Reminder - Field Embeddings Reminder - Noetherian Rings

Recap from Before Passover

Introduction to Algebraic-Geometric Codes. Fall 2019.

April 27, 2019

For your convenience, here is a detailed recap of what we did in the last lecture.

Definition

Let K, L be fields. An embedding of K in L is a ring homomorphism $\sigma : K \to L$.

Remark

Any embedding is, in fact, a monomorphism $\sigma: K \hookrightarrow L$.

Definition

Let K, L be fields containing a field F. An embedding of K in Lover F is an embedding $\sigma : K \hookrightarrow L$ such that $\sigma_{|F} = id_F$.

Theorem (Steinitz's Theorem)

Let F be a field and \overline{F} a fixed choice of an algebraic closure of F. Then, for every algebraic extension K/F there exists an embedding $\sigma: K \hookrightarrow \overline{F}$ over F.

Theorem (Steinitz's Theorem 2.0)

Let F, \overline{F} as above. Let $K \subseteq L$ be two algebraic extensions of F. Then, for every embedding $\sigma : K \hookrightarrow \overline{F}$ over F there exists an embedding $\tau : L \hookrightarrow \overline{F}$ (over F) such that $\tau_{|K} = \sigma$. We call τ an extension of σ .

Definition

Let F, K, \overline{F} as above. We define

$$\Gamma_{K/F} = \left\{ \sigma : K \hookrightarrow \overline{F} \mid \sigma \text{ embedding over } F
ight\}$$

We further define $\Gamma_F = \Gamma_{\bar{F}/F}$.

Claim

The elements in Γ_F are automorphisms. Hence, Γ_F has a group structure w.r.t. composition.

Definition

Let K/F be an algebraic extension. $\alpha, \beta \in K$ are conjugates over F if they share their min poly over F.

Claim

Let K/F be an algebraic extension. Let $\alpha, \beta \in K$. Then,

 α, β conjugates over $F \iff \exists \sigma \in \Gamma_{K/F} \sigma(\alpha) = \beta$.

Proof sktech.

 \Leftarrow easy.

 \Rightarrow follows since $F(\alpha) \cong F[y]/\langle f(y) \rangle \cong F(\beta)$, where f is the shared min poly.

Now this claim we had problems with last time, so let's do it right.

Claim

Let K be a field with algebraic closure \overline{K} . Let $\alpha \in \overline{K}$ separable over K. Then,

$$\alpha \in \mathsf{K} \quad \Longleftrightarrow \quad \forall \sigma \in \mathsf{\Gamma}_{\mathsf{K}} \quad \sigma(\alpha) = \alpha.$$

Proof.

⇒ is trivial. For \Leftarrow , consider α 's min poly $f(y) \in K[y]$ over K. f cannot have a root $\beta \neq \alpha$ by the previous claim. So, $f(y) = (y - \alpha)^n$. Since α is separable, $f(y) = y - \alpha$ and so $\alpha \in K$.

Definition (Noetherian ring)

A ring is noetherian if each of its ideal is finitely generated.

Definition (Noetherian module)

An A-module M is noetherian if every A-submodule of M is finitely generated.

Remark

Let A be a ring. Then,

A noetherian ring \iff A noetherian A-module.

This is because the A-submodules of the A-module A are precisely the ideals of the ring A.

Lemma

Let A be a noetherian ring. Let M be a f.g. A-module. Then, M is a noetherian A-module.

Corollary

Let $A \subseteq B$ be rings. Assume that A is a noetherian ring, and B is a f.g. A-module. Then, B is a noetherian ring.