Algebraic Geometric Codes

Recitation 14

Shir Peleg

Tel Aviv University

June 7, 2022

Consider the tower $\mathcal{T}_1 := F_0 = \mathbb{F}_4(x_0) \subseteq F_1 = \mathbb{F}_4(x_0, x_1) \subseteq \ldots$ over \mathbb{F}_4 defined by the equation

$$Y^3 = \frac{X^3}{X^2 + X + 1}$$

i.e in each step we have $x_i^3 = \frac{x_{i-1}^3}{x_{i-1}^2 + x_{i-1} + 1}$.

Consider the tower $\mathcal{T}_1 := F_0 = \mathbb{F}_4(x_0) \subseteq F_1 = \mathbb{F}_4(x_0, x_1) \subseteq \ldots$ over \mathbb{F}_4 defined by the equation

$$Y^3 = \frac{X^3}{X^2 + X + 1}$$

i.e in each step we have $x_i^3 = \frac{x_{i-1}^3}{x_{i-1}^2 + x_{i-1} + 1}$. We will study this tower, in two ways.

•
$$\mathfrak{p}_{\infty}$$
: $v_{\infty}(\frac{x_0^3}{x_0^2+x_0+1}) = -1$. Thus $\tilde{v}_{\infty}(\frac{x_0^3}{x_0^2+x_0+1}) = -e(\mathfrak{P}/\mathfrak{p})$.

• \mathfrak{p}_{∞} : $v_{\infty}(\frac{x_0^3}{x_0^2+x_0+1}) = -1$. Thus $\tilde{v}_{\infty}(\frac{x_0^3}{x_0^2+x_0+1}) = -e(\mathfrak{P}/\mathfrak{p})$. On the other hand $\tilde{v}_{\infty}(x_1^3) = 3\tilde{v}_{\infty}(x_1)$ and $e(\mathfrak{P}/\mathfrak{p}) \leq [F_1 : F_0] \leq 3$.

• \mathfrak{p}_{∞} : $v_{\infty}(\frac{x_0^3}{x_0^2+x_0+1}) = -1$. Thus $\tilde{v}_{\infty}(\frac{x_0^3}{x_0^2+x_0+1}) = -e(\mathfrak{P}/\mathfrak{p})$. On the other hand $\tilde{v}_{\infty}(x_1^3) = 3\tilde{v}_{\infty}(x_1)$ and $e(\mathfrak{P}/\mathfrak{p}) \leq [F_1 : F_0] \leq 3$. Thus $e(\mathfrak{P}/\mathfrak{p}) = 3$. We can write \mathfrak{P}_{∞} the unique place over \mathfrak{P}_{∞} . It satisfies $v_{\mathfrak{P}_{\infty}}(x_1) = -1$.

- \mathfrak{p}_{∞} : $v_{\infty}(\frac{x_0^3}{x_0^2+x_0+1}) = -1$. Thus $\tilde{v}_{\infty}(\frac{x_0^3}{x_0^2+x_0+1}) = -e(\mathfrak{P}/\mathfrak{p})$. On the other hand $\tilde{v}_{\infty}(x_1^3) = 3\tilde{v}_{\infty}(x_1)$ and $e(\mathfrak{P}/\mathfrak{p}) \leq [F_1 : F_0] \leq 3$. Thus $e(\mathfrak{P}/\mathfrak{p}) = 3$. We can write \mathfrak{P}_{∞} the unique place over \mathfrak{P}_{∞} . It satisfies $v_{\mathfrak{P}_{\infty}}(x_1) = -1$.
- \mathfrak{p}_0 : here, Kummers theorem will not help as the corresponding polynomial is $Y^3 \mathfrak{p}_0(\frac{x_0^3}{x_0^2 + x_0 + 1}) = Y^3 0$ which promises use one place.

- \mathfrak{p}_{∞} : $v_{\infty}(\frac{x_0^3}{x_0^2+x_0+1}) = -1$. Thus $\tilde{v}_{\infty}(\frac{x_0^3}{x_0^2+x_0+1}) = -e(\mathfrak{P}/\mathfrak{p})$. On the other hand $\tilde{v}_{\infty}(x_1^3) = 3\tilde{v}_{\infty}(x_1)$ and $e(\mathfrak{P}/\mathfrak{p}) \leq [F_1 : F_0] \leq 3$. Thus $e(\mathfrak{P}/\mathfrak{p}) = 3$. We can write \mathfrak{P}_{∞} the unique place over \mathfrak{P}_{∞} . It satisfies $v_{\mathfrak{P}_{\infty}}(x_1) = -1$.
- \mathfrak{p}_0 : here, Kummers theorem will not help as the corresponding polynomial is $Y^3 \mathfrak{p}_0(\frac{x_0^3}{x_0^2 + x_0 + 1}) = Y^3 0$ which promises use one place. Fortunately, we can write $(\frac{x_1}{x_0})^3 = \frac{1}{x_0^2 + x_0 + 1}$. Thus from Kummers theorem \mathfrak{p}_0 splits completely, into $\mathfrak{P}_0^1, \mathfrak{P}_0^2, \mathfrak{P}_0^3$ where $\mathfrak{P}_0^i(x_1) = 0$, and $\mathfrak{P}_0^i(\frac{x_1}{x_0}) \in \{1, \delta, \delta + 1\}$.

 F_0 has 5 rational places: \mathfrak{p}_{∞} , \mathfrak{p}_0 , \mathfrak{p}_1 , \mathfrak{p}_{δ} , $\mathfrak{p}_{\delta+1}$. How do they split in F_1 ?. • \mathfrak{p}_{δ} , $p_{\delta+1}$: $v_{\delta+i}(\frac{x_0^3}{x_{\delta}^2+x_0+1}) = -1$. Thus $\tilde{v}_{\delta+i}(\frac{x_0^3}{x_{\delta}^2+x_0+1}) = -e(\mathfrak{P}/\mathfrak{p})$.

•
$$\mathfrak{p}_{\delta}, p_{\delta+1}$$
: $v_{\delta+i}(\frac{x_0^3}{x_0^2+x_0+1}) = -1$. Thus $\tilde{v}_{\delta+i}(\frac{x_0^3}{x_0^2+x_0+1}) = -e(\mathfrak{P}/\mathfrak{p})$. On the other hand $\tilde{v}_{\delta+i}(x_1^3) = 3\tilde{v}_{\delta+i}(x_1)$ and $e(\mathfrak{P}/\mathfrak{p}) \leq [F_1:F_0] \leq 3$.

• $\mathfrak{p}_{\delta}, p_{\delta+1}$: $v_{\delta+i}(\frac{x_0^3}{x_0^2+x_0+1}) = -1$. Thus $\tilde{v}_{\delta+i}(\frac{x_0^3}{x_0^2+x_0+1}) = -e(\mathfrak{P}/\mathfrak{p})$. On the other hand $\tilde{v}_{\delta+i}(x_1^3) = 3\tilde{v}_{\delta+i}(x_1)$ and $e(\mathfrak{P}/\mathfrak{p}) \leq [F_1 : F_0] \leq 3$. Thus $e(\mathfrak{P}/\mathfrak{p}) = 3$. We can write $\mathfrak{P}_{\delta+i}$ the unique place over $\mathfrak{P}_{\delta+i}$. It satisfies $v_{\mathfrak{P}_{\infty}}(x_1) = -1$.

- $\mathfrak{p}_{\delta}, p_{\delta+1}$: $v_{\delta+i}(\frac{x_0^3}{x_0^2+x_0+1}) = -1$. Thus $\tilde{v}_{\delta+i}(\frac{x_0^3}{x_0^2+x_0+1}) = -e(\mathfrak{P}/\mathfrak{p})$. On the other hand $\tilde{v}_{\delta+i}(x_1^3) = 3\tilde{v}_{\delta+i}(x_1)$ and $e(\mathfrak{P}/\mathfrak{p}) \leq [F_1 : F_0] \leq 3$. Thus $e(\mathfrak{P}/\mathfrak{p}) = 3$. We can write $\mathfrak{P}_{\delta+i}$ the unique place over $\mathfrak{P}_{\delta+i}$. It satisfies $v_{\mathfrak{P}_{\infty}}(x_1) = -1$.
- \mathfrak{p}_1 : From Kummers theorem \mathfrak{p}_1 splits completely, into $\mathfrak{P}_{1,1}, \mathfrak{P}_{1,\delta}\mathfrak{P}_{1,\delta+1}$ where $\mathfrak{P}_{0,t}(x_1) = t$.

- $\mathfrak{p}_{\delta}, p_{\delta+1}$: $v_{\delta+i}(\frac{x_0^3}{x_0^2+x_0+1}) = -1$. Thus $\tilde{v}_{\delta+i}(\frac{x_0^3}{x_0^2+x_0+1}) = -e(\mathfrak{P}/\mathfrak{p})$. On the other hand $\tilde{v}_{\delta+i}(x_1^3) = 3\tilde{v}_{\delta+i}(x_1)$ and $e(\mathfrak{P}/\mathfrak{p}) \leq [F_1 : F_0] \leq 3$. Thus $e(\mathfrak{P}/\mathfrak{p}) = 3$. We can write $\mathfrak{P}_{\delta+i}$ the unique place over $\mathfrak{P}_{\delta+i}$. It satisfies $v_{\mathfrak{P}_{\infty}}(x_1) = -1$.
- \mathfrak{p}_1 : From Kummers theorem \mathfrak{p}_1 splits completely, into $\mathfrak{P}_{1,1}, \mathfrak{P}_{1,\delta}\mathfrak{P}_{1,\delta+1}$ where $\mathfrak{P}_{0,t}(x_1) = t$.

Finally, From Kummers theorem no place of degree ≥ 2 can be ramified (as it is not a zero or pole of $\frac{x_0^3}{x_0^2+x_0+1}$).

$$n_i \geq 3^i$$

As all the places above \mathfrak{p}_0 splits fully.

$$n_i \geq 3^i$$

As all the places above \mathfrak{p}_0 splits fully.

$$\mathsf{deg}(\mathsf{Diff}(F_i/F_{i-1})) = \sum_{\mathfrak{p} \text{ ramified } \in \mathbb{P}(F_{i-1})} (e(\mathfrak{P}/\mathfrak{p}) - 1) \cdot \mathsf{deg}(\mathfrak{p}).$$

$$n_i \geq 3^i$$

As all the places above p_0 splits fully.

$$\mathsf{deg}(\mathsf{Diff}(F_i/F_{i-1})) = \sum_{\mathfrak{p} \text{ ramified } \in \mathbb{P}(F_{i-1})} (e(\mathfrak{P}/\mathfrak{p}) - 1) \cdot \mathsf{deg}(\mathfrak{p}).$$

= 2 \cdot number of ramified places. = 2 \cdot (3 + 2 \cdot (*i* - 1)) = 4 \cdot *i* + 2

 $\lambda(\mathcal{T}_1)$

$$n_i \geq 3^i$$

As all the places above p_0 splits fully.

$$\mathsf{deg}(\mathsf{Diff}(F_i/F_{i-1})) = \sum_{\mathfrak{p} \text{ ramified } \in \mathbb{P}(F_{i-1})} (e(\mathfrak{P}/\mathfrak{p}) - 1) \cdot \mathsf{deg}(\mathfrak{p}).$$

= 2 · number of ramified places. = 2 · (3 + 2 · (i - 1)) = 4 · i + 2Therefore, $2g_i - 2 = 3(2g_{i-1} - 2) + 2 + 4 · i \Rightarrow g_i = 3g_{i-1} + 2 · i - 1$ $\lambda(\mathcal{T}_1)$

$$n_i \geq 3^i$$

As all the places above p_0 splits fully.

$$\mathsf{deg}(\mathsf{Diff}(F_i/F_{i-1})) = \sum_{\mathfrak{p} \text{ ramified } \in \mathbb{P}(F_{i-1})} (e(\mathfrak{P}/\mathfrak{p}) - 1) \cdot \mathsf{deg}(\mathfrak{p}).$$

 $= 2 \cdot \text{number of ramified places.} = 2 \cdot (3 + 2 \cdot (i - 1)) = 4 \cdot i + 2$ Therefore, $2g_i - 2 = 3(2g_{i-1} - 2) + 2 + 4 \cdot i \Rightarrow g_i = 3g_{i-1} + 2 \cdot i - 1$ implies that

$$g_i=3^i-i-1$$

 $\lambda(\mathcal{T}_1)$

$$n_i \geq 3^i$$

As all the places above p_0 splits fully.

$$\mathsf{deg}(\mathsf{Diff}(F_i/F_{i-1})) = \sum_{\mathfrak{p} \text{ ramified } \in \mathbb{P}(F_{i-1})} (e(\mathfrak{P}/\mathfrak{p}) - 1) \cdot \mathsf{deg}(\mathfrak{p}).$$

= 2 · number of ramified places. = $2 \cdot (3 + 2 \cdot (i - 1)) = 4 \cdot i + 2$ Therefore, $2g_i - 2 = 3(2g_{i-1} - 2) + 2 + 4 \cdot i \Rightarrow g_i = 3g_{i-1} + 2 \cdot i - 1$ implies that

$$g_i=3^i-i-1$$

Therefore

$$\lambda(\mathcal{T}_1) \geq \lim_{i o \infty} rac{3^i}{3^i-i-1} = 1 = \sqrt{4}-1$$

Recall,

Definition 1

Let \mathcal{F} be a tower over \mathbb{F}_q . The set

 $\mathsf{Split}(\mathcal{F}) = \{ \mathfrak{p} \in \mathbb{P}_1(F_0) \mid \mathfrak{p} \text{ splits completely in all extessions } F_i/F_0 \}$

is called the *splitting locus* of \mathcal{F} .

Recall,

Definition 1

Let \mathcal{F} be a tower over \mathbb{F}_q . The set

 $\mathsf{Split}(\mathcal{F}) = \{ \mathfrak{p} \in \mathbb{P}_1(F_0) \mid \mathfrak{p} \text{ splits completely in all extessions } F_i/F_0 \}$

is called the *splitting locus* of \mathcal{F} .

Let F/L be an extension of E/K. A prime divisor \mathfrak{p} of E/K is said to ramify in the extension F/L of E/K if $\exists \mathfrak{P}/\mathfrak{p} \text{ s.t. } e(\mathfrak{P}/\mathfrak{p}) > 1$.

Definition 2

Let \mathcal{F} be a tower over \mathbb{F}_q . The set

 $\mathsf{Ram}(\mathcal{F}) = \{ \mathfrak{p} \in \mathbb{P}(F_0) \mid \mathfrak{p} \text{ is ramified in } F_i/F_0 \text{ for some } i \geq 1 \}$

is called the *ramification locus* of \mathcal{F} .

We saw in class that in Kummer extensions, if we denote $r = \sum_{p \in \text{Ram}(\mathcal{F})} \deg \mathfrak{p}$ and $s = |\text{Split}(\mathcal{F})|$ then

$$\lambda(\mathcal{F}) \geq rac{2s}{r-2}$$

We saw in class that in Kummer extensions, if we denote $r = \sum_{p \in \text{Ram}(\mathcal{F})} \deg \mathfrak{p}$ and $s = |\text{Split}(\mathcal{F})|$ then

$$\lambda(\mathcal{F}) \geq rac{2s}{r-2}$$

In our example \mathcal{T}_1 we have that: Ram $(\mathcal{F}) = \{\mathfrak{p}_{\infty}, \mathfrak{p}_1, \mathfrak{p}_{\delta}, \mathfrak{p}_{\delta+1}\}$ and Split $(\mathcal{F}) = \{\mathfrak{p}_0\}$, and so:

$$\lambda(\mathcal{T}_1) \geq rac{2\cdot 1}{4-2}$$

We saw in class that in Kummer extensions, if we denote $r = \sum_{p \in Ram(\mathcal{F})} \deg \mathfrak{p}$ and $s = |Split(\mathcal{F})|$ then

$$\lambda(\mathcal{F}) \geq rac{2s}{r-2}$$

In our example \mathcal{T}_1 we have that: Ram $(\mathcal{F}) = \{\mathfrak{p}_{\infty}, \mathfrak{p}_1, \mathfrak{p}_{\delta}, \mathfrak{p}_{\delta+1}\}$ and Split $(\mathcal{F}) = \{\mathfrak{p}_0\}$, and so:

$$\lambda(\mathcal{T}_1) \geq \frac{2 \cdot 1}{4-2}$$

Consider the variable transform $z_i = \frac{1}{x_i}$. We have here that $F_i = F_{i-1}(z_i)$ and the tower is defined by the equation

$$y^3 = (x+1)^3 - 1.$$

Let ℓ be a prime power and $q = \ell^r$ for $r \ge 2$. Let $m = \frac{q-1}{\ell-1}$, note that m and ℓ are coprime.

Let ℓ be a prime power and $q = \ell^r$ for $r \ge 2$. Let $m = \frac{q-1}{\ell-1}$, note that m and ℓ are coprime. We will show that the sequence $\mathcal{T}_2 = (F_0, F_1, \ldots)$ that is recursively defined by

$$Y^m = (X+1)^m - 1.$$

is a tower over \mathbb{F}_q . So, we need to prove that

- **2** F_{i+1}/F_i is separable
- **③** \mathbb{F}_q is the constant field of F_i ; and
- $g(F_j) \ge 2$ for some j.

 $\mathfrak{p}_i \in \mathbb{P}(F_i), \mathfrak{P}_i \in \mathbb{P}(F_{i+1}) \quad \text{s.t.} \quad \mathfrak{P}_i/\mathfrak{p}_i \quad \text{and} \quad e(\mathfrak{P}_i/\mathfrak{p}_i) = m.$

$$\mathfrak{p}_i \in \mathbb{P}(F_i), \mathfrak{P}_i \in \mathbb{P}(F_{i+1}) \text{ s.t. } \mathfrak{P}_i/\mathfrak{p}_i \text{ and } e(\mathfrak{P}_i/\mathfrak{p}_i) = m.$$

Let \mathfrak{p}_0 be the unique zero of x_0 in $F_0 = \mathbb{F}_q(x_0)$. Let $\mathfrak{P}_0/\mathfrak{p}_0$ in $\mathbb{P}(F_1)$. We have that

 $m \cdot v_{\mathfrak{P}_{\mathbf{0}}}(x_1) = v_{\mathfrak{P}_{\mathbf{0}}}(x_1^m) = e(\mathfrak{P}_0/\mathfrak{p}_0) \cdot v_{\mathfrak{p}_{\mathbf{0}}}((x_0+1)^m - 1) = e(\mathfrak{P}_0/\mathfrak{p}_0).$

Thus, using also the fundamental equality, $e(\mathfrak{P}_0/\mathfrak{p}_0) = m$ as desired.

$$\mathfrak{p}_i \in \mathbb{P}(F_i), \mathfrak{P}_i \in \mathbb{P}(F_{i+1}) \quad \text{s.t.} \quad \mathfrak{P}_i/\mathfrak{p}_i \quad \text{and} \quad e(\mathfrak{P}_i/\mathfrak{p}_i) = m.$$

Let \mathfrak{p}_0 be the unique zero of x_0 in $F_0 = \mathbb{F}_q(x_0)$. Let $\mathfrak{P}_0/\mathfrak{p}_0$ in $\mathbb{P}(F_1)$. We have that

$$m \cdot v_{\mathfrak{P}_{\mathbf{0}}}(x_1) = v_{\mathfrak{P}_{\mathbf{0}}}(x_1^m) = e(\mathfrak{P}_0/\mathfrak{p}_0) \cdot v_{\mathfrak{p}_{\mathbf{0}}}((x_0+1)^m - 1) = e(\mathfrak{P}_0/\mathfrak{p}_0).$$

Thus, using also the fundamental equality, $e(\mathfrak{P}_0/\mathfrak{p}_0) = m$ as desired. Moreover, note that $\nu_{\mathfrak{P}_0}(x_1) = 1$ and so we can iterate this argument for all $i \in \mathbb{N}$.

$$\mathfrak{p}_i \in \mathbb{P}(F_i), \mathfrak{P}_i \in \mathbb{P}(F_{i+1}) \quad \text{s.t.} \quad \mathfrak{P}_i/\mathfrak{p}_i \quad \text{and} \quad e(\mathfrak{P}_i/\mathfrak{p}_i) = m.$$

Let \mathfrak{p}_0 be the unique zero of x_0 in $F_0 = \mathbb{F}_q(x_0)$. Let $\mathfrak{P}_0/\mathfrak{p}_0$ in $\mathbb{P}(F_1)$. We have that

$$m \cdot v_{\mathfrak{P}_{\mathbf{0}}}(x_1) = v_{\mathfrak{P}_{\mathbf{0}}}(x_1^m) = e(\mathfrak{P}_0/\mathfrak{p}_0) \cdot v_{\mathfrak{p}_{\mathbf{0}}}((x_0+1)^m - 1) = e(\mathfrak{P}_0/\mathfrak{p}_0).$$

Thus, using also the fundamental equality, $e(\mathfrak{P}_0/\mathfrak{p}_0) = m$ as desired. Moreover, note that $v_{\mathfrak{P}_0}(x_1) = 1$ and so we can iterate this argument for all $i \in \mathbb{N}$. item 4 will follow from the general analysis of Split(\mathcal{T}_2), Ram(\mathcal{T}_2).

Lemma 3

Let $\mathcal{F} = (F_0, F_1, \ldots)$ be a recursive tower over \mathbb{F}_q defined by the equation

$$f(Y)=h(X),$$

with a basic function field F. Define

 $\Lambda_0 := \{x(\mathfrak{p}) \mid \mathfrak{p} \in \mathbb{F}_q(x) \text{ is ramified in } \mathbb{F}_q(x,y)/\mathbb{F}_q(x)\} \subseteq \overline{\mathbb{F}_q} \cup \{\infty\}.$

Suppose that $\Lambda \subseteq \overline{\mathbb{F}_q} \cup \{\infty\}$ satisfies:

- Objective optimization a ∈ F_q ∪ {∞} to the equation f(β) = h(α) in fact satisfies α ∈ Λ.

Then, the ramification locus $Ram(\mathcal{F})$ is finite and

$$\mathsf{Ram}(\mathcal{F}) \subseteq \{\mathfrak{p} \in \mathbb{P}(\mathbb{F}_q(x_0)) \mid x_0(\mathfrak{p}) \in \Lambda\}.$$

First we note that $(x + 1)^m - 1$ splits into different prime factors as $gcd((x + 1)^m - 1, m(x + 1)^{m-1}) = 1$. Thus, this is a tame cyclic extension and

$$\Lambda_0 = \{\beta \in \overline{\mathbb{F}_q} \mid (\beta + 1)^m = 1\}$$

First we note that $(x + 1)^m - 1$ splits into different prime factors as $gcd((x + 1)^m - 1, m(x + 1)^{m-1}) = 1$. Thus, this is a tame cyclic extension and

$$\Lambda_0 = \{\beta \in \overline{\mathbb{F}_q} \mid (\beta + 1)^m = 1\}$$

First we note that $\Lambda_0 \subseteq \mathbb{F}_q$. Recall that $Gal(\mathbb{F}_q/\mathbb{F}_\ell) = (Frob_\ell^i)_{i=0}^{r-1}$. Therefore, for $x \in \mathbb{F}_q$

$$Norm_{\mathbb{F}_{\ell}}(x) = \prod x^{\ell^i} = x^{\sum \ell^i} = x^m.$$

First we note that $(x + 1)^m - 1$ splits into different prime factors as $gcd((x + 1)^m - 1, m(x + 1)^{m-1}) = 1$. Thus, this is a tame cyclic extension and

$$\Lambda_0 = \{\beta \in \overline{\mathbb{F}_q} \mid (\beta + 1)^m = 1\}$$

First we note that $\Lambda_0 \subseteq \mathbb{F}_q$. Recall that $Gal(\mathbb{F}_q/\mathbb{F}_\ell) = (Frob_\ell^i)_{i=0}^{r-1}$. Therefore, for $x \in \mathbb{F}_q$

$$Norm_{\mathbb{F}_{\ell}}(x) = \prod x^{\ell^i} = x^{\sum \ell^i} = x^m.$$

Finally, as $Norm_{\mathbb{F}_{\ell}}: \mathbb{F}_{q}^{\times} \to \mathbb{F}_{\ell}^{\times}$ is a group homomorphism there are exactly $m = \frac{q-1}{\ell-1}$ solutions to the equation Norm(x) = 1 in \mathbb{F}_{q} , which are all the solutions.

First we note that $(x + 1)^m - 1$ splits into different prime factors as $gcd((x + 1)^m - 1, m(x + 1)^{m-1}) = 1$. Thus, this is a tame cyclic extension and

$$\Lambda_0 = \{\beta \in \overline{\mathbb{F}_q} \mid (\beta + 1)^m = 1\}$$

First we note that $\Lambda_0 \subseteq \mathbb{F}_q$. Recall that $Gal(\mathbb{F}_q/\mathbb{F}_\ell) = (Frob_\ell^i)_{i=0}^{r-1}$. Therefore, for $x \in \mathbb{F}_q$

$$Norm_{\mathbb{F}_{\ell}}(x) = \prod x^{\ell^i} = x^{\sum \ell^i} = x^m.$$

Finally, as $Norm_{\mathbb{F}_{\ell}}: \mathbb{F}_{q}^{\times} \to \mathbb{F}_{\ell}^{\times}$ is a group homomorphism there are exactly $m = \frac{q-1}{\ell-1}$ solutions to the equation Norm(x) = 1 in \mathbb{F}_{q} , which are all the solutions.

Let $\beta \in \mathbb{F}_q$, then and therefore, $\beta^m = Norm_{\mathbb{F}_\ell}(\beta) \in \mathbb{F}_\ell$ thus, as before, all the solutions to the equation $(\alpha + 1)^m = \beta^m + 1$ are in $\mathbb{F}_q = \Lambda$.

Let $\mathfrak{p}_{\infty} \in \mathbb{P}(F_0)$. Similarly to the analysis of \mathcal{T}_1 we can not use Kummers theorem as $y \notin \mathcal{O}'_{\mathfrak{p}}$, but we can fix it in a similar manner:

Let $\mathfrak{p}_{\infty} \in \mathbb{P}(F_0)$. Similarly to the analysis of \mathcal{T}_1 we can not use Kummers theorem as $y \notin \mathcal{O}'_{\mathfrak{p}}$, but we can fix it in a similar manner: Consider $\left(\frac{x_1}{x_0+1}\right)^m = 1 - \frac{1}{(x+1)^m}$. Now, $\mathfrak{P}_{\infty}(1 - \frac{1}{(x+1)^m}) = 1$ and from Kummers theorem, the polynomial $X^m - 1$ splits into *m* factors in \mathbb{F}_q , and thus the place \mathfrak{p}_{∞} splits completely, every place $\mathfrak{P}/\mathfrak{p}_{\infty}$ must also satisfy $\mathfrak{P}(x_1) = -1$ and therefore, we can repeat the argument to get $\mathfrak{p}_{\infty} \in \text{Split}(\mathcal{T}_2)$. First, we must show that item 4 holds, i.e. for some $i g_i \ge 2$. Indeed,

$$2g_1 - 2 = [F_1 : F_0](2g_0 - 2) + \deg Diff(F_1/F_2)$$

plug in what we know,

$$2g_1 - 2 \ge -2 \cdot m + (m-1)(m) = (m-3)m \ge m \ge 2$$

if m > 3 if $q = 4, \ell = 2$ then we already saw in \mathcal{T}_1 .

First, we must show that item 4 holds, i.e. for some $i g_i \ge 2$. Indeed,

$$2g_1 - 2 = [F_1 : F_0](2g_0 - 2) + \deg Diff(F_1/F_2)$$

plug in what we know,

$$2g_1 - 2 \ge -2 \cdot m + (m-1)(m) = (m-3)m \ge m \ge 2$$

if m > 3 if $q = 4, \ell = 2$ then we already saw in \mathcal{T}_1 . Now for $\Lambda(\mathcal{T}_2)$:

$$\lambda(\mathcal{T}_2) \geq \frac{2s}{r-2} \geq \frac{2 \cdot 1}{q-2} > 0$$

which implies that the code is asymptotically good.