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A Tower over F4

Consider the tower T1 := F0 = F4(x0) ⊆ F1 = F4(x0, x1) ⊆ . . . over F4
defined by the equation

Y 3 =
X 3

X 2 + X + 1
.

i.e in each step we have x3
i =

x3
i−1

x2
i−1+xi−1+1 .

We will study this tower, in two ways.
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Rational places

F0 has 5 rational places: p∞, p0, p1, pδ, pδ+1. How do they split in F1?.

p∞: v∞(
x3
0

x2
0+x0+1 ) = −1. Thus ṽ∞(

x3
0

x2
0+x0+1 ) = −e(P/p).

On the
other hand ṽ∞(x3

1 ) = 3ṽ∞(x1) and e(P/p) ≤ [F1 : F0] ≤ 3. Thus
e(P/p) = 3. We can write P∞ the unique place over P∞. It satisfies
vP∞(x1) = −1.
p0: here, Kummers theorem will not help as the corresponding poly-
nomial is Y 3 − p0(

x3
0

x2
0+x0+1 ) = Y 3 − 0 which promises use one place.

Fortunately, we can write ( x1x0 )
3 = 1

x2
0+x0+1 . Thus from Kummers the-

orem p0 splits completely, into P1
0,P

2
0,P

3
0 where Pi

0(x1) = 0, and
Pi

0(
x1
x0
) ∈ {1, δ, δ + 1}.
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x3
0

x2
0+x0+1 ) = −e(P/p). On the

other hand ṽ∞(x3
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Rational places

F0 has 5 rational places: p∞, p0, p1, pδ, pδ+1. How do they split in F1?.

pδ, pδ+1: vδ+i (
x3
0

x2
0+x0+1 ) = −1. Thus ṽδ+i (

x3
0

x2
0+x0+1 ) = −e(P/p).

On
the other hand ṽδ+i (x

3
1 ) = 3ṽδ+i (x1) and e(P/p) ≤ [F1 : F0] ≤ 3.

Thus e(P/p) = 3. We can write Pδ+i the unique place over Pδ+i .
It satisfies vP∞(x1) = −1.
p1: From Kummers theorem p1 splits completely, into P1,1,P1,δP1,δ+1
where P0,t(x1) = t.

Finally, From Kummers theorem no place of degree ≥ 2 can be ramified
(as it is not a zero or pole of x3

0
x2
0+x0+1 ).
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λ(T1)

ni ≥ 3i

As all the places above p0 splits fully.

deg(Diff(Fi/Fi−1)) =
∑

p ramified ∈P(Fi−1)

(e(P/p)− 1) · deg(p).

= 2 · number of ramified places. = 2 · (3 + 2 · (i − 1)) = 4 · i + 2

Therefore, 2gi − 2 = 3(2gi−1 − 2) + 2 + 4 · i ⇒ gi = 3gi−1 + 2 · i − 1
implies that

gi = 3i − i − 1

Therefore

λ(T1) ≥ lim
i→∞

3i

3i − i − 1
= 1 =

√
4 − 1
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Simpler calculation

Recall,

Definition 1
Let F be a tower over Fq. The set

Split(F) = {p ∈ P1(F0) | p splits completely in all extesnions Fi/F0}

is called the splitting locus of F .

Let F/L be an extension of E/K . A prime divisor p of E/K is said to
ramify in the extension F/L of E/K if ∃P/p s.t. e(P/p) > 1.

Definition 2
Let F be a tower over Fq. The set

Ram(F) = {p ∈ P(F0) | p is ramified in Fi/F0 for some i ≥ 1}

is called the ramification locus of F .

Shir Peleg Algebraic Geometric Codes



Simpler calculation

Recall,

Definition 1
Let F be a tower over Fq. The set

Split(F) = {p ∈ P1(F0) | p splits completely in all extesnions Fi/F0}

is called the splitting locus of F .

Let F/L be an extension of E/K . A prime divisor p of E/K is said to
ramify in the extension F/L of E/K if ∃P/p s.t. e(P/p) > 1.

Definition 2
Let F be a tower over Fq. The set

Ram(F) = {p ∈ P(F0) | p is ramified in Fi/F0 for some i ≥ 1}

is called the ramification locus of F .

Shir Peleg Algebraic Geometric Codes



Simpler calculation

We saw in class that in Kummer extensions, if we denote
r =

∑
p∈Ram(F) deg p and s = |Split(F)| then

λ(F) ≥ 2s
r − 2

In our example T1 we have that:
Ram(F) = {p∞, p1, pδ, pδ+1} and Split(F) = {p0}, and so:

λ(T1) ≥
2 · 1
4 − 2

Consider the variable transform zi =
1
xi

. We have here that Fi = Fi−1(zi )
and the tower is defined by the equation

y3 = (x + 1)3 − 1.
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The tower T2

Let ℓ be a prime power and q = ℓr for r ≥ 2. Let m = q−1
ℓ−1 , note that m

and ℓ are coprime.

We will show that the sequence T2 = (F0,F1, . . .) that
is recursively defined by

Ym = (X + 1)m − 1.

is a tower over Fq. So, we need to prove that
1 Fi ̸= Fi+1;
2 Fi+1/Fi is separable
3 Fq is the constant field of Fi ; and
4 g(Fj) ≥ 2 for some j .
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The tower T2

To prove Items 1,2,3 using a claim from class we will find, for each i ∈ N

pi ∈ P(Fi ), Pi ∈ P(Fi+1) s.t. Pi/pi and e(Pi/pi ) = m.

Let p0 be the unique zero of x0 in F0 = Fq(x0). Let P0/p0 in P(F1). We
have that

m · vP0(x1) = vP0(x
m
1 ) = e(P0/p0) · vp0 ((x0 + 1)m − 1) = e(P0/p0).

Thus, using also the fundamental equality, e(P0/p0) = m as desired.
Moreover, note that vP0(x1) = 1 and so we can iterate this argument for
all i ∈ N. item 4 will follow from the general analysis of
Split(T2),Ram(T2).
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Ramification in recursive towers

Lemma 3

Let F = (F0,F1, . . .) be a recursive tower over Fq defined by the equation

f (Y ) = h(X ),

with a basic function field F . Define

Λ0 := {x(p) | p ∈ Fq(x) is ramified in Fq(x , y)/Fq(x)} ⊆ Fq ∪ {∞}.

Suppose that Λ ⊆ Fq ∪ {∞} satisfies:
1 Λ0 ⊆ Λ; and
2 ∀β ∈ Λ, any solution α ∈ Fq ∪ {∞} to the equation f (β) = h(α) in

fact satisfies α ∈ Λ.
Then, the ramification locus Ram(F) is finite and

Ram(F) ⊆ {p ∈ P(Fq(x0)) | x0(p) ∈ Λ}.
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Λ for T2

First we note that (x + 1)m − 1 splits into different prime factors as
gcd((x + 1)m − 1,m(x + 1)m−1) = 1. Thus, this is a tame cyclic
extension and

Λ0 = {β ∈ Fq | (β + 1)m = 1}

First we note that Λ0 ⊆ Fq. Recall that Gal(Fq/Fℓ) = (Frobiℓ)
r−1
i=0 .

Therefore, for x ∈ Fq

NormFℓ
(x) =

∏
xℓ

i

= x
∑

ℓi = xm.

Finally, as NormFℓ
: F×

q → F×
ℓ is a group homomorphism there are

exactly m = q−1
ℓ−1 solutions to the equation Norm(x) = 1 in Fq, which are

all the solutions.
Let β ∈ Fq, then and therefore, βm = NormFℓ

(β) ∈ Fℓ thus, as before,
all the solutions to the equation (α+ 1)m = βm + 1 are in Fq = Λ.
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Λ0 = {β ∈ Fq | (β + 1)m = 1}

First we note that Λ0 ⊆ Fq. Recall that Gal(Fq/Fℓ) = (Frobiℓ)
r−1
i=0 .

Therefore, for x ∈ Fq

NormFℓ
(x) =

∏
xℓ

i

= x
∑

ℓi = xm.

Finally, as NormFℓ
: F×

q → F×
ℓ is a group homomorphism there are

exactly m = q−1
ℓ−1 solutions to the equation Norm(x) = 1 in Fq, which are

all the solutions.

Let β ∈ Fq, then and therefore, βm = NormFℓ
(β) ∈ Fℓ thus, as before,

all the solutions to the equation (α+ 1)m = βm + 1 are in Fq = Λ.
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Splitting locus for T2

Let p∞ ∈ P(F0). Similarly to the analysis of T1 we can not use Kummers
theorem as y /∈ O′

p, but we can fix it in a similar manner:

Consider(
x1

x0+1

)m

= 1 − 1
(x+1)m . Now, P∞(1 − 1

(x+1)m ) = 1 and from Kummers
theorem, the polynomial Xm − 1 splits into m factors in Fq, and thus the
place p∞ splits completely, every place P/p∞ must also satisfy
P(x1) = −1 and therefore, we can repeat the argument to get
p∞ ∈ Split(T2).
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T2 is a asymptotically good tower

First, we must show that item 4 holds, i.e. for some i gi ≥ 2. Indeed,

2g1 − 2 = [F1 : F0](2g0 − 2) + degDiff (F1/F2)

plug in what we know,

2g1 − 2 ≥ −2 ·m + (m − 1)(m) = (m − 3)m ≥ m ≥ 2

if m > 3 if q = 4, ℓ = 2 then we already saw in T1.

Now for Λ(T2):

λ(T2) ≥
2s

r − 2
≥ 2 · 1

q − 2
> 0

which implies that the code is asymptotically good.
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