{\mathbb{F}_{\ell}}(\beta) \in \mathbb{F}_{\ell}$ thus, as before, all the solutions to the equation $(\alpha+1)^{m}=\beta^{m}+1$ are in $\mathbb{F}_{q}=\Lambda$.

Splitting locus for \mathcal{T}_{2}

Let $\mathfrak{p}_{\infty} \in \mathbb{P}\left(F_{0}\right)$. Similarly to the analysis of \mathcal{T}_{1} we can not use Kummers theorem as $y \notin \mathcal{O}_{\mathfrak{p}}^{\prime}$, but we can fix it in a similar manner:

Splitting locus for \mathcal{T}_{2}

Let $\mathfrak{p}_{\infty} \in \mathbb{P}\left(F_{0}\right)$. Similarly to the analysis of \mathcal{T}_{1} we can not use Kummers theorem as $y \notin \mathcal{O}_{\mathfrak{p}}^{\prime}$, but we can fix it in a similar manner: Consider $\left(\frac{x_{1}}{x_{0}+1}\right)^{m}=1-\frac{1}{(x+1)^{m}}$. Now, $\mathfrak{P}_{\infty}\left(1-\frac{1}{(x+1)^{m}}\right)=1$ and from Kummers theorem, the polynomial $X^{m}-1$ splits into m factors in \mathbb{F}_{q}, and thus the place \mathfrak{p}_{∞} splits completely, every place $\mathfrak{P} / \mathfrak{p}_{\infty}$ must also satisfy $\mathfrak{P}\left(x_{1}\right)=-1$ and therefore, we can repeat the argument to get $\mathfrak{p}_{\infty} \in \operatorname{Split}\left(\mathcal{T}_{2}\right)$.

\mathcal{T}_{2} is a asymptotically good tower

First, we must show that item 4 holds, i.e. for some $i g_{i} \geq 2$. Indeed,

$$
2 g_{1}-2=\left[F_{1}: F_{0}\right]\left(2 g_{0}-2\right)+\operatorname{deg} \operatorname{Diff}\left(F_{1} / F_{2}\right)
$$

plug in what we know,

$$
2 g_{1}-2 \geq-2 \cdot m+(m-1)(m)=(m-3) m \geq m \geq 2
$$

if $m>3$ if $q=4, \ell=2$ then we already saw in \mathcal{T}_{1}.

\mathcal{T}_{2} is a asymptotically good tower

First, we must show that item 4 holds, i.e. for some i $g_{i} \geq 2$. Indeed,

$$
2 g_{1}-2=\left[F_{1}: F_{0}\right]\left(2 g_{0}-2\right)+\operatorname{deg} \operatorname{Diff}\left(F_{1} / F_{2}\right)
$$

plug in what we know,

$$
2 g_{1}-2 \geq-2 \cdot m+(m-1)(m)=(m-3) m \geq m \geq 2
$$

if $m>3$ if $q=4, \ell=2$ then we already saw in \mathcal{T}_{1}. Now for $\Lambda\left(\mathcal{T}_{2}\right)$:

$$
\lambda\left(\mathcal{T}_{2}\right) \geq \frac{2 s}{r-2} \geq \frac{2 \cdot 1}{q-2}>0
$$

which implies that the code is asymptotically good.

