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Function field extensions

Definition 1

Let F/L, E/K be function fields. We say that F/L is an extension of E/K
if

E ⊆ F

K ⊆ L

L ∩ E = K.

We would like to study the relation between the prime divisors of F/L
and those of E/K.
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Prime divisors and places in function field extensions

Let P be a prime divisor of F/L. Consider a corresponding place ϕP, and
note that (ϕP)|E is a place of E.

Assume further that (ϕP)|E is a nontrivial place. Then, (ϕP)|E is a place
of E/K (as it is also trivial on L ⊇ K).

Denote the prime divisor of E/K that corresponds to (ϕP)|E by p.

We say that P lies over p, and that p lies under P, and denote this by
P/p.
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Valuations in function field extensions

Consider the valuation υP of F/L that corresponds to P, and recall that

υP(F×) = Z.

Now,
υP(E×) ≤ υP(F×)

and so either υP(E×) = 0 or υP(E×) = eZ for some integer e ≥ 1.

The case υP(E×) = 0 cannot occur since, per our assumption, ∃x ∈ E×

s.t. ϕP(x) =∞ and so υP(x) < 0.

The valuation υp of E/K that corresponds to p is then given by

υp =
1

e
· υP|E.

The integer e is denoted by e(P/p) or by e F/E(P), or sometimes simply
by e(P), and is called the ramification index of P/p.
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Valuation rings, places, and residue fields in extensions

Let OP be the valuation ring of P in F, and denote its maximal ideal by
mP. Similarly define Op and mp, and recall that Op = OP ∩ E and
mp = mP ∩ E.

Since mp = mP ∩ E ⊆ mP we have that the right “square” is
commutative. As the left square is also commutative we have that the
“big rectangle” is commutative.
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Valuation rings, places, and residue fields in extensions

By the above discussion we know that the following diagram is
commutative.

We call [FP : Ep] the relative degree of P over p and denote it by
f (P/p). As the above diagram commutes, we have that

[L : K ] · degP = f (P/p) · deg p,

where, potentially, some of the extensions above may be infinite.
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A little lemma

Lemma 2

Let L/K be a finite field extension, and x transcendental over L. Then,

[L(x) : K(x)] = [L : K].

Left as an exercise.

Gil Cohen Function Field Extensions and The Fundamental Equality



Finiteness in extensions

Lemma 3

Let P be a prime divisor of F/L lying over a prime divisor p of E/K.
TFAE:

1 L/K is finite

2 F/E is finite

3 FP/Ep is finite (that is, f (P/p) <∞.)

Proof.

We start with (1) ⇐⇒ (2). Take x ∈ E \ K. Then, x ∈ F \ L. Indeed, if
x ∈ L then x ∈ E ∩ L = K in contradiction.
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Finiteness in extensions

Proof.

Thus, x is transcendental over K and over L, and so

[K(x) : L(x)] = [K : L].

The proof of (1) ⇐⇒ (2) follows by the diagram.
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Finiteness in extensions

Proof.

The proof of (1) ⇐⇒ (3) follows from the above diagram.

Remark. Lemma 3 also holds when we replace “finite” with “algebraic”
everywhere.

Definition 4

A function field extension F/L of E/K is called finite if F/E is finite
(equivalently, L/K is finite). It is called algebraic if F/E is algebraic
(equivalently, L/K is algebraic).
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Finiteness in extensions

Claim 5

Let F/E be an algebraic extension and ϕ a non-trivial place of F. Then,
ϕ|E is a nontrivial place of E.

Proof.

We prove the contrapositive: assume ϕ|E is trivial and we will show ϕ is
trivial.

Observe that it suffices to prove the above for finite extensions.

Indeed, having done so, take any x ∈ F. As x is algebraic over E, E(x)/E
is a finite extension. Thus,

ϕ|E is trivial =⇒ ϕ|E(x) is trivial

=⇒ ϕ(x) 6=∞.

As this holds for all x ∈ F we conclude that ϕ is trivial.
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Finiteness in extensions

Proof.

So we assume F/E is finite. Let υ be a valuation corresponding to ϕ.
Then, υ(F×) is an ordered group, and

0 = υ(E×) ≤ υ(F×).

By a result we proved,

[υ(F×) : υ(E×)] ≤ [F : E] <∞,

and so υ(F×) is finite.

However, we proved that the only finite ordered group is 0, and so ϕ is
trivial.
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Ramification index and residual degrees in towers

The following lemma is left as an exercise.

Lemma 6

Let F/L be an algebraic extension of E/K, and let F′/L′ be an algebraic
extension of F/L. Let p be a prime divisor of E/K, P a prime divisor of
F/L that lies above p, and let P′ be a prime divisor of F′/L′ lying over
P. Then,

f (P′/p) = f (P′/P) · f (P/p),

e(P′/p) = e(P′/P) · e(P/p).

Gil Cohen Function Field Extensions and The Fundamental Equality



Overview

1 Function field extensions

2 Finiteness in extensions

3 Ramification index and residual degrees in towers

4 Prime divisors above a given prime divisor

5 The fundamental equality

6 Example

Gil Cohen Function Field Extensions and The Fundamental Equality



Refining the notation

Let F/L be an algebraic extension of E/K, and take x ∈ E. When
considering a principle divisor (x) one should distinct between the divisor
as a divisor of F/L and as a divisor of E/K.

To this end, we extend our notation and write (x)F and (x)E,
respectively. Similarly we have (x)F,0 and (x)E,0 for distinguishing
between the zero divisors, and (x)F,∞ and (x)E,∞ for the pole divisors.
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A useful lemma

Lemma 7

Let E/K be a function field, and p a prime divisor of E/K. Then,
∃x ∈ E \ K and k ≥ 1 integer s.t.

(x)E,∞ = kp.

The Lemma readily follows by the strong approximation theorem,
however, for sports, we’ll prove it based only on Riemann’s Theorem.

Proof.

Denote the genus of E/K by g . By Riemann’s Theorem, for n sufficiently
large,

dim np ≥ deg np + 1− g ≥ n + 1− g ≥ 2.

Thus, ∃x ∈ E \ K s.t.
(x)E + np ≥ 0,

and so (x)E,∞ = kp for some 0 ≤ k ≤ n.

As x 6∈ K, x has a pole and so k ≥ 1.
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Prime divisors above

Lemma 8

Let F/L be an algebraic extension of E/K and let p be a prime divisor of
E/K. Then, the set of prime divisors of F/L lying over p is finite and
nonempty.

Proof.

By Lemma 7, ∃x ∈ E \ K s.t.

(x)E,∞ = kp

for some k ≥ 1. We now consider x as an element of F and write

(x)F,∞ =
r∑

i=1

miPi ,

where P1, . . . ,Pr are distinct prime divisors of F/L, and m1, . . . ,mr ≥ 1
are integers.
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Prime divisors above

Proof.

Note that r ≥ 1. Indeed, otherwise x has no pole as an element of F and
so x ∈ L. As x ∈ E we conclude that

x ∈ L ∩ E = K

which contradicts the fact that x ∈ E \ K.

We turn to prove that P1, . . . ,Pr are precisely the prime divisors of F/L
that lie over p.

In one direction, if P lies over p then, as υp(x) < 0, we have that

υP(x) = e(P/p)υp(x) < 0.

Therefore, P ∈ {P1, . . . ,Pr}.
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Prime divisors above

Proof.

In the other direction, take P = Pi for some i . Thus, υP(x) < 0.

As we assume F/E is algebraic, Claim 5 guarantees the existence of a
prime divisor q of E/K lying under P.

We have that

υq(x) =
1

e(P/q)
υP(x) < 0,

and so q participates in (x)E,∞ = kp, and so q = p.
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The fundamental equality

Theorem 9

Let F/L be a finite extension of E/K. Let p be a prime divisor of E/K.
Then,

[F : E] =
∑
P/p

e(P/p)f (P/p).

Proof.

Let P1, . . . ,Pr be the prime divisors lying over p.

By inspecting the proof of the Lemma 8, we see that ∃x ∈ E \ K s.t.

(x)E,∞ = kp,

(x)F,∞ =
r∑

i=1

miPi .
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The fundamental equality

Proof.

(x)E,∞ = kp (x)F,∞ =
r∑

i=1

miPi .

We proved that

[F : L(x)] = deg(x)F,∞ =
r∑

i=1

mi degPi .

Now,
mi = −υPi (x) = −υp(x) · e(Pi/p) = k · e(Pi/p).

Thus,

[F : L(x)] = k
r∑

i=1

e(Pi/p) degPi

Gil Cohen Function Field Extensions and The Fundamental Equality



The fundamental equality

Proof.

[F : L(x)] = k
r∑

i=1

e(Pi/p) degPi

Since [L : K] = [L(x) : K(x)] we have that

[F : K(x)] = [F : L(x)][L(x) : K(x)]

= k
r∑

i=1

e(Pi/p)[L : K] degPi .

Recall that
[L : K ] degP = f (P/p) deg p.

Figure: The Zig-Zag product applied to a “uniform in clouds” (‖) error vector.
Gil Cohen Function Field Extensions and The Fundamental Equality



The fundamental equality

Proof.

So far,

[F : K(x)] = k
r∑

i=1

e(Pi/p)[L : K] degPi ,

[L : K ] degP = f (P/p) deg p.

Thus,

[F : K(x)] = k deg p
r∑

i=1

e(Pi/p)f (Pi/p).

Recall that
[E : K(x)] = deg(x)E,∞ = k deg p,

and so

[F : E] =
[F : K(x)]

[E : K(x)]
=

r∑
i=1

e(Pi/p)f (Pi/p).
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Example

We consider again our example F/K where F = K(x , y) and

y2 = x3 − x .

In the problem set you will show that F/K(x) is indeed a function field
when char K 6= 2.

We will use the fundamental equality to investigate prime divisors of F by
consider the finite function field extension F/K(x).
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Example

Let P be a prime divisor lying over p∞ of K(x). Then,

2υP(y) = υP(y2) = υP(x3 − x).

But
υP(x3 − x) = e(P/p∞) · υ∞(x3 − x) = −3 · e(P/p∞).

=⇒ e(P/p∞) is even. By the fundamental equality,

e(P/p∞) ≤ [F : K(x)] = 2,

and so
e(P/p∞) = 2.

The fundamental equality then implies that P is the only place lying over
p∞ and that f (P/p∞) = 1.
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Example

Let us explore prime divisors over p0 of K(x). Let P be a prime divisor
lying over p0. Then,

2υP(y) = υP(y2) = υP(x3 − x) = e(P/p0) · υ0(x3 − x) = 1 · e(P/p0).

By the fundamental equality,

e(P/p0) ≤ [F : K(x)] = 2.

Together with the above equation, we conclude

e(P/p0) = 2.

The fundamental equality then implies that P is the only place lying over
p0 and that f (P/p0) = 1. We denote this place by P0.

The same is the case for p1, p−1.
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Example

What about places over p2? Let’s try to use the same trick: Let P be a
prime divisor lying over p2. Then,

2υP(y) = υP(y2) = υP(x3 − x) = e(P/p2) · υ2(x3 − x) = e(P/p2) · 0,

and we cannot conclude anything about e(P/p2) in this way.
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Example

We will later develop tools to study places over a place. In our case, it
turns out that e(P/p2) = 1 but there are two cases:

1 If T 2 − 6 ∈ K[T ] is irreducible then there is a unique P/p2, and
f (P/p2) = 2; otherwise

2 There are two distinct places over p2 each with f (P/p2) = 1.

So the arithmetic of the underlying field K plays a role. E.g., for K = F7

we are in case (1) whereas for K = F5 we are in case (2).
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Example

There is nothing sacred about x . Consider now the function field
extension F/K(y).

Let’s find the places P′ over q∞ of K(y). Our starting point is

υP′(y2) = υP′(x3 − x).

Now,

υP′(y2) = e(P′/q∞) · υ∞(y2) = −2e(P′/q∞) = −2e.

Thus,

−2e = υP′(x3 − x)

≥ min(υP′(x3), υP′(x))

= min(3υP′(x), υP′(x)).
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Example

So far

−2e = υP′(x3 − x)

≥ min(υP′(x3), υP′(x))

= min(3υP′(x), υP′(x)).

But −2e < 0 and so υP′(x) < 0, and so we have by the strict triangle
inequality that

−2e = 3υP′(x) =⇒ e = e(P′/q∞) = 3,

where we used the fundamental equality.

Thus, there is a single prime divisor P′/q∞ with e = 3, f = 1.
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Example

Since
−2e = 3υP′(x)

and e = 3, we can conclude that

υP′(x) = −2,

but recall that in general

[F : K(x)] = deg(x)∞

but [F : K(x)] = 2 (recall y2 = x3 − x) and so

(x)∞ = 2P′.

In fact,
(x) = 2P0 − 2P′.

Exercise. Find (y).
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