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Scribe: Tomer Manket

1 Field Extensions

Definition 1. A field L is an extension of a field K, denoted by L/K, if K ⊆ L is a subfield.

Example 2. C/R, R/Q, C(x)/C, Q[
√
2]/Q.

Let L/K be a field extension.

Definition 3. The degree of L/K is

[L : K] := dimK L

i.e. the dimension of L as a K-vector space.

Example 4. [C : R] = 2 as {1, i} is a basis for C over R.

Example 5. [C(x) : C] = ∞ as the set {xk | k ∈ N} is linearly independent over C.

Definition 6. An element a ∈ L is algebraic over K if there exists a non-zero polynomial
f ∈ K[x] such that f(a) = 0. An element which is not algebraic is called transcendental.
The extension L/K is algebraic if every a ∈ L is algebraic over K.

Claim 7. Let K ⊆ L ⊆ M be such that M/L and L/K are algebraic. Then M/K is
algebraic.

Definition 8. Let a ∈ L be algebraic overK. Theminimal polynomial of a overK, denoted
by irr(a,K), is the unique monic, irreducible polynomial f ∈ K[x] such that f(a) = 0.

Claim 9. Let a ∈ L be algebraic over K. Then deg(irr(a,K)) = [K(a) : K].

Example 10. Let z ∈ C\R. Then

irr(z,R) = (x− z)(x− z) = x2 − 2Re(z)x+ |z|2.

Definition 11. A polynomial f ∈ K[x] is separable if all of its roots in K are simple, i.e.
f is a product of distinct linear factors in K[x].

Definition 12. An element a ∈ L is separable over K if it is algebraic over K and irr(a,K)
is separable. The extension L/K is separable if every a ∈ L is separable over K.
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Example 13.
√
2 ∈ R is separable over Q, as in Q[x]

irr(
√
2,Q) = x2 − 2 = (x+

√
2)(x−

√
2).

Example 14. Consider the extension F2(t
2) ⊆ F2(t). Then the element t ∈ F2(t) is not

separable over F2(t
2), since in F2(t2)[x]

irr(t,F2(t
2)) = x2 − t2 = (x− t)2.

In particular, the extension F2(t)/F2(t
2) is not separable.

Definition 15. The extension L/K is normal if every irreducible polynomial p ∈ K[x]
which has a root in L, splits over L, i.e.

f(x) = c(x− α1) . . . (x− αn)

where c ∈ L× and α1, . . . , αn ∈ L.

Example 16. The extension Q( 4
√
2)/Q is not normal, as p(x) = x4 − 2 is irreducible in

Q[x] and has a root 4
√
2 ∈ Q( 4

√
2), but in Q( 4

√
2)[x] we have

p(x) = x4 − 2 = (x2 +
√
2)(x2 −

√
2) = (x2 +

√
2)(x+

4
√
2)(x− 4

√
2)

and x2 +
√
2 is irreducible in Q( 4

√
2)[x] (its roots in Q[x] are ±i 4

√
2 /∈ Q( 4

√
2) ⊆ R).

Definition 17. The extension L/K is called Galois if it is normal and separable.

2 Algebraic Independence and Transcendental Bases

Let L/K be a field extension.

Definition 18. A subset S ⊆ L is algebraically dependent over K if there exists a subset
{s1, . . . , sn} ⊆ S and a non-zero polynomial p ∈ K[x1, . . . , xn] such that p(s1, . . . , sn) = 0.
Otherwise, S is algebraically independent over K.

Remark. Note that {s1, . . . , sn} ⊆ L is algebraically independent over K if and only if
K[s1, . . . , sn] ∼= K[x1, . . . , xn].

Example 19. Let L := Frac
(
K[x, y]⧸⟨y − x2 + 1⟩

)
. Then S = {x, y} ⊆ L is algebraically

dependent over K, since for p(x1, x2) = x2 − x21 + 1 we have p(x, y) = 0.

Definition 20. A transcendental basis of L over K is a maximal subset of L that is alge-
braically independent over K.

Remark. By Zorn’s Lemma, every algebraically independent set S ⊆ L can be completed
to a maximal algebraically independent set in L. In particular, L/K has a transcendental
basis.
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Claim 21. Let S ⊆ L be algebraically independent over K and let a ∈ L. Then

S ∪ {a} is algebraically dependent over K ⇐⇒ a is algebraic over K(S).

Proof. (⇒): S is algebraically independent over K while S ∪{a} is algebraically dependent
over K, so there exist s1, . . . , sn ∈ S and 0 ̸= f ∈ K[x1, . . . , xn+1] such that xn+1 appears
in f and f(s1, . . . , sn, a) = 0. Then fa := f(s1, . . . , sn, x) ∈ K(S)[x] is non-zero with
fa(a) = 0, hence a is algebraic over K(S).

(⇐): Left as an exercise.

Corollary 22. Let S ⊆ L be algebraically independent over K. Then

S is a transcendental basis of L/K ⇐⇒ L/K(S) is algebraic.

Definition 23. The extension L/K is purely transcendental if L = K(S) where S is a
transcendental basis of L/K.

Remark. Every field extension L/K is a purely transcendental extension followed by an
algebraic extension. Indeed, let S be a transcendental basis of L/K. Then K(S)/K is
purely transcendental and L/K(S) is algebraic.

L

K(S)

K

algebraic

purely transcendental

Theorem 24. Let A,B be transcendental bases of L over K. Then |A| = |B|.

Proof. We prove the theorem in case L/K has a finite transcendental basis S = {s1, . . . , sn}.
Let A be another transcendental basis of L/K. It suffices to show that |A| ≤ n.

Definition 25. The transcendence degree of L/K, denoted by tr.deg (L/K), is the cardi-
nality of a transcendental basis of L over K.

Example 26. tr.deg (Q(
√
2)/Q) = tr.deg (C/R) = 0 as both are algebraic extensions.

Example 27. tr.deg (K(x1, . . . , xn)/K) = n.

Example 28. tr.deg (Q(π, e)/Q) ∈ {1, 2}. The precise answer is still unknown.

Claim 29. Let K ⊆ L ⊆ M be field extensions. Then

tr.deg (M/K) = tr.deg (M/L) + tr.deg (L/K).
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