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Overview

© Galois review - cyclic extensions
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Cyclic extensions

Recall that a Galois extension F/K is called cyclic if Gal(F/K) is a cyclic
group.

Lemma 1

Let F be a field of characteristic p. Let n coprime to p. Let ( € F be an
n-th primitive root of unity. Then, F(¢)/F is a cyclic extension.

For the proof of Lemma 1 we recall the following lemma from Galois
Theory.
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Cyclic extensions

Lemma 2

Let K C L,F be fields s.t. F/K is a finite Galois extension. Then LF/L is
Galois and
Gal(LF/L) = Gal(F/(L N F)).

In particular,
[LF: L] =[F:LNF].
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Cyclic extensions

Proof. (Proof of Lemma 2)
We first show that LF/L is Galois.

The separability of LF/L is clear. Indeed, every element of F is separable
over K, let alone over L. Thus, every element of LF is separable over L.

As for normality, recall the characterization of normal extensions as
splitting fields. Now, as F/K is normal, F is the splitting field of

{fi(x) € Kix]}jes-

Let S; C K be the roots of fi(x), and S = U;S;. Then, F = K(S). But
then,
LF = F(S)

is the splitting field of {f;(x)}jcs where we now think of fj(x) € L[x].
Hence, LF/L is normal.
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Cyclic extensions

Proof. (Proof of Lemma 2)
As F/K is finite and separable, F = K(a) for some a € F.

Let f(x) € K[x] be the minimal polynomial of a over K. Since F/K is
Galois, f(x) splits completely in F and all its roots are simple.

Let g(x) € L[x] be the minimal polynomial of a over L. Since K C L we
have that g(x) | f(x).

Thus the roots of g(x) is a subset of the roots of f(x) and so they are in
F. This implies that g(x) € F[x], and so

g(x) € (LNF)[x].

Now,

and so
[LF : L] =[L(a) : L] = deg g(x). (1)
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Cyclic extensions

Proof. (Proof of Lemma 2)

g(x) is irreducible over L and so certainly over L N K. Thus,
degg(x) =[(LNF)(a): LNF].

As a € F,
(LNnF)(a) CF.

On the other hand,
F=K(a) C(LNF)(a),

and so (LN F)(a) = F. Hence,
degg(x) =[F:LNF].
With Equation (1), we get

[LF:L=[F:LNF]
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Cyclic extensions

Proof of Lemma 2.

Note that F/(L N F) is Galois as F/K is Galois and K C LN F.

Consider the restriction homomorphism

¢ : Gal(LF/L) — Gal(F/(L N F))
o olg

 is a monomorphism. Indeed, assume that (o) = ol = id|g. As
ol = id|_ we have that o = idf.

As
|Gal(LF/L)| = [LF : L] = [F: LN F] = |Gal(F/(L N F))|

we have that ¢ is also onto. Thus,
Gal(LF/L) = Gal(F/(L N F)).
O
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Cyclic extensions

Proof. (Proof of Lemma 1)
We have that
F(¢) = FFp ().

Now F,(¢)/F, is Galois as it is the splitting field of the separable
polynomial x" — 1 over Fp,.
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Cyclic extensions

Proof. (Proof of Lemma 1)
By Lemma 2, F(¢)/F is Galois. Moreover,

Gal(F(¢)/F) = Gal(Fo(¢)/(F NF,(C)))-

The RHS is a Galois extension of finite fields and as such it is cyclic.
Thus, F(¢)/F is cyclic.
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Cyclic extensions

Let E be a field of characteristic p. Let F/E be a field extension of degree
n which is coprime to p. Assume that E contains an n-th primitive root
of unity. Then,

F/E is cyclic <= F=E(a) forsomeacF st. b=a"cE
<=  F is the splitting field of x" — b € E[x].

Assume that F = E(a) for b= a" € E. Then,
xX"—b=x"-23"= H (x — Ca),
CEpn
where p,, C E is the set of n-th roots of unity.

Hence, F is the splitting field over E of the separable polynomial x” — b.
The separability follows as p and n are coprime.
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Cyclic extensions

Proof.

Thus, F/E is Galois and an element o € Gal(F/E) is determined by its
action on a. Note that o(a) is also a root of x” — b. Indeed,

o(a)" =o(a") = o(b) = b.

Thus, o(a) £ o¢(a) = Ca for some ¢ € py.

As we assume that
[F:E]=[E(a): E] =n,

x™ — b is the minimal polynomial of a over E. Thus, {Ca| { € pu,} are
the E-conjugates of a.

For every conjugate (a there is o¢ € Gal(F/E) s.t. o¢(a) = Ca. Thus,

Gal(F/E) = {o¢ [ € € pn}-
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Cyclic extensions

Proof.
Moreover, the map

pn — Gal(F/E) = {o¢ | € € pn}
C*—) o¢

is a group isomorphism as can be easily verified. Thus, F/E is cyclic.

In the other direction, assume F/E is cyclic and we ought to find a € F
s.t. 3" € E and F = E(a).

Let o be a generator of the cyclic group Gal(F/E). It can be shown that
the elements of Gal(F/E) are linearly independent over E (even over E).

In particular,
n—1

Y= (o #0,

Jj=0

where ¢ € p, is an n-th primitive root of unity.

Gil Cohen Kummer Extensions



Cyclic extensions

n—1
p=> dod #0,

j=0
Let t be s.t. ¢(t) #0, and let

n—1
a2 y(t) = 3 dol(e).
Jj=0

We will show that F = E(a) and that a” € E.

As ¢ € E we have that
n—1 o n—1 ) i
ola) = - dalti(e) = ¢T3 ety
j=0 j=0

n—1
=) dd()=C"a
c



Cyclic extensions

Proof.
So o(a) = ('a and so the E-Galois conjugates of a are

{a¢Ta,..., (¢ e ={a¢a,... ("}

Thus, the minimal polynomial of a over E is

n—1
f(x) = (x —Fa) =x"—a" € E[x].
j=0
Thus, F = E(a) and a” € E. O
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Overview

© No ramification in constant field extensions
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No ramification in constant field extensions

Let L/K be a finite separable extension. Let E/K be a function field and
consider the constant field extension F/L with F = EL. Then, for every
B € P(F) lying over some p € P(E) we have

e(B/p) =1

Let « € L be s.t. L = K(a). Let ¢(T) € K[T] be the minimal polynomial
of e over K. Recall that ¢ is also the minimal polynomial of « over E.

As o € L, a is integral over O,. Thus, by a result we proved in a
previous unit,

0 < d(B/p) < vg(¢'(a)).
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No ramification in constant field extensions

0 < d(P/p) < vp(¢'(a)).

But o € L and so ¢'(«) € L. Moreover, ¢'(a) # 0 as « is separable.

Hence,
vp(#'(a)) = 0.

Thus, d(B/p) = 0 and Dedekind’s Different Theorem yields
e(B/p) = 1.
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Overview

© Kummer extensions
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Kummer Extensions

Definition 5 (Kummer extensions)

Let E/K be a function field where K contains a primitive n-th root of
unity ¢. Assume that n > 1 is prime to p = char(K).

Suppose that u € E is an element satisfying u # w¢ for all w € E and
d|n d>1.

Let F = E(y) with y" = u. Such an extension F/E is called a Kummer
extension.

With the notations of Definition 5, by Theorem 3, we have that
© The polynomial T" — u is the minimal polynomial of y over E.
@ The extension F/E is Galois of degree n.

@ Gal(F/E) is cyclic and the automorphisms of F/E are given by
o(y) = Cy for ¢ € K an n-th root of unity.
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Kummer Extensions

With the notation of Definition 5 we have

Theorem 6 (Kummer extensions)

Let p € P(E) and P € P(F) lying over p. Let
rp = ged(n, vy (u)) > 0.

Then,

e(B/p) =,  dB/p)=_ -1

b o
Moreover, if L is the constant field of F and g, ge are the genera of E/K
and F/L, respectively then

- n 1 ry
gF_1+[L:K] = 1-1_2 Z (1 n)degp
pEP(E)
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Kummer Extensions

Proof.

We start with the proof regarding e(3/p) and d(3/p) and split the
proof to cases according to the value of r, starting with the case r, = 1.

We have that
n-vp(y) = vp(y") = vp(u) = e(B/p) - vy(u).

By assumption,
rp=ged(nvp(u)) =1 = n[e(PB/p).

However, by the fundamental equality, e(J3/p) < n and so

e(B/p)=n=—

p

as desired.
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Kummer Extensions

Proof.

As p = char(K) is prime to n = e(3/p), Dedekind Different Theorem
yields

d(B/p) = e(P/p) — 1
which concludes the proof of the case r, = 1.
Consider now the case

rp = ged(n, vy(u)) = n.
We wish to prove that d(3/p) = 0 and e(B/p) = 1.
Note that vy, (u) = £n for some ¢ € Z.
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Kummer Extensions

So far, v,(u) = £n for some ¢ € Z.

Take t € E s.t. vy(t) = ¢, and define

n=t1ly,
=t "u
As y" = u,
yn _ (tfly)n _ tfnyn _ tinu =
Thus,
n-vgp(yr) = vp(yr) = vp(u) = vg(t"v)
= e(B/p) - (vp(u) — n - vp(t))
= e(m/p) : (En - gn)7
and so

vy (y1) = vp(ur) = 0.



Kummer Extensions

Proof.
So far we have that y{! = vy and vy (y1) = vp(u1) = 0.

Observe that
Y(T)=T"—u € E[T]

is the minimal polynomial of y; over E. Indeed, clearly, 1)(y1) = 0.
Moreover y = ty; and so if h is the minimal polynomial of y; over E then

g(T)=h(t7'T) € E[T]

vanishes at y. Hence, a degree argument shows that 1 is indeed the
minimal polynomial of y; over E.

We conclude that y; € Oy, and that F = E(y1). As F/E is separable, by a
theorem we proved,

d(B/p) < vp(¥'(n)).
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Kummer Extensions

Proof.
So far we have that d(B/p) < vgp(¢'(y1)). Now,

Y(T)=nT"1

and so

vp(¥'(11)) = (n = Dop(n) =0,
and so d(3/p) = 0.

Dedekind’s Different Theorem then implies that e(J3/p) = 1 and the
proof for the case r, = n follows.
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Kummer Extensions

We now consider the general case, reducing it to Case 1 and Case 2. To
this end, define

Yo=y""

and consider the intermediate field E(yp). Note that T — u € E[T] is
the minimal polynomial of yg over E and so [E(yo) : E] = r,. Thus,

F:E()] = .
Let po = P N E(yo) be the prime divisor lying under .

s~
7
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Kummer Extensions

We have that y,* = u and r, is also the degree [E(yo) : E]. Thus, we can
apply Case 2 to E(yp)/E to conclude that

e(po/p) = 1.
O qiul °. our
“%uf‘“”" coee
¥ G .
Vop(w) \/P(w/)\
3&4(,) :V-P ac.l()'):r\’

2 3(.:‘( g«‘(mk)/ b) :(7@1(4}.)]
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Kummer Extensions

Thus, so far we have concluded the information as depict in the figure.

Moving on to consider F/E(yy) we first note that
Mo Upo (Y0) = Vo (45") = o (1) = e(po/p) - vp(u) = vp(u),

and so

Up(“)_

p
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Kummer Extensions

We are thus reduced to Case 2 (see figure below). Thus,

n
e("B/po) = P
p
ot gl o e
ﬂge“f.ow ol
n
, 7-: <
Vo)
Vp(w) \/?(70): o .
aul(,) =‘r|> 34(‘ 7)=

] ged (7 Jden, 3:4(“&)) ’ z
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Kummer Extensions

In summary we obtained the information depict in the figure. Thus,

e(B/p) = e(B/po)e(po/p) = —p

& F
~
i 2
(cose 1) e o
2 = C)
(case 3) | &' e
f =
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Kummer Extensions

We turn to calculate the genus. Recall that

Diff(F/E) = E E d(B/p)B
peP(E) P/p
PEP(F)

Thus,

deg Diff(F/E) = > > "d(%B/p)degP

p€EP(E) B/p
n
= Z <E — 1> Zdeg‘p.
pEP(E) PB/p
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Kummer Extensions

As F/E is Galois, e(3/p) does not depend on 3 but rather only on p,
and so if we denote e(3/p) by e(p) we get

> degP = % - deg (Z e(m/p)m)

B/p B/p
1
= — d C o
e(p) €g OnF/E(p)
In a previous unit we proved that
[F:E]

deg Cong/e(p) = m -degp = m degp,

and so, using e = n/r,, we get

o
degP = — -degp = - deg p.
2 ® T K]
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Kummer Extensions

Recall we showed that

deg Diff(F/E) = > (r" - 1> > deg P,

peP(E) N F B/p

and that we took a detour to show that

D deg P = [L ) desp
B/p

Combining these we get

. n—r
deg Diff(F/E) = > - 2 [L K] - degp
pep(E) "
__n_. _h
=LK Z (1 n)degp.

p€eP(E)
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Kummer Extensions

Proof.

We summarize

deg Diff(F/E) = ﬁ Y (1 - %’) degp.

pEP(E)

Now, by the Hurwitz Genus Formula,
F
2gF — 2 = [ ] ——(2ge — 2) + deg Diff(F/E),

and so

n 1 r
=14+ -—— —1+= 1- 2
=it lE T2 2 ( n>degp
p€EP(E)
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Kummer Extensions

Corollary 7

Let E/K be a function field and

F=E(y) where y"=u€cE.

Assume that n and p = char(K) are coprime and that K contains a
primitive n-th root of unity.

Assume further that
Jdq € P(E) ged(vg(u), n) = 1.

Then,
@ K is the full constant field of F (hence, F/K is a function field);
@ F/E is cyclic of degree n; and
o

1
gF=1+”'(gE—1)+§ Z (n—ry)degp.
peP(E)
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Kummer Extensions

Proof.

We wish to apply Theorem 6. To this end, we first need to show that
u#w?forallweEandd|n d>1

Otherwise,
vq(u) = Uq(Wd) =d - ve(w),

which would imply d | vq(u) in contradiction to ged(vg(u), n) = 1.

The proof will follow by Theorem 6 once we establish that K is the full
constant field of F.

Denote the algebraic closure of K in F by L and consider

ECELCF.
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Kummer Extensions

Let g € P(F) be the prime divisor lying over q. Note that q” is unique as

n

e(q”/q) = —

o ged(mog(w)

Let EL/L be the constant field extension of E/K and let q' € P(EL) be
the prime divisor lying under q”. Recall that

e(q'/q) =1

as no ramification occurs in constant field extensions per Lemma 4

F-ely %
| |
L) (EL & L
{1
E q
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Kummer Extensions

On the other hand, as m | n and gecd(n, vq(u)) = 1 we have that
ged(m,vg(u)) = 1.

Thus, by Theorem 6,
m
e(d/q) = ——F——~ =m.
(/9) = ed(m, on(w)

Hence, m =1 and so L C E which implies L = K.

\?\:E(y) o

|
. {EL ¢ Lo
o |

E %
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In the proof so far we never used the fact that K contains an n-th root of
unity. Thus, all the results hold except that the extension may not be
Galois.
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@ Certain quadratic extensions
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Certain quadratic extensions

Let F = K(x, y) where

y? = f(x) € K[x]

and f(x) is irreducible of degree m over K. Assume that K has odd
characteristic. Then,

@ K is the full constant field of F; and
@ F/K(x) is cyclic of order 2 and has genus

{ml if m is odd
g:

otherwise.

Since f(x) is irreducible over K[x], there is a prime divisor q in K(x) that
corresponds to f(x), and

vg(f(x)) = 1.



Certain quadratic extensions
Further, n = [F : K(x)] = 2 and so
ged(vg(f(x)), n) = ged(1,2) = 1.

Moreover, —1 (the 2" root of unity) is in K(x) and so, as charK is odd,
Corollary 7 applies.

Corollary 7 implies that F/K(x) is cyclic of order 2 and that K is the full
constant field of F.

As for the genus, note that

ro = ged(n, vg(F(x))) = ged(2,1) = 1,
Foo = gd(n, Voo (f(x))) = ged(2, —m) = ged(2, m).

For every other p € P(K(x)), vp(f(x)) =0 and so
1y = ged(n, vy (F(x))) = ged(2,0) = 2.
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Certain quadratic extensions

rq=1,
oo = gcd(2, m),

r, =2 otherwise.

By Corollary 7,

1
gr=1+n-(gkx — 1)+ 5 Z (n—ry)degp.
pEP(K(x))

As n =2 and gk =0,
1
gr = 1+ 5 (1-degq+ (2~ ged(2, m)) - degpoo)
1
=—-1+ 5 (m+ (2 — gcd(2,m))).
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Certain quadratic extensions

Hence,

g = 1+ 5 (m+ (2~ ged(2,m)))

m—2

2

=t if mis odd
N otherwise.
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© Tame cyclic extensions of K(x)
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Tame cyclic extensions of K(x)

We now consider a function field F = K(x, y) s.t.
s
yn =a- le_(x)”i
i=1

where
Q a#0;
@ The pi(x),. .., ps(x) € K[x] are distinct, irreducible and monic;
Q@ nm,...,n; € Z\ {0};
@ char(K) { n; and
Q Vi€ [s] ged(n,n;) =1.

Lemma 8 is the special case in which n=2, s =1, and n; =1 (and also
a=1).
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Tame cyclic extensions of K(x)

Q@ K is the full constant field of F and [F : K(x)] = n;
If K contains an n-th root of unity, F/K(x) is cyclic.

(2]

@ The prime divisors that correspond to pi(x), ..., ps(x) in P(K(x))
are totally ramified in F /K(x).

o

All prime divisors q lying over po, € P(K(x)) have ramification index
e(q/pso) = 5 where

5]
d = gcd <n, Z n; deg p,-(x)) .
i=1

@ No prime divisor other than those listed above ramify in F/K(x).
@ Finally, the genus g of F/K(x) is

n—1 o d—1
g§= " (—1+;degpi(><)>—2~
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Tame cyclic extensions of K(x)

We wish to invoke Corollary 7 with

S
Y=a- HPi(X)"i~
i=1

We first verify that the hypothesis of Corollary 7 holds.
@ By assumption, char(K) is prime to n;
@ For Item 2, a primitive n-th root of unity is contained in K(x); and
@ If p; € P(K(x)) is the prime divisor corresponding to p;(x) then
Up, (1) = nj which, per assumption, is co-prime to n.
Thus, we can apply Corollary 7 to conclude that
@ K is the full constant field of F;
Q [F:K(x)]=n;

@ Assume K contains a primitive n-th root of unity, F/K(x) is cyclic.
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Tame cyclic extensions of K(x)

Proof.
Now,

rp; = ged(n, vy, (u)) = ged(n, n;) =1,

rp.. = ged(n, veo(u)) = ged (n, Z —n; deg p,-(x)) =d,

i=1
and for every other prime divisor p € P(K(x)),
rp = ged(n, vy (u)) = ged(n,0) = n.

Corollary 7 then implies that for every i € [s] and B/p;,

e(P/p) = —=n,

Ppi

which proves Item 3, namely, ps,...,ps totally ramify in F/K(x).
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Tame cyclic extensions of K(x)

Proof.
For every q € P(F) lying over p,, Corollary 7 implies that

n
e(d/poc) = 2
establishing ltem 4.
Item 5 follows as for p other than py,...,ps, P, we have that r, = n
and so "
e(P/p)=-—=1

for all B € P(F) lying over p.
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Tame cyclic extensions of K(x)

Proof.

We turn to compute the genus g of F. Recall that r,, =1 for all i € [s],
rp.. =d, and r, = n for all other p € P(K(x)).

By Corollary 7,

1
g=1+”‘(gr<(x)—1)+§ Z (n—ry)degp
pEP(E)

=1—n+%((n—d)-1+Z(n—1)degp,~>

i=1

n—1 g d—1
= (—l—l—iz_;degp;(x))—T.
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