Gil Cohen

January 14, 2025

Gil Cohen Kummer's Theorem

イロト イヨト イヨト イヨト

Throughout this unit we consider finite separable extensions F/L of E/K.

The goal in this unit is to find all prime divisors in $\mathbb{P}(\mathsf{F})$ lying over a given $\mathfrak{p}\in\mathbb{P}(\mathsf{E}).$

To this end, we will take $y \in \mathcal{O}'_{\mathfrak{p}}$ s.t. $\mathsf{F} = \mathsf{E}(y)$.

Recall that the minimal polynomial

$$\varphi(T) = \sum c_i T^i \in \mathsf{E}[T]$$

of such y over E is in fact in $\mathcal{O}_{\mathfrak{p}}[\mathcal{T}]$.

In what follows, we denote by $\bar{\varphi}(T) \in \mathsf{E}_{\mathfrak{p}}[T]$ the projection of $\varphi(T)$ to $\mathsf{E}_{\mathfrak{p}}[T]$ (where, recall, $\mathsf{E}_{\mathfrak{p}} = \mathcal{O}_{\mathfrak{p}}/\mathfrak{m}_{\mathfrak{p}}$), namely,

$$ar{arphi}(au) = \sum (c_i + \mathfrak{m}_\mathfrak{p}) T^i = \sum c_i(\mathfrak{p}) T^i = \sum ar{c_i} T^i.$$

Theorem 1 (Kummer's Theorem I)

Let F/L be a finite separable extension of E/K, and let $y \in F$ be s.t. F = E(y). Let $\mathfrak{p} \in \mathbb{P}(E)$ be s.t. $y \in \mathcal{O}'_{\mathfrak{p}}$.

Let $\varphi(T) \in \mathcal{O}_{\mathfrak{p}}[T]$ be the minimal polynomial of y over E. Factor

$$ar{arphi}(T) = \prod_{i=1}^r \gamma_i(T)^{arepsilon_i} \in \mathsf{E}_\mathfrak{p}[T]$$

where $\gamma_i(T) \in \mathsf{E}_{\mathfrak{p}}[T]$ are irreducible and distinct (and $\varepsilon_i \ge 1$). Let $\varphi_i(T) \in \mathcal{O}_{\mathfrak{p}}[T]$ be s.t. $\overline{\varphi_i}(T) = \gamma_i(T)$ and deg $\varphi_i = \deg \gamma_i$.

Then, $\exists \mathfrak{P}_1, \ldots, \mathfrak{P}_r \in \mathbb{P}(\mathsf{F})$ lying over \mathfrak{p} s.t.

- $\forall i \in [r] \quad \varphi_i(y) \in \mathfrak{m}_{\mathfrak{P}_i} \text{ (equivalently, } (\varphi_i(y))(\mathfrak{P}_i) = 0).$
- $f(\mathfrak{P}_i/\mathfrak{p}) \geq \deg \gamma_i(T).$
- The prime divisors $\mathfrak{P}_1, \ldots, \mathfrak{P}_r$ are distinct.

In the proof we make use of the following simple claim.

Claim 2

Let R,S,T rings. In the notation of the diagram below, assuming ρ is onto and that

$$\ker \rho \subseteq \ker \pi \qquad (\iff \quad \rho(\mathbf{r}_1) = \rho(\mathbf{r}_2) \implies \pi(\mathbf{r}_1) = \pi(\mathbf{r}_2)).$$

Then, there exists a unique homomorphism $\sigma: S \to T$ s.t the diagram commutes.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof. (Proof of Theorem 1)

Denote

$$\mathsf{E}_i = \mathsf{E}_{\mathfrak{p}}[T]/\langle \gamma_i(T)\rangle.$$

As $\gamma_i(T)$ is irreducible over E_p we have that E_i is a field extension of E_p of degree $[E_i : E_p] = \deg \gamma_i$.

Denote n = [F : E] = [E(y) : E] and consider the ring homomorphisms in the diagram, where

$$\mathcal{O}_{\mathfrak{p}}[y] = \sum_{i=0}^{n-1} \mathcal{O}_{\mathfrak{p}} y^i.$$

(ロト (過) (ヨト (ヨト) ヨ

Proof.

Observe that

$$\ker \rho = \varphi(T)\mathcal{O}_{\mathfrak{p}}[T] = \langle \varphi(T) \rangle.$$

Moreover,

$$\pi_i(\varphi(T)) = \bar{\varphi}(T) \bmod \gamma_i(T) = 0.$$

Thus,

$$\ker \rho \subseteq \ker \pi_i,$$

and so by Claim 2 there exists a unique homomorphism σ_i for which the diagram below commutes.

Proof.

 σ_i takes the explicit form

$$\sigma_i\left(\sum_{j=0}^{n-1}c_jy^j
ight)=\sum_{j=0}^{n-1}ar{c}_j\mathcal{T}^j \mod \gamma_i(\mathcal{T}).$$

 π_i is onto and thus so is σ_i . We claim that

$$\ker \sigma_i = \mathfrak{m}_{\mathfrak{p}} \mathcal{O}_{\mathfrak{p}}[y] + \varphi_i(y) \mathcal{O}_{\mathfrak{p}}[y].$$

The inclusion \supseteq is trivial. We turn to show the other direction.

<ロ> <四> <四> <四> <三</p>

Proof.

Take
$$\sum_{j=0}^{n-1} c_j y^j \in \ker \sigma_i$$
. Then, (recall $\gamma_i(T) = \overline{\varphi}_i(T)$)

$$\sum_{j=0}^{n-1} \bar{c}_j T^j = \bar{\varphi}_i(T) \bar{\psi}(T)$$

for some $\psi(T) \in \mathcal{O}_{\mathfrak{p}}[T]$. Thus,

$$\sum_{j=0}^{n-1} c_j T^j - \varphi_i(T) \psi(T) \in \mathfrak{m}_\mathfrak{p} \cdot \mathcal{O}_\mathfrak{p}[T].$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Proof.

Recall

$$\sum_{j=0}^{n-1} c_j T^j - \varphi_i(T) \psi(T) \in \mathfrak{m}_\mathfrak{p} \cdot \mathcal{O}_\mathfrak{p}[T],$$

and so

$$\sum_{j=0}^{n-1} c_j y^j - arphi_i(y) \psi(y) \in \mathfrak{m}_\mathfrak{p} \cdot \mathcal{O}_\mathfrak{p}[y].$$

Hence,

$$\sum_{j=0}^{n-1} c_j y^j \in arphi_i(y) \cdot \mathcal{O}_\mathfrak{p}[y] + \mathfrak{m}_\mathfrak{p} \cdot \mathcal{O}_\mathfrak{p}[y],$$

as desired. Namely,

$$\ker \sigma_i = \mathfrak{m}_{\mathfrak{p}} \mathcal{O}_{\mathfrak{p}}[y] + \varphi_i(y) \mathcal{O}_{\mathfrak{p}}[y].$$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For the proof of Theorem 1, we recall the following lemma.

Lemma 3

Let F/K be a function field and let R be a subring of F with $K \subseteq R \subseteq F$. Suppose that $\{0\} \neq I \subsetneq R$ is a proper ideal of R. Then,

 $\exists \mathfrak{p} \in \mathbb{P}(\mathsf{F})$ s.t. $I \subseteq \mathfrak{m}_{\mathfrak{p}}$ and $\mathsf{R} \subseteq \mathcal{O}_{\mathfrak{p}}$.

Proof. (Proof of Theorem 1 continued)

Going back to the proof, by Lemma 3,

 $\exists \mathfrak{P}_i \in \mathbb{P}(\mathsf{F}) \quad \text{s.t.} \quad \ker \sigma_i \subseteq \mathfrak{m}_{\mathfrak{P}_i} \text{ and } \mathcal{O}_{\mathfrak{p}}[y] \subseteq \mathcal{O}_{\mathfrak{P}_i}.$

Hence, \mathfrak{P}_i lies over \mathfrak{p} and $\varphi_i(y) \in \mathfrak{m}_{\mathfrak{P}_i}$.

This establishes Item 1.

Proof.

$$\exists \mathfrak{P}_i \in \mathbb{P}(\mathsf{F}) \quad \text{s.t.} \quad \ker \sigma_i \subseteq \mathfrak{m}_{\mathfrak{P}_i} \text{ and } \mathcal{O}_\mathfrak{p}[y] \subseteq \mathcal{O}_{\mathfrak{P}_i}.$$

To prove Item 2, namely, $f(\mathfrak{P}_i/\mathfrak{p}) \geq \deg \gamma_i(T)$, observe that

$$\mathsf{E}_{i} \cong \mathcal{O}_{\mathfrak{p}}[y] \big/ \ker \sigma_{i} \, \hookrightarrow \, \mathcal{O}_{\mathfrak{P}_{i}} \big/ \mathfrak{m}_{\mathfrak{P}_{i}} = \mathsf{F}_{\mathfrak{P}_{i}}$$

and so

$$f(\mathfrak{P}_i/\mathfrak{p}) = [\mathsf{F}_{\mathfrak{P}_i} : \mathsf{E}_\mathfrak{p}] \ge [\mathsf{E}_i : \mathsf{E}_\mathfrak{p}] = \deg \gamma_i(\mathcal{T}).$$

イロト イヨト イヨト ・

- 22

Proof.

To conclude the proof, we show that the \mathfrak{P}_i -s are distinct.

For $i \neq j$, $\gamma_i(T) = \bar{\varphi}_i(T)$ and $\gamma_j(T) = \bar{\varphi}_j(T)$ are relatively prime in $\mathsf{E}_{\mathfrak{p}}[T]$. Thus, $\exists \lambda_i(T), \lambda_j(T) \in \mathcal{O}_{\mathfrak{p}}[T]$ s.t. $1 = \bar{\varphi}_i(T)\bar{\lambda}_i(T) + \bar{\varphi}_i(T)\bar{\lambda}_i(T)$.

Thus,

$$arphi_i(y)\lambda_i(y)+arphi_j(y)\lambda_j(y)-1\in\mathfrak{m}_\mathfrak{p}\cdot\mathcal{O}_\mathfrak{p}[y].$$

Recall that

$$\ker \sigma_i = \mathfrak{m}_{\mathfrak{p}} \mathcal{O}_{\mathfrak{p}}[y] + \varphi_i(y) \mathcal{O}_{\mathfrak{p}}[y],$$

and so

$$1 \in \ker \sigma_i + \ker \sigma_j \subseteq \mathfrak{m}_{\mathfrak{P}_i} + \mathfrak{m}_{\mathfrak{P}_j},$$

which implies that $\mathfrak{P}_i \neq \mathfrak{P}_j$.

イロン 不得 とくほ とくほ とうほう

イロン イ団 と イヨン イヨン

∃ 990

F/L a finite separable extension of E/K, F = E(y), and \mathfrak{p} s.t. $y \in \mathcal{O}'_{\mathfrak{p}}$. $\varphi(T) \in \mathcal{O}_{\mathfrak{p}}[T]$ is the minimal polynomial of y over E. Factor

$$\bar{\varphi}(T) = \prod_{i=1}^{r} \gamma_i(T)^{\varepsilon_i} \in \mathsf{E}_{\mathfrak{p}}[T]$$

where $\gamma_i(T) \in \mathsf{E}_{\mathfrak{p}}[T]$ are irreducible and distinct (and $\varepsilon_i \ge 1$). Let $\varphi_i(T) \in \mathcal{O}_{\mathfrak{p}}[T]$ be s.t. $\bar{\varphi}_i(T) = \gamma_i(T)$ and deg $\varphi_i = \deg \gamma_i$.

Theorem 4 (Kummer's Theorem II)

Under the hypothesis of Theorem 1, if in addition $\varepsilon_1 = \cdots = \varepsilon_r = 1$ then,

- The prime divisors \$\Psi_1, \ldots, \Psi_r\$ are all the prime divisors in F lying over \$\psi;
- $\forall i \in [r] \quad e(\mathfrak{P}_i/\mathfrak{p}) = 1; and$
- $\forall i \in [r]$ $f(\mathfrak{P}_i/\mathfrak{p}) = \deg \gamma_i(T).$

・ロト ・ 一下・ ・ ヨト・

Proof.

By the additional hypothesis,

$$\bar{\varphi}(T) = \prod_{i=1}^r \gamma_i(T).$$

Thus,

$$[\mathsf{F}:\mathsf{E}] = \deg \varphi = \sum_{i=1}^r \deg \varphi_i.$$

By Item 2 of Theorem 1, $f(\mathfrak{P}_i/\mathfrak{p}) \geq \deg \varphi_i$ and so

$$[\mathsf{F}:\mathsf{E}] \leq \sum_{i=1}^r f(\mathfrak{P}_i/\mathfrak{p}) \leq \sum_{\mathfrak{P}/\mathfrak{p}} e(\mathfrak{P}/\mathfrak{p})f(\mathfrak{P}/\mathfrak{p}) = [\mathsf{F}:\mathsf{E}],$$

where we used the fundamental equality. The proof then follows.

ヘロン 人間 とくほ とくほ と

э

イロン イ団 と イヨン イヨン

∃ 990

F/L a finite separable extension of E/K, F = E(y), and \mathfrak{p} s.t. $y \in \mathcal{O}'_{\mathfrak{p}}$. $\varphi(T) \in \mathcal{O}_{\mathfrak{p}}[T]$ is the minimal polynomial of y over E. Factor

$$\bar{\varphi}(T) = \prod_{i=1}^{r} \gamma_i(T)^{\varepsilon_i} \in \mathsf{E}_{\mathfrak{p}}[T]$$

where $\gamma_i(T) \in \mathsf{E}_{\mathfrak{p}}[T]$ are irreducible and distinct (and $\varepsilon_i \ge 1$).

Let $\varphi_i(T) \in \mathcal{O}_p[T]$ be s.t. $\bar{\varphi}_i(T) = \gamma_i(T)$ and deg $\varphi_i = \deg \gamma_i$.

Theorem 5 (Kummer's Theorem III)

Under the hypothesis of Theorem 1, if in addition $1, y, y^2, ..., y^{n-1}$ is a local integral basis for \mathfrak{p} , where n = [F : E], then

() The prime divisors $\mathfrak{P}_1, \ldots, \mathfrak{P}_r$ are all prime divisors in F lying over \mathfrak{p} ;

$$\forall i \in [r] \quad e(\mathfrak{P}_i/\mathfrak{p}) = \varepsilon_i; \text{ and }$$

$$\exists \forall i \in [r] \quad f(\mathfrak{P}_i/\mathfrak{p}) = \deg \gamma_i(T).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

We start with Item (1). We have that

$$\bar{\varphi}(T) = \prod_{i=1}^{r} \bar{\varphi}_{i}(T)^{\varepsilon_{i}}$$
 in $\mathsf{E}_{\mathfrak{p}}[T] = \left(\mathcal{O}_{\mathfrak{p}} / \mathfrak{m}_{\mathfrak{p}}\right)[T].$

Therefore,

$$\bar{\varphi}(y) = \prod_{i=1}^{r} \bar{\varphi}_{i}(y)^{\varepsilon_{i}}$$
 in $\mathsf{E}_{\mathfrak{p}}[y] = \left(\mathcal{O}_{\mathfrak{p}}/\mathfrak{m}_{\mathfrak{p}}\right)[y],$

and so

$$\mathfrak{0}=arphi(y)=\prod_{i=1}^r arphi_i(y)^{arepsilon_i} \qquad ext{mod } \mathfrak{m}_\mathfrak{p}\mathcal{O}_\mathfrak{p}[y].$$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof.

So far

$$0=\prod_{i=1}^r arphi_i(y)^{arepsilon_i} \ \mod \mathfrak{m}_\mathfrak{p}\mathcal{O}_\mathfrak{p}[y].$$

Fix $\mathfrak{P}/\mathfrak{p}$. Since $y \in \mathcal{O}'_\mathfrak{p} \subseteq \mathcal{O}_\mathfrak{P}$, we have that

$$\mathfrak{m}_{\mathfrak{p}}\mathcal{O}_{\mathfrak{p}}[y] \subseteq \mathfrak{m}_{\mathfrak{p}}\mathcal{O}_{\mathfrak{P}} \subseteq \mathfrak{m}_{\mathfrak{P}},$$

and so

$$\prod_{i=1}^r \varphi_i(y)^{\varepsilon_i} \in \mathfrak{m}_{\mathfrak{P}}.$$

 $\mathfrak{m}_{\mathfrak{P}}$ is a prime (in fact, maximal) ideal of $\mathcal{O}_{\mathfrak{P}}$ and so $\exists i \in [r]$ s.t. $\varphi_i(y) \in \mathfrak{m}_{\mathfrak{P}}$. Thus,

$$\varphi_i(y)\mathcal{O}_\mathfrak{p}[y] \subseteq \mathfrak{m}_\mathfrak{P} \cap \mathcal{O}_\mathfrak{p}[y].$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

 $\varphi_i(y)\mathcal{O}_\mathfrak{p}[y] \subseteq \mathfrak{m}_\mathfrak{P} \cap \mathcal{O}_\mathfrak{p}[y].$

As $y \in \mathcal{O}'_\mathfrak{p} \subseteq \mathcal{O}_\mathfrak{P}$ one also has that

$$\mathfrak{m}_{\mathfrak{p}}\mathcal{O}_{\mathfrak{p}}[y]\subseteq\mathfrak{m}_{\mathfrak{p}}\mathcal{O}'_{\mathfrak{p}}\subseteq\mathfrak{m}_{\mathfrak{p}}\mathcal{O}_{\mathfrak{P}}\subseteq\mathfrak{m}_{\mathfrak{P}}$$

and so

 $\mathfrak{m}_{\mathfrak{p}}\mathcal{O}_{\mathfrak{p}}[y] \subseteq \mathfrak{m}_{\mathfrak{P}} \cap \mathcal{O}_{\mathfrak{p}}[y].$

To summarize,

 $\mathfrak{m}_{\mathfrak{p}}\mathcal{O}_{\mathfrak{p}}[y] + \varphi_i(y)\mathcal{O}_{\mathfrak{p}}[y] \subseteq \mathfrak{m}_{\mathfrak{P}} \cap \mathcal{O}_{\mathfrak{p}}[y].$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof.

$$\mathfrak{m}_{\mathfrak{p}}\mathcal{O}_{\mathfrak{p}}[y] + \varphi_i(y)\mathcal{O}_{\mathfrak{p}}[y] \subseteq \mathfrak{m}_{\mathfrak{P}} \cap \mathcal{O}_{\mathfrak{p}}[y].$$

In the proof of Theorem 1 we showed that the LHS is ker σ_i where the image of σ_i is the field E_i . Thus, the LHS is a maximal ideal of $\mathcal{O}_{\mathfrak{p}}[y]$. The RHS is clearly a non-trivial ideal of $\mathcal{O}_{\mathfrak{p}}[y]$ and so we have

$$\mathfrak{m}_{\mathfrak{p}}\mathcal{O}_{\mathfrak{p}}[y] + \varphi_{i}(y)\mathcal{O}_{\mathfrak{p}}[y] = \mathfrak{m}_{\mathfrak{P}} \cap \mathcal{O}_{\mathfrak{p}}[y].$$
(1)

э

$$\mathfrak{m}_{\mathfrak{p}}\mathcal{O}_{\mathfrak{p}}[y] + \varphi_i(y)\mathcal{O}_{\mathfrak{p}}[y] = \mathfrak{m}_{\mathfrak{P}} \cap \mathcal{O}_{\mathfrak{p}}[y].$$

However, as $\varphi_i(y) \in \mathfrak{m}_{\mathfrak{P}_i}$ (Theorem 1, Item (1)) we also have, by the same reasoning, that

$$\mathfrak{m}_\mathfrak{p}\mathcal{O}_\mathfrak{p}[y]+arphi_i(y)\mathcal{O}_\mathfrak{p}[y]=\mathfrak{m}_{\mathfrak{P}_i}\cap\mathcal{O}_\mathfrak{p}[y].$$

Thus,

$$\mathfrak{m}_{\mathfrak{P}} \cap \mathcal{O}_{\mathfrak{p}}[y] = \mathfrak{m}_{\mathfrak{P}_i} \cap \mathcal{O}_{\mathfrak{p}}[y].$$

Now, per our hypothesis $\mathcal{O}_\mathfrak{p}[y]=\mathcal{O}'_\mathfrak{p},$ we have that

$$\mathfrak{m}_{\mathfrak{P}} \cap \mathcal{O}'_{\mathfrak{p}} = \mathfrak{m}_{\mathfrak{P}_i} \cap \mathcal{O}'_{\mathfrak{p}}.$$

As we now explain, unless $\mathfrak{P} = \mathfrak{P}_i$ this contradicts the WAT. This will establish Item 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

For $\mathfrak{P} \neq \mathfrak{P}_i$, $\mathfrak{m}_{\mathfrak{P}} \cap \mathcal{O}'_{\mathfrak{p}} = \mathfrak{m}_{\mathfrak{P}_i} \cap \mathcal{O}'_{\mathfrak{p}}$ contradicts the WAT.

To see this, for simplicity, say $\mathfrak p$ has three prime divisors lying above it $\mathfrak P_1, \mathfrak P_2, \mathfrak P_3.$ Then,

$$egin{aligned} \mathfrak{m}_{\mathfrak{P}_1} &\cap \mathcal{O}'_{\mathfrak{p}} = \mathfrak{m}_{\mathfrak{P}_1} \cap (\mathcal{O}_{\mathfrak{P}_1} \cap \mathcal{O}_{\mathfrak{P}_2} \cap \mathcal{O}_{\mathfrak{P}_3}) \ &= (\mathfrak{m}_{\mathfrak{P}_1} \cap \mathcal{O}_{\mathfrak{P}_1}) \cap (\mathcal{O}_{\mathfrak{P}_2} \cap \mathcal{O}_{\mathfrak{P}_3}) \ &= \mathfrak{m}_{\mathfrak{P}_1} \cap (\mathcal{O}_{\mathfrak{P}_2} \cap \mathcal{O}_{\mathfrak{P}_3}). \end{aligned}$$

Similarly,

$$\mathfrak{m}_{\mathfrak{P}_2}\cap \mathcal{O}'_{\mathfrak{p}}=\mathfrak{m}_{\mathfrak{P}_2}\cap \left(\mathcal{O}_{\mathfrak{P}_1}\cap \mathcal{O}_{\mathfrak{P}_3}
ight),$$

and so

$$\mathfrak{m}_{\mathfrak{P}_1} \cap (\mathcal{O}_{\mathfrak{P}_2} \cap \mathcal{O}_{\mathfrak{P}_3}) = \mathfrak{m}_{\mathfrak{P}_2} \cap (\mathcal{O}_{\mathfrak{P}_1} \cap \mathcal{O}_{\mathfrak{P}_3}) \, .$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

$$\mathfrak{m}_{\mathfrak{P}_1} \cap (\mathcal{O}_{\mathfrak{P}_2} \cap \mathcal{O}_{\mathfrak{P}_3}) = \mathfrak{m}_{\mathfrak{P}_2} \cap (\mathcal{O}_{\mathfrak{P}_1} \cap \mathcal{O}_{\mathfrak{P}_3}).$$

In particular, we have that

$$\mathfrak{m}_{\mathfrak{P}_1} \cap (\mathcal{O}_{\mathfrak{P}_2} \cap \mathcal{O}_{\mathfrak{P}_3}) \subseteq \mathfrak{m}_{\mathfrak{P}_2}.$$

Thus,

$$v_{\mathfrak{P}_1}(x) > 0$$
 & $v_{\mathfrak{P}_2}(x) \ge 0$ & $v_{\mathfrak{P}_3}(x) \ge 0 \implies v_{\mathfrak{P}_2}(x) > 0.$

This contradicts the WAT that guarantees the existence of an element \boldsymbol{x} with

$$v_{\mathfrak{P}_1}(x) > 0$$
 & $v_{\mathfrak{P}_2}(x) = 0$ & $v_{\mathfrak{P}_3}(x) = 0$.

This proves Item 1.

< □ > < □ > < 三 > < 三 > < 三 > ○ < ○

Proof.

We turn to prove Items 2,3, namely,

$$\forall i \in [r] \quad e(\mathfrak{P}_i/\mathfrak{p}) = \varepsilon_i \text{ and } f(\mathfrak{P}_i/\mathfrak{p}) = \deg \gamma_i(\mathcal{T}).$$

Item 1, and our hypothesis imply

$$\mathcal{O}_{\mathfrak{p}}[y] = \mathcal{O}'_{\mathfrak{p}} = \bigcap_{i=1}^{r} \mathcal{O}_{\mathfrak{P}_{i}}.$$

Using the WAT we can find elements $t_1, \ldots, t_r \in F$ s.t.

$$v_{\mathfrak{P}_i}(t_j)=\delta_{i,j}.$$

Let $t \in \mathsf{E}$ be s.t. $v_{\mathfrak{p}}(t) = 1$.

In the proof of Item 1 (Equation (1)) we proved that

 $\mathfrak{m}_{\mathfrak{p}}\mathcal{O}_{\mathfrak{p}}[y] + \varphi_i(y)\mathcal{O}_{\mathfrak{p}}[y] = \mathfrak{m}_{\mathfrak{P}_i} \cap \mathcal{O}_{\mathfrak{p}}[y].$

Proof.

$$\mathfrak{m}_{\mathfrak{p}}\mathcal{O}_{\mathfrak{p}}[y] + \varphi_i(y)\mathcal{O}_{\mathfrak{p}}[y] = \mathfrak{m}_{\mathfrak{P}_i} \cap \mathcal{O}_{\mathfrak{p}}[y].$$

and so, as $\mathfrak{m}_{\mathfrak{p}} = t\mathcal{O}_{\mathfrak{p}}$,

$$t_i \in \mathfrak{m}_{\mathfrak{P}_i} \cap \mathcal{O}_\mathfrak{p}[y] = t\mathcal{O}_\mathfrak{p}[y] + \varphi_i(y)\mathcal{O}_\mathfrak{p}[y].$$

Thus, we can write

$$t_i = \varphi_i(y)a_i(y) + tb_i(y)$$
 $a_i(y), b_i(y) \in \mathcal{O}_\mathfrak{p}[y].$

Thus,

$$\prod_{i=1}^{r} t_i^{\varepsilon_i} = a(y) \prod_{i=1}^{r} \varphi_i(y)^{\varepsilon_i} + t \cdot b(y)$$

for some $a(y), b(y) \in \mathcal{O}_{\mathfrak{p}}[y]$. E.g.,

$$t_1t_2 = (\varphi_1a_1 + tb_1)(\varphi_2a_2 + tb_2)$$

= $a_1a_2 \cdot \varphi_1\varphi_2 + t \cdot (\varphi_1a_1b_2 + b_1\varphi_2a_2 + tb_1b_2).$

Proof.

So far

$$\prod_{i=1}^{r} t_i^{\varepsilon_i} = a(y) \prod_{i=1}^{r} \varphi_i(y)^{\varepsilon_i} + t \cdot b(y)$$

for some $a(y), b(y) \in \mathcal{O}_{\mathfrak{p}}[y]$. Now, as $t\mathcal{O}_{\mathfrak{p}} = \mathfrak{m}_{\mathfrak{p}}$,

$$\prod_{i=1}^r arphi_i(y)^{arepsilon_i} = arphi(y) \qquad ext{mod} \ t \cdot \mathcal{O}_\mathfrak{p}[y].$$

Moreover $\varphi(y) = 0$, and so

$$\prod_{i=1}^r t_i^{\varepsilon_i} = t \cdot c(y)$$

for some $c(y) \in \mathcal{O}_{\mathfrak{p}}[y]$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Proof.

So far,

$$\prod_{i=1}^r t_i^{arepsilon_i} = t \cdot c(y) \qquad c(y) \in \mathcal{O}_\mathfrak{p}[y].$$

Thus,

$$arepsilon_i = v_{\mathfrak{P}_i}\left(\prod_{i=1}^r t_i^{arepsilon_i}
ight) = v_{\mathfrak{P}_i}(t) + v_{\mathfrak{P}_i}(c(y)) \geq v_{\mathfrak{P}_i}(t),$$

where the last inequality follows as $c(y) \in \mathcal{O}_{\mathfrak{p}}[y] = \mathcal{O}'_{\mathfrak{p}} = \cap_i \mathcal{O}_{\mathfrak{P}_i}$. But

$$v_{\mathfrak{P}_i}(t) = e(\mathfrak{P}_i/\mathfrak{p}) \cdot v_\mathfrak{p}(t) = e(\mathfrak{P}_i/\mathfrak{p}),$$

and so we conclude that

$$\varepsilon_i \geq e(\mathfrak{P}_i/\mathfrak{p}).$$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof.

Taking a detour, recall that in the proof of Theorem 1, to prove Item 2 we noted that

$$\mathsf{E}_{\mathfrak{p}}[\mathcal{T}] \Big/ \langle \gamma_i(\mathcal{T}) \rangle \triangleq \mathsf{E}_i \cong \mathcal{O}_{\mathfrak{p}}[\mathcal{Y}] \Big/ \ker \sigma_i \, \hookrightarrow \, \mathcal{O}_{\mathfrak{P}_i} \Big/ \mathfrak{m}_{\mathfrak{P}_i} = \mathsf{F}_{\mathfrak{P}_i},$$

and so

$$f(\mathfrak{P}_i/\mathfrak{p}) = [\mathsf{F}_{\mathfrak{P}_i} : \mathsf{E}_\mathfrak{p}] \ge [\mathsf{E}_i : \mathsf{E}_\mathfrak{p}] = \deg \gamma_i(\mathcal{T}).$$

Proof.

Returning to our proof, to recap, we showed that

$$\ker \sigma_i = \mathfrak{m}_{\mathfrak{p}} \mathcal{O}_{\mathfrak{p}}[y] + \varphi_i(y) \mathcal{O}_{\mathfrak{p}}[y] = \mathfrak{m}_{\mathfrak{P}_i} \cap \mathcal{O}_{\mathfrak{p}}[y],$$

and we claim that this implies

$$f(\mathfrak{P}_i/\mathfrak{p}) = \deg \gamma_i(T)$$

establishing Item 3.

イロト イポト イヨト イヨト

э

Proof.

We have that ker $\sigma_i = \mathfrak{m}_{\mathfrak{P}_i} \cap \mathcal{O}_{\mathfrak{p}}[y]$, and we wish to prove

 $f(\mathfrak{P}_i/\mathfrak{p}) = \deg \gamma_i(T).$

Recall the second isomorphism theorem for commutative rings which states that

$$(S+J)/J \cong S/(S \cap J)$$

for S a subring of R and J an ideal of R.

In our case $(\mathsf{R} = \mathcal{O}_{\mathfrak{P}_i})$,

$$\begin{split} \left(\mathcal{O}_{\mathfrak{p}}[y] + \mathfrak{m}_{\mathfrak{P}_{i}}\right) \Big/ \mathfrak{m}_{\mathfrak{P}_{i}} &\cong \mathcal{O}_{\mathfrak{p}}[y] \Big/ \left(\mathfrak{m}_{\mathfrak{P}_{i}} \cap \mathcal{O}_{\mathfrak{p}}[y]\right) \\ &= \mathcal{O}_{\mathfrak{p}}[y] \Big/ \ker \sigma_{i} \\ &= \mathsf{E}_{i} \\ &= \mathsf{E}_{\mathfrak{p}}[\mathcal{T}] \Big/ \langle \gamma_{i}(\mathcal{T}) \rangle. \end{split}$$

Proof.

We wish to prove

$$f(\mathfrak{P}_i/\mathfrak{p}) = \deg \gamma_i(T).$$

So far we proved that

$$(\mathcal{O}_{\mathfrak{p}}[y] + \mathfrak{m}_{\mathfrak{P}_i}) / \mathfrak{m}_{\mathfrak{P}_i} \cong \mathsf{E}_{\mathfrak{p}}[T] / \langle \gamma_i(T) \rangle.$$

The proof will follow by showing that

$$\mathcal{O}_{\mathfrak{p}}[y] + \mathfrak{m}_{\mathfrak{P}_i} = \mathcal{O}_{\mathfrak{P}_i}.$$

Indeed, recall that $\mathcal{O}_{\mathfrak{P}_i} / \mathfrak{m}_{\mathfrak{P}_i} = \mathsf{F}_{\mathfrak{P}_i}$ and that

$$f(\mathfrak{P}_i/\mathfrak{p}) = [\mathsf{F}_{\mathfrak{P}_i} : \mathsf{E}_\mathfrak{p}],\\ \deg \gamma_i(\mathcal{T}) = [\mathsf{E}_\mathfrak{p}[\mathcal{T}]/\langle \gamma_i(\mathcal{T}) \rangle : \mathsf{E}_\mathfrak{p}].$$

イロン イロン イヨン イロン

э

Proof.

We turn to prove that

$$\mathcal{O}_{\mathfrak{p}}[y] + \mathfrak{m}_{\mathfrak{P}_i} = \mathcal{O}_{\mathfrak{P}_i}.$$

The \subseteq direction is trivial, so take $z \in \mathcal{O}_{\mathfrak{P}_i}$. Per our assumption,

$$\mathcal{O}_{\mathfrak{p}}[y] = \mathcal{O}'_{\mathfrak{p}} = \bigcap_{j=1}^{r} \mathcal{O}_{\mathfrak{P}_{j}}.$$

By the WAT, we can find $y \in F$ s.t.

$$egin{aligned} & \upsilon_{\mathfrak{P}_i}(y-z) > 0, \ & \upsilon_{\mathfrak{P}_j}(y) \geq 0 & \forall j
eq i. \end{aligned}$$

Thus, z = (z - y) + y with $z - y \in \mathfrak{m}_{\mathfrak{P}_i}$ and $y \in \mathcal{O}'_{\mathfrak{p}}$.

This establishes Item 3.

イロト 不得 トイヨト イヨト

э

Going back to Item 2, using the fundamental equality and what we proved, namely,

$$e(\mathfrak{P}_i/\mathfrak{p}) \leq \varepsilon_i$$
 & $f(\mathfrak{P}_i/\mathfrak{p}) = \deg \gamma_i(T)$

we get that

$$\mathsf{[F:E]} = \sum_{i=1}^{r} e(\mathfrak{P}_i/\mathfrak{p}) f(\mathfrak{P}_i/\mathfrak{p}) \le \sum_{i=1}^{r} \varepsilon_i \deg \gamma_i(T)$$

= deg $\gamma(T) = \mathsf{[F:E]}.$

Thus, $\varepsilon_i = e(\mathfrak{P}_i/\mathfrak{p})$ for all $i \in [r]$, completing the proof.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □