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Cyclic extensions

Recall that a Galois extension F/K is called cyclic if Gal(F/K) is a cyclic
group.

Lemma 1

Let F be a field of characteristic p. Let n coprime to p. Let ζ ∈ F̄ be an
n-th primitive root of unity. Then, F(ζ)/F is a cyclic extension.

For the proof of Lemma 1 we recall the following lemma from Galois
Theory.
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Cyclic extensions

Lemma 2

Let K ⊆ L,F be fields s.t. F/K is a finite Galois extension. Then LF/L is
Galois and

Gal(LF/L) ∼= Gal(F/(L ∩ F)).

In particular,
[LF : L] = [F : L ∩ F].
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Cyclic extensions

Proof. (Proof of Lemma 2)

We first show that LF/L is Galois.

The separability of LF/L is clear. Indeed, every element of F is separable
over K, let alone over L. Thus, every element of LF is separable over L.

As for normality, recall the characterization of normal extensions as
splitting fields. Now, as F/K is normal, F is the splitting field of

{fj(x) ∈ K[x ]}j∈J .

Let Sj ⊆ K be the roots of fj(x), and S = ∪jSj . Then, F = K(S). But
then,

LF = F(S)

is the splitting field of {fj(x)}j∈J where we now think of fj(x) ∈ L[x ].
Hence, LF/L is normal.
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Cyclic extensions

Proof. (Proof of Lemma 2)

As F/K is finite and separable, F = K(a) for some a ∈ F.

Let f (x) ∈ K[x ] be the minimal polynomial of a over K. Since F/K is
Galois, f (x) splits completely in F and all its roots are simple.

Let g(x) ∈ L[x ] be the minimal polynomial of a over L. Since K ⊆ L we
have that g(x) | f (x).

Thus the roots of g(x) is a subset of the roots of f (x) and so they are in
F. This implies that g(x) ∈ F[x ], and so

g(x) ∈ (L ∩ F)[x ].

Now,
LF = LK(a) = L(a),

and so
[LF : L] = [L(a) : L] = deg g(x). (1)
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Cyclic extensions

Proof. (Proof of Lemma 2)

g(x) is irreducible over L and so certainly over L ∩ K. Thus,

deg g(x) = [(L ∩ F)(a) : L ∩ F].

As a ∈ F,
(L ∩ F)(a) ⊆ F.

On the other hand,
F = K(a) ⊆ (L ∩ F)(a),

and so (L ∩ F)(a) = F. Hence,

deg g(x) = [F : L ∩ F].

With Equation (1), we get

[LF : L] = [F : L ∩ F].
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Cyclic extensions

Proof of Lemma 2.

Note that F/(L ∩ F) is Galois as F/K is Galois and K ⊆ L ∩ F.

Consider the restriction homomorphism

ϕ : Gal(LF/L)→ Gal(F/(L ∩ F))

σ 7→ σ|F

ϕ is a monomorphism. Indeed, assume that ϕ(σ) = σ|F = id|F. As
σ|L = id|L we have that σ = idLF.

As
|Gal(LF/L)| = [LF : L] = [F : L ∩ F] = |Gal(F/(L ∩ F))|

we have that ϕ is also onto. Thus,

Gal(LF/L) ∼= Gal(F/(L ∩ F)).
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Cyclic extensions

Proof. (Proof of Lemma 1)

We have that
F(ζ) = FFp(ζ).

Now Fp(ζ)/Fp is Galois as it is the splitting field of the separable
polynomial xn − 1 over Fp.
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Cyclic extensions

Proof. (Proof of Lemma 1)

By Lemma 2, F(ζ)/F is Galois. Moreover,

Gal(F(ζ)/F) ∼= Gal(Fp(ζ)/(F ∩ Fp(ζ))).

The RHS is a Galois extension of finite fields and as such it is cyclic.
Thus, F(ζ)/F is cyclic.
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Cyclic extensions

Theorem 3

Let E be a field of characteristic p. Let F/E be a field extension of degree
n which is coprime to p. Assume that E contains an n-th primitive root
of unity. Then,

F/E is cyclic ⇐⇒ F = E(a) for some a ∈ F s.t. b , an ∈ E

⇐⇒ F is the splitting field of xn − b ∈ E[x ].

Proof.

Assume that F = E(a) for b = an ∈ E. Then,

xn − b = xn − an =
∏
ζ∈µn

(x − ζa),

where µn ⊆ E is the set of n-th roots of unity.

Hence, F is the splitting field over E of the separable polynomial xn − b.
The separability follows as p and n are coprime.
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Cyclic extensions

Proof.

Thus, F/E is Galois and an element σ ∈ Gal(F/E) is determined by its
action on a. Note that σ(a) is also a root of xn − b. Indeed,

σ(a)n = σ(an) = σ(b) = b.

Thus, σ(a) , σζ(a) = ζa for some ζ ∈ µn.

As we assume that
[F : E] = [E(a) : E] = n,

xn − b is the minimal polynomial of a over E. Thus, {ζa | ζ ∈ µn} are
the E-conjugates of a.

For every conjugate ζa there is σζ ∈ Gal(F/E) s.t. σζ(a) = ζa. Thus,

Gal(F/E) = {σζ | ζ ∈ µn}.
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Cyclic extensions

Proof.

Moreover, the map

µn → Gal(F/E) = {σζ | ζ ∈ µn}
ζ 7→ σζ

is a group isomorphism as can be easily verified. Thus, F/E is cyclic.

In the other direction, assume F/E is cyclic and we ought to find a ∈ F
s.t. an ∈ E and F = E(a).

Let σ be a generator of the cyclic group Gal(F/E). It can be shown that
the elements of Gal(F/E) are linearly independent over E (even over Ē).
In particular,

ψ =
n−1∑
j=0

ζ jσj 6= 0,

where ζ ∈ µn is an n-th primitive root of unity.
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Cyclic extensions

Proof.

ψ =
n−1∑
j=0

ζ jσj 6= 0,

Let t be s.t. ψ(t) 6= 0, and let

a , ψ(t) =
n−1∑
j=0

ζ jσj(t).

We will show that F = E(a) and that an ∈ E.

As ζ ∈ E we have that

σ(a) =
n−1∑
j=0

ζ jσj+1(t) = ζ−1
n−1∑
j=0

ζ j+1σj+1(t)

= ζ−1
n−1∑
j=0

ζ jσj(t) = ζ−1a.
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Cyclic extensions

Proof.

So σ(a) = ζ−1a and so the E-Galois conjugates of a are{
a, ζ−1a, . . . , (ζ−1)n−1a

}
=
{
a, ζa, . . . , ζn−1a

}
.

Thus, the minimal polynomial of a over E is

f (x) =
n−1∏
j=0

(x − ζ ja) = xn − an ∈ E[x ].

Thus, F = E(a) and an ∈ E.
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No ramification in constant field extensions

Lemma 4

Let L/K be a finite separable extension. Let E/K be a function field and
consider the constant field extension F/L with F = EL. Then, for every
P ∈ P(F) lying over some p ∈ P(E) we have

e(P/p) = 1.

Proof.

Let α ∈ L be s.t. L = K(α). Let ϕ(T ) ∈ K[T ] be the minimal polynomial
of α over K. Recall that ϕ is also the minimal polynomial of α over E.

As α ∈ L, α is integral over Op. Thus, by a result we proved in a
previous unit,

0 ≤ d(P/p) ≤ υP(ϕ′(α)).
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No ramification in constant field extensions

Proof.

0 ≤ d(P/p) ≤ υP(ϕ′(α)).

But α ∈ L and so ϕ′(α) ∈ L. Moreover, ϕ′(α) 6= 0 as α is separable.
Hence,

υP(ϕ′(α)) = 0.

Thus, d(P/p) = 0 and Dedekind’s Different Theorem yields

e(P/p) = 1.
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Kummer Extensions

Definition 5 (Kummer extensions)

Let E/K be a function field where K contains a primitive n-th root of
unity ζ. Assume that n > 1 is prime to p = char(K).

Suppose that u ∈ E is an element satisfying u 6= wd for all w ∈ E and
d | n, d > 1.

Let F = E(y) with yn = u. Such an extension F/E is called a Kummer
extension.

With the notations of Definition 5, by Theorem 3, we have that

1 The polynomial T n − u is the minimal polynomial of y over E.

2 The extension F/E is Galois of degree n.

3 Gal(F/E) is cyclic and the automorphisms of F/E are given by
σ(y) = ζy for ζ ∈ K an n-th root of unity.
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Kummer Extensions

With the notation of Definition 5 we have

Theorem 6 (Kummer extensions)

Let p ∈ P(E) and P ∈ P(F) lying over p. Let

rp = gcd(n, υp(u)) > 0.

Then,

e(P/p) =
n

rp
, d(P/p) =

n

rp
− 1.

Moreover, if L is the constant field of F and gF, gE are the genera of E/K
and F/L, respectively then

gF = 1 +
n

[L : K]

gE − 1 +
1

2

∑
p∈P(E)

(
1− rp

n

)
deg p

 .
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Kummer Extensions

Proof.

We start with the proof regarding e(P/p) and d(P/p) and split the
proof to cases according to the value of rp, starting with the case rp = 1.

We have that

n · υP(y) = υP(yn) = υP(u) = e(P/p) · υp(u).

By assumption,

rp = gcd(n, υp(u)) = 1 =⇒ n | e(P/p).

However, by the fundamental equality, e(P/p) ≤ n and so

e(P/p) = n =
n

rp

as desired.
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Kummer Extensions

Proof.

As p = char(K) is prime to n = e(P/p), Dedekind Different Theorem
yields

d(P/p) = e(P/p)− 1

which concludes the proof of the case rp = 1.

Consider now the case

rp = gcd(n, υp(u)) = n.

We wish to prove that d(P/p) = 0 and e(P/p) = 1.

Note that υp(u) = `n for some ` ∈ Z.
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Kummer Extensions

Proof.

So far, υp(u) = `n for some ` ∈ Z.

Take t ∈ E s.t. υp(t) = `, and define

y1 = t−1y ,

u1 = t−nu.

As yn = u,
yn
1 = (t−1y)n = t−nyn = t−nu = u1.

Thus,

n · υP(y1) = υP(yn
1 ) = vP(u1) = υP(t−nu)

= e(P/p) · (υp(u)− n · υp(t))

= e(P/p) · (`n − `n),

and so
υP(y1) = υp(u1) = 0.
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Kummer Extensions

Proof.

So far we have that yn
1 = u1 and υP(y1) = υp(u1) = 0.

Observe that
ψ(T ) = T n − u1 ∈ E[T ]

is the minimal polynomial of y1 over E. Indeed, clearly, ψ(y1) = 0.
Moreover y = ty1 and so if h is the minimal polynomial of y1 over E then

g(T ) = h(t−1T ) ∈ E[T ]

vanishes at y . Hence, a degree argument shows that ψ is indeed the
minimal polynomial of y1 over E.

We conclude that y1 ∈ O′p and that F = E(y1). As F/E is separable, by a
theorem we proved,

d(P/p) ≤ υP(ψ′(y1)).
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Kummer Extensions

Proof.

So far we have that d(P/p) ≤ υP(ψ′(y1)). Now,

ψ′(T ) = nT n−1

and so
ψ′(y1) = nyn−1

1 ,

so
υP(ψ′(y1)) = (n − 1)υP(y1) = 0,

and so d(P/p) = 0.

Dedekind’s Different Theorem then implies that e(P/p) = 1 and the
proof for the case rp = n follows.
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Kummer Extensions

Proof.

We now consider the general case, reducing it to Case 1 and Case 2. To
this end, define

y0 = yn/rp

and consider the intermediate field E(y0). Note that T rp − u ∈ E[T ] is
the minimal polynomial of y0 over E and so [E(y0) : E] = rp. Thus,
[F : E(y0)] = n

rp
.

Let p0 = P ∩ E(y0) be the prime divisor lying under P.
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Kummer Extensions

Proof.

We have that y
rp
0 = u and rp is also the degree [E(y0) : E]. Thus, we can

apply Case 2 to E(y0)/E to conclude that

e(p0/p) = 1.
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Kummer Extensions

Proof.

Thus, so far we have concluded the information as depict in the figure.

Moving on to consider F/E(y0) we first note that

rp · υp0(y0) = υp0(y
rp
0 ) = υp0(u) = e(p0/p) · υp(u) = υp(u),

and so

υp0(y0) =
υp(u)

rp
.
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Kummer Extensions

Proof.

We are thus reduced to Case 2 (see figure below). Thus,

e(P/p0) =
n

rp
.
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Kummer Extensions

Proof.

In summary we obtained the information depict in the figure. Thus,

e(P/p) = e(P/p0)e(p0/p) =
n

rp
.
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Kummer Extensions

Proof.

We turn to calculate the genus. Recall that

Diff(F/E ) =
∑

p∈P(E)

∑
P/p

P∈P(F)

d(P/p)P.

Thus,

deg Diff(F/E) =
∑

p∈P(E)

∑
P/p

d(P/p) degP

=
∑

p∈P(E)

(
n

rp
− 1

)∑
P/p

degP.
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Kummer Extensions

Proof.

As F/E is Galois, e(P/p) does not depend on P but rather only on p,
and so if we denote e(P/p) by e(p) we get

∑
P/p

degP =
1

e(p)
· deg

∑
P/p

e(P/p)P


=

1

e(p)
· deg ConF/E(p).

In a previous unit we proved that

deg ConF/E(p) =
[F : E]

[L : K]
· deg p =

n

[L : K]
· deg p,

and so, using e = n/rp, we get∑
P/p

degP =
1

e(p)
· n

[L : K]
· deg p =

rp
[L : K]

· deg p.
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Kummer Extensions

Proof.

Recall we showed that

deg Diff(F/E) =
∑

p∈P(E)

(
n

rp
− 1

)∑
P/p

degP,

and that we took a detour to show that∑
P/p

degP =
rp

[L : K]
· deg p.

Combining these we get

deg Diff(F/E) =
∑

p∈P(E)

n − rp
rp

· rp
[L : K]

· deg p

=
n

[L : K]
·
∑

p∈P(E)

(
1− rp

n

)
deg p.
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Proof.

We summarize

deg Diff(F/E) =
n

[L : K]
·
∑

p∈P(E)

(
1− rp

n

)
deg p.

Now, by the Hurwitz Genus Formula,

2gF − 2 =
[F : E]

[L : K]
(2gE − 2) + deg Diff(F/E),

and so

gF = 1 +
n

[L : K]

gE − 1 +
1

2

∑
p∈P(E)

(
1− rp

n

)
deg p

 .

Gil Cohen Kummer Extensions



Kummer Extensions

Corollary 7

Let E/K be a function field and

F = E(y) where yn = u ∈ E.

Assume that n and p = char(K) are coprime and that K contains a
primitive n-th root of unity.

Assume further that

∃q ∈ P(E) gcd(υq(u), n) = 1.

Then,

1 K is the full constant field of F (hence, F/K is a function field);

2 F/E is cyclic of degree n; and

3

gF = 1 + n · (gE − 1) +
1

2

∑
p∈P(E)

(n − rp) deg p.
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Kummer Extensions

Proof.

We wish to apply Theorem 6. To this end, we first need to show that
u 6= wd for all w ∈ E and d | n, d > 1.

Otherwise,
υq(u) = υq(wd) = d · υq(w),

which would imply d | υq(u) in contradiction to gcd(υq(u), n) = 1.

The proof will follow by Theorem 6 once we establish that K is the full
constant field of F.

Denote the algebraic closure of K in F by L and consider

E ⊆ EL ⊆ F.
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Proof.

Let q′′ ∈ P(F) be the prime divisor lying over q. Note that q′′ is unique as

e(q′′/q) =
n

rq
=

n

gcd(n, υq(u))
= n.

Let EL/L be the constant field extension of E/K and let q′ ∈ P(EL) be
the prime divisor lying under q′′. Recall that

e(q′/q) = 1

as no ramification occurs in constant field extensions per Lemma 4
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Kummer Extensions

Proof.

On the other hand, as m | n and gcd(n, υq(u)) = 1 we have that

gcd(m, υq(u)) = 1.

Thus, by Theorem 6,

e(q′/q) =
m

gcd(m, υq(u))
= m.

Hence, m = 1 and so L ⊆ E which implies L = K.
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Remark

In the proof so far we never used the fact that K contains an n-th root of
unity. Thus, all the results hold except that the extension may not be
Galois.
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Certain quadratic extensions

Lemma 8

Let F = K(x , y) where
y2 = f (x) ∈ K[x ]

and f (x) is irreducible of degree m over K. Assume that K has odd
characteristic. Then,

1 K is the full constant field of F; and

2 F/K(x) is cyclic of order 2 and has genus

g =

{
m−1
2 if m is odd

m−2
2 otherwise.

Proof.

Since f (x) is irreducible over K[x ], there is a prime divisor q in K(x) that
corresponds to f (x), and

υq(f (x)) = 1.
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Certain quadratic extensions

Proof.

Further, n = [F : K(x)] = 2 and so

gcd(υq(f (x)), n) = gcd(1, 2) = 1.

Moreover, −1 (the 2nd root of unity) is in K(x) and so, as char K is odd,
Corollary 7 applies.

Corollary 7 implies that F/K(x) is cyclic of order 2 and that K is the full
constant field of F.

As for the genus, note that

rq = gcd(n, υq(f (x))) = gcd(2, 1) = 1,

r∞ = gcd(n, υ∞(f (x))) = gcd(2,−m) = gcd(2,m).

For every other p ∈ P(K(x)), υp(f (x)) = 0 and so

rp = gcd(n, υp(f (x))) = gcd(2, 0) = 2.
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Certain quadratic extensions

Proof.

rq = 1,

r∞ = gcd(2,m),

rp = 2 otherwise.

By Corollary 7,

gF = 1 + n · (gK(x) − 1) +
1

2

∑
p∈P(K(x))

(n − rp) deg p.

As n = 2 and gK(x) = 0,

gF = −1 +
1

2
(1 · deg q + (2− gcd(2,m)) · deg p∞)

= −1 +
1

2
(m + (2− gcd(2,m))) .
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Certain quadratic extensions

Proof.

Hence,

gF = −1 +
1

2
(m + (2− gcd(2,m)))

=

{
m−1
2 if m is odd

m−2
2 otherwise.
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Tame cyclic extensions of K(x)

We now consider a function field F = K(x , y) s.t.

yn = a ·
s∏

i=1

pi (x)ni

where

1 a 6= 0;

2 The p1(x), . . . , ps(x) ∈ K[x ] are distinct, irreducible and monic;

3 n1, . . . , ns ∈ Z \ {0};
4 char(K) - n; and

5 ∀i ∈ [s] gcd(n, ni ) = 1.

Lemma 8 is the special case in which n = 2, s = 1, and n1 = 1 (and also
a = 1).
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Tame cyclic extensions of K(x)

Theorem 9

1 K is the full constant field of F and [F : K(x)] = n;

2 If K contains an n-th root of unity, F/K(x) is cyclic.

3 The prime divisors that correspond to p1(x), . . . , ps(x) in P(K(x))
are totally ramified in F/K(x).

4 All prime divisors q lying over p∞ ∈ P(K(x)) have ramification index
e(q/p∞) = n

d where

d = gcd

(
n,

s∑
i=1

ni deg pi (x)

)
.

5 No prime divisor other than those listed above ramify in F/K(x).

6 Finally, the genus g of F/K(x) is

g =
n − 1

2

(
−1 +

s∑
i=1

deg pi (x)

)
− d − 1

2
.

Gil Cohen Kummer Extensions



Tame cyclic extensions of K(x)

Proof.

We wish to invoke Corollary 7 with

u = a ·
s∏

i=1

pi (x)ni .

We first verify that the hypothesis of Corollary 7 holds.

1 By assumption, char(K) is prime to n;

2 For Item 2, a primitive n-th root of unity is contained in K(x); and

3 If pi ∈ P(K(x)) is the prime divisor corresponding to pi (x) then
υpi (u) = ni which, per assumption, is co-prime to n.

Thus, we can apply Corollary 7 to conclude that

1 K is the full constant field of F;

2 [F : K(x)] = n;

3 Assume K contains a primitive n-th root of unity, F/K(x) is cyclic.
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Tame cyclic extensions of K(x)

Proof.

Now,

rpi = gcd(n, υpi (u)) = gcd(n, ni ) = 1,

rp∞ = gcd(n, υ∞(u)) = gcd

(
n,

s∑
i=1

−ni deg pi (x)

)
= d ,

and for every other prime divisor p ∈ P(K(x)),

rp = gcd(n, υp(u)) = gcd(n, 0) = n.

Corollary 7 then implies that for every i ∈ [s] and P/pi ,

e(P/pi ) =
n

rpi

= n,

which proves Item 3, namely, p1, . . . , ps totally ramify in F/K(x).
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Tame cyclic extensions of K(x)

Proof.

For every q ∈ P(F) lying over p∞, Corollary 7 implies that

e(q/p∞) =
n

d
,

establishing Item 4.

Item 5 follows as for p other than p1, . . . , ps , p∞, we have that rp = n
and so

e(P/p) =
n

n
= 1

for all P ∈ P(F) lying over p.
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Tame cyclic extensions of K(x)

Proof.

We turn to compute the genus g of F. Recall that rpi = 1 for all i ∈ [s],
rp∞ = d , and rp = n for all other p ∈ P(K(x)).

By Corollary 7,

g = 1 + n · (gK(x) − 1) +
1

2

∑
p∈P(E)

(n − rp) deg p

= 1− n +
1

2

(
(n − d) · 1 +

s∑
i=1

(n − 1) deg pi

)

=
n − 1

2

(
−1 +

s∑
i=1

deg pi (x)

)
− d − 1

2
.
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