Algebraic Geometric Codes Recitation 02

Shir Peleg

Tel Aviv University

March 1, 2022

When we have a field that contains another field $F \subseteq E$, we say that E is a filed extension of F, and denote it by E/F.

For example $\mathbb{C}/\mathbb{R}, \mathbb{R}/\mathbb{Q}$.

When we have a field that contains another field $F \subseteq E$, we say that E is a filed extension of F, and denote it by E/F.

For example $\mathbb{C}/\mathbb{R}, \mathbb{R}/\mathbb{Q}$.

There are two ways to define such extensions: either we have the larger field E, and we find a subfield of it, or we add new elements to a given field F. For example F(x) the field of rational functions in the variable x over F.

Examples:

• \mathbb{C}/\mathbb{R} has degree 2, as we have the basis $\{1, i\}$.

- \mathbb{C}/\mathbb{R} has degree 2, as we have the basis $\{1, i\}$.
- F(x)/F has infinite degree because the set $1, x, x^2, ...$ is linearly independent by definition.

- \mathbb{C}/\mathbb{R} has degree 2, as we have the basis $\{1, i\}$.
- F(x)/F has infinite degree because the set $1, x, x^2, ...$ is linearly independent by definition.
- What is the degree of \mathbb{R}/\mathbb{Q} ?

Let E/F, b a filed extension. Let $\alpha \in E$, we say that α is algebraic over F if there is a polynomial $p_{\alpha} \in F[x]$ such that $p_{\alpha}(\alpha) = 0$. We say that the extension E/F, is an algebraic extension if all the elements in E are algebraic over F.

Let E/F, b a filed extension. Let $\alpha \in E$, we say that α is algebraic over F if there is a polynomial $p_{\alpha} \in F[x]$ such that $p_{\alpha}(\alpha) = 0$. We say that the extension E/F, is an algebraic extension if all the elements in E are algebraic over F.

Examples:

• \mathbb{C}/\mathbb{R} is an algebraic extension, as for every element $\alpha = ai + b$ we have $p_{\alpha} = x^2 - 2bx - (b^2 + a^2)$.

Let E/F, b a filed extension. Let $\alpha \in E$, we say that α is algebraic over F if there is a polynomial $p_{\alpha} \in F[x]$ such that $p_{\alpha}(\alpha) = 0$. We say that the extension E/F, is an algebraic extension if all the elements in E are algebraic over F.

- \mathbb{C}/\mathbb{R} is an algebraic extension, as for every element $\alpha = ai + b$ we have $p_{\alpha} = x^2 2bx (b^2 + a^2)$.
- F(y)/F is not an algebraic extension as y is not algebraic over F.

Let E/F, b a filed extension. Let $\alpha \in E$, we say that α is algebraic over F if there is a polynomial $p_{\alpha} \in F[x]$ such that $p_{\alpha}(\alpha) = 0$. We say that the extension E/F, is an algebraic extension if all the elements in E are algebraic over F.

- \mathbb{C}/\mathbb{R} is an algebraic extension, as for every element $\alpha = ai + b$ we have $p_{\alpha} = x^2 2bx (b^2 + a^2)$.
- F(y)/F is not an algebraic extension as y is not algebraic over F.
- Fact: Let E/F, K/E be algebraic extensions then K/F is algebraic.

Let E/F be a field extension. A subset $S \subseteq E$ is called *algebraically dependent* over F if there is a subset $s_1, \ldots, s_n \subseteq S$ and a non zero polynomial $p \in F[x_1, \ldots, x_n]$ such that $p(s_1, \ldots, s_n) = 0$.

Let E/F be a field extension. A subset $S \subseteq E$ is called *algebraically dependent* over F if there is a subset $s_1, \ldots, s_n \subseteq S$ and a non zero polynomial $p \in F[x_1, \ldots, x_n]$ such that $p(s_1, \ldots, s_n) = 0$.

Example: $E = F[x, y]/(y - x^2 - 1)$, the set $\{x, y\}$ is algebraically dependent.

Let E/F be a field extension. A subset $S \subseteq E$ is called *algebraically dependent* over F if there is a subset $s_1, \ldots, s_n \subseteq S$ and a non zero polynomial $p \in F[x_1, \ldots, x_n]$ such that $p(s_1, \ldots, s_n) = 0$.

Example: $E = F[x, y]/(y - x^2 - 1)$, the set $\{x, y\}$ is algebraically dependent. Note that is s_1, \ldots, s_n are algebraically independent then $F(s_1, \ldots, s_n) \cong F(x_1, \ldots, x_n)$.

Let E/F be a field extension. A subset $S \subseteq E$ is called *algebraically dependent* over F if there is a subset $s_1, \ldots, s_n \subseteq S$ and a non zero polynomial $p \in F[x_1, \ldots, x_n]$ such that $p(s_1, \ldots, s_n) = 0$.

Example: $E = F[x, y]/(y - x^2 - 1)$, the set $\{x, y\}$ is algebraically dependent. Note that is s_1, \ldots, s_n are algebraically independent then $F(s_1, \ldots, s_n) \cong F(x_1, \ldots, x_n)$.

Definition

Let E/F be a field extension. A transcendental basis of E over F is a maximal subset if E that is algebraically independent over F.

Claim

Let E/F be a field extension, and S be an algebraically independent set, and let $a \in E$. Then $S \cup \{a\}$ is algebraically dependent \iff a is algebraic over F(S).

Proof.

Claim

Let E/F be a field extension, and S be an algebraically independent set, and let $a \in E$. Then $S \cup \{a\}$ is algebraically dependent \iff a is algebraic over F(S).

Proof.

⇒ As S is algebraically independent and $S \cup \{a\}$ is algebraically dependent there are $s_1, \ldots, s_n \in S$, and $f \in F[x_1, \ldots, x_n, x_{n+1}]$ s.t. $f(s_1, \ldots, s_n, a) = 0$. We can define $f_a = f(s_1, \ldots, s_n, x)$. Note that f_a is note identically zero, thus $f_a \in F(S)[x]$, and $f_a(a) = 0$. The other direction is similar. \Box

Corollary

Let E/F be a field extension, and S be an algebraically independent set. Then S is a transcendental basis of E/F iff E/F(S) is algebraic.

Theorem

Let E/F be a field extension. Assume E has a finite transcendental basis, then any transcendental bases have the same size.

Proof

Let $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_m\}$ be two transcendental bases, we will show that $m \leq n$, which, after changing the order, will result in m = n.

Corollary

Let E/F be a field extension, and S be an algebraically independent set. Then S is a transcendental basis of E/F iff E/F(S) is algebraic.

Theorem

Let E/F be a field extension. Assume E has a finite transcendental basis, then any transcendental bases have the same size.

Proof

Let $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_m\}$ be two transcendental bases, we will show that $m \le n$, which, after changing the order, will result in m = n. b_1 is algebraic over $F(a_1, \ldots, a_n)$. So there is a non-zero polynomial p such that $p(b_1, a_1, \ldots, a_n) = 0$.

Transcendental Extensions

Proof Cont.

 b_1 is algebraic over $F(a_1, \ldots, a_n)$. So there is a non-zero polynomial p such that $p(b_1, a_1, \ldots, a_n) = 0$. b_1 must appear somewhere in the polynomial, so must some a_i . Without loss of generality, we can assume a_1 appears in $p(b_1, a_1, \ldots, a_n)$. So a_1 is algebraic over $F(b_1, a_2, \ldots, a_n)$. Thus so does E.

Proof Cont.

 b_1 is algebraic over $F(a_1, \ldots, a_n)$. So there is a non-zero polynomial p such that $p(b_1, a_1, \ldots, a_n) = 0$. b_1 must appear somewhere in the polynomial, so must some a_i . Without loss of generality, we can assume a_1 appears in $p(b_1, a_1, \ldots, a_n)$. So a_1 is algebraic over $F(b_1, a_2, \ldots, a_n)$. Thus so does E. Once we have that E is algebraic over $F(b_1, \ldots, b_r, a_{r+1}, \ldots, a_n)$, we again "exchange" an a_i for a b_i . b_{r+1} is algebraic over the field $F(b_1,\ldots,b_r,a_{r+1},\ldots,a_n)$. So there is a non-zero polynomial p s.t. $p(b_1, \ldots, b_{r+1}, a_{r+1}, \ldots, a_n) = 0$. Since the b_i 's are algebraically independent, one of the a_i 's, WLOG a_{r+1} , appears in this expression.

Proof Cont.

 b_1 is algebraic over $F(a_1, \ldots, a_n)$. So there is a non-zero polynomial p such that $p(b_1, a_1, \ldots, a_n) = 0$. b_1 must appear somewhere in the polynomial, so must some a_i . Without loss of generality, we can assume a_1 appears in $p(b_1, a_1, \ldots, a_n)$. So a_1 is algebraic over $F(b_1, a_2, \ldots, a_n)$. Thus so does E. Once we have that E is algebraic over $F(b_1, \ldots, b_r, a_{r+1}, \ldots, a_n)$, we again "exchange" an a_i for a b_i . b_{r+1} is algebraic over the field $F(b_1,\ldots,b_r,a_{r+1},\ldots,a_n)$. So there is a non-zero polynomial p s.t. $p(b_1, \ldots, b_{r+1}, a_{r+1}, \ldots, a_n) = 0$. Since the b_i 's are algebraically independent, one of the a_i 's, WLOG a_{r+1} , appears in this expression. We get that E is algebraic over $F(b_1, \ldots, b_{r+1}, a_{r+2}, \ldots, a_n)$. When this process terminates we see that E is algebraic over $F(b_1, \ldots, b_m, a_{m+1}, \ldots, a_n)$. Hence m < n.

The transcendence degree of E/F is the size of its transcendental bases. It is denoted by tr(E/F) or t.deg(E/F).

Definition

E/F is called *purely transcendental* if E = F(S) where S is a transcendental basis of E/F.

Claim

Let E/F, K/E be field extensions, then t.deg(K/F) = t.deg(E/F) + t.deg(K/E).

• *F*(*x*)/*F*?

Shir Peleg Algebraic Geometric Codes

• F(x)/F? $F(x_1,...,x_n)/F$?

F(x)/F? F(x₁,...,x_n)/F?
C/ℝ?

- F(x)/F? $F(x_1,...,x_n)/F$?
- \mathbb{C}/\mathbb{R} ?
- \mathbb{R}/\mathbb{Q} ?

- F(x)/F? $F(x_1,...,x_n)/F$?
- \mathbb{C}/\mathbb{R} ?
- \mathbb{R}/\mathbb{Q} ?
- Frac(F(x, y)/P(x, y))/F where P is irreducible?

An irreducible polynomial f in F[x] is separable if and only if it has distinct roots in any extension of F (that is if it may be factored in distinct linear factors over an algebraic closure of F). Let E/F be a field extension. An element $\alpha \in E$ is separable over F if it is algebraic over F, and its minimal polynomial is separable. The extension E/F is separable if it contains only separable elements.

An irreducible polynomial f in F[x] is separable if and only if it has distinct roots in any extension of F (that is if it may be factored in distinct linear factors over an algebraic closure of F). Let E/F be a field extension. An element $\alpha \in E$ is separable over F if it is algebraic over F, and its minimal polynomial is separable. The extension E/F is separable if it contains only separable elements.

• $x^2 + 1$ is a separable polynomial over \mathbb{R} . \mathbb{C}/\mathbb{R} is a separable extension.

An irreducible polynomial f in F[x] is separable if and only if it has distinct roots in any extension of F (that is if it may be factored in distinct linear factors over an algebraic closure of F). Let E/F be a field extension. An element $\alpha \in E$ is separable over F if it is algebraic over F, and its minimal polynomial is separable. The extension E/F is separable if it contains only separable elements.

- $x^2 + 1$ is a separable polynomial over \mathbb{R} . \mathbb{C}/\mathbb{R} is a separable extension.
- $x^{\rho} t^{\rho}$ is not a separable polynomial over $\mathbb{F}_{\rho}(t^{\rho})$. As, $x^{\rho} t^{\rho} = (x t)^{\rho}$. Thus the extension $\mathbb{F}_{\rho}(t)/\mathbb{F}_{\rho}(t^{\rho})$ is not separable.

The algebraic field extension E/F is normal (we also say that E is normal over F) if every irreducible polynomial over F that has at least one root in E splits over E. In other words, if $\alpha \in L$, then all conjugates of α over F (that is, all roots of the minimal polynomial of α over F) belong to E.

Definition

E/K is called a *Galois extension* if E/K is normal and separable.