Hurwitz Genus Formula Unit 22

Gil Cohen

December 30, 2024

Gil Cohen Hurwitz Genus Formula

イロト イヨト イヨト イヨト

Ξ.

Hurwitz Genus Formula

Throughout this unit F/L is a finite separable extension of E/K.

Lemma 1

Let L/K be a finite separable field extension. Let V be an L-vector space (and so V is also a K-vector space). Let $T : V \to K$ be a K-linear map. Then, $\exists ! T' : V \to L$ that is L-linear s.t.

$$\operatorname{Tr}_{L/K} \circ T' = T.$$

We omit the proof of this fact (see Dan Haran's lecture notes; Chapter 33).

Adeles - recall

Recall that an adele of F/L is a function $\alpha : \mathbb{P}(F/L) \to F$ that maps $\mathfrak{P} \to \alpha_{\mathfrak{P}}$ s.t. $v_{\mathfrak{P}}(\alpha_{\mathfrak{P}}) \ge 0$ almost always.

The set of adeles of F/L is denoted by $\mathbb{A}_{F/L}$ or \mathbb{A}_F . Recall that \mathbb{A}_F is an F-algebra. Multiplying by elements of F is done via the embedding $F \hookrightarrow \mathbb{A}_F$ where $x \mapsto [x]$ in which $[x]_{\mathfrak{P}} = x$.

For $\mathfrak{a}\in\mathcal{D}(\mathsf{F}/\mathsf{L})$ we defined

 $\Lambda_{\mathsf{F}}(\mathfrak{a}) = \{ \alpha \in \mathbb{A}_{\mathsf{F}} \mid \forall \mathfrak{P} \in \mathbb{P}(\mathsf{F}/\mathsf{L}) \quad \upsilon_{\mathfrak{P}}(\alpha) + \upsilon_{\mathfrak{P}}(\mathfrak{a}) \geq \mathsf{0} \}.$

We sometimes write $\Lambda(\mathfrak{a})$ for short.

$$A_{F} \ni \alpha \qquad \alpha_{p} \qquad c_{lrost}$$

$$P_{F} \qquad \dots \qquad p \qquad \dots$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Adeles of extensions

Definition 2

We extend the above definition to extensions.

$$\mathbb{A}_{\mathsf{F}/\mathsf{E}} = \{ \alpha \in \mathbb{A}_{\mathsf{F}} \mid \mathfrak{P}_1 \cap \mathsf{E} = \mathfrak{P}_2 \cap E \implies \alpha_{\mathfrak{P}_1} = \alpha_{\mathfrak{P}_2} \}.$$

Note that $F \hookrightarrow \mathbb{A}_{F/E} \subseteq \mathbb{A}_F$ and so $\mathbb{A}_{F/E}$ is an F-subalgebra of \mathbb{A}_F . Moreover, for $\mathfrak{a} \in \mathcal{D}(F/L)$ we define

$$\Lambda_{\mathsf{F}/\mathsf{E}}(\mathfrak{a}) = \mathbb{A}_{\mathsf{F}/\mathsf{E}} \cap \Lambda_{\mathsf{F}}(\mathfrak{a}).$$

Adeles of extensions

Definition 3

We extend $\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}:\mathsf{F}\to\mathsf{E}$ to the map

 $\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}:\mathbb{A}_{\mathsf{F}/\mathsf{E}}\to\mathbb{A}_\mathsf{E}$

as follows: For $\alpha \in \mathbb{A}_{\mathsf{F}/\mathsf{E}}$ and $\mathfrak{p} \in \mathbb{P}(\mathsf{E})$,

$$(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(\alpha))_{\mathfrak{p}} = \mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(\alpha_{\mathfrak{P}})$$

where $\mathfrak P$ is some prime divisor lying over $\mathfrak p.$

We need to prove that indeed

$$\operatorname{Tr}_{\mathsf{F}/\mathsf{E}}(\alpha) \in \mathbb{A}(\mathsf{E}).$$

Namely, we need to show that $\operatorname{Tr}_{\mathsf{F}/\mathsf{E}}(\alpha)_{\mathfrak{p}} \geq 0$ almost always.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・ …

We need to show that $\operatorname{Tr}_{\mathsf{F}/\mathsf{E}}(\alpha)_{\mathfrak{p}} \geq 0$ almost always.

As $\alpha \in \mathbb{A}_{F/E}$ we have that $\alpha_{\mathfrak{P}} \in \mathcal{O}_{\mathfrak{P}}$ almost always. Thus, for almost all $\mathfrak{p} \in \mathbb{P}(E)$,

$$orall \mathfrak{P}/\mathfrak{p} \quad lpha_{\mathfrak{P}} \in igcap_{\mathfrak{P}'/\mathfrak{p}} \mathcal{O}_{\mathfrak{P}'} = \mathcal{O}'_{\mathfrak{p}}.$$

Recall that $\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(\mathcal{O}'_{\mathfrak{p}})=\mathcal{O}_{\mathfrak{p}},$ and so for almost all $\mathfrak{p},$

$$(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(\alpha))_{\mathfrak{p}} = \mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(\alpha_{\mathfrak{P}}) \in \mathcal{O}_{\mathfrak{p}},$$

thus establishing that $\operatorname{Tr}_{\mathsf{F}/\mathsf{E}}(\alpha) \in \mathbb{A}(\mathsf{E})$.

We further remark that

$$\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}([x]) = [\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(x)].$$

Lemma 4

For every $\mathfrak{a} \in \mathcal{D}(F)$ we have that

$$\mathbb{A}_{\mathsf{F}} = \mathbb{A}_{\mathsf{F}/\mathsf{E}} + \Lambda_{\mathsf{F}}(\mathfrak{a}).$$

Proof.

The inclusion $\mathbb{A}_{\mathsf{F}} \supset \mathbb{A}_{\mathsf{F}/\mathsf{E}} + \Lambda_{\mathsf{F}}(\mathfrak{a})$ is obvious. For the other inclusion, take $\alpha \in \mathbb{A}_{\mathsf{F}}$. We first construct some $\beta \in \mathbb{A}_{\mathsf{F}/\mathsf{E}}$ as follows.

Take $\mathfrak{p} \in \mathbb{P}(\mathsf{E})$. The set of $\mathfrak{P}/\mathfrak{p}$ is finite and so by WAT, $\exists x_{\mathfrak{p}} \in \mathsf{F}$ s.t.

$$\forall \mathfrak{P}/\mathfrak{p} \quad \upsilon_{\mathfrak{P}}(\mathsf{x}_{\mathfrak{p}} - lpha_{\mathfrak{P}}) \geq -\upsilon_{\mathfrak{P}}(\mathfrak{a}).$$

Note that for almost all $\mathfrak{p} \in \mathbb{P}(\mathsf{E})$ we have that $\forall \mathfrak{P}/\mathfrak{p} \ \upsilon_{\mathfrak{P}}(\mathfrak{a}) = 0$.

Moreover, since $\alpha \in \mathbb{A}_{\mathsf{F}}$, for almost all $\mathfrak{P} \in \mathbb{P}(\mathsf{F})$, $\upsilon_{\mathfrak{P}}(\alpha_{\mathfrak{P}}) \geq 0$. Thus, for almost all \mathfrak{p} ,

$$egin{aligned} & orall \mathfrak{P} & arphi_{\mathfrak{P}}(x_{\mathfrak{p}}) = arphi_{\mathfrak{P}}(x_{\mathfrak{p}} - lpha_{\mathfrak{P}} + lpha_{\mathfrak{P}}) \ & \geq \min(arphi_{\mathfrak{P}}(x_{\mathfrak{p}} - lpha_{\mathfrak{P}}), arphi_{\mathfrak{P}}(lpha_{\mathfrak{P}})) \ & \geq 0. \end{aligned}$$

With this, we define $\beta : \mathbb{P}(\mathsf{F}) \to \mathsf{F}$ by

$$\beta_{\mathfrak{P}}=x_{\mathfrak{p}},$$

where $\mathfrak{p} \in \mathbb{P}(\mathsf{E})$ is the prime divisor lying under \mathfrak{P} .

 $\beta \in \mathbb{A}_{\mathsf{F}}$ as $v_{\mathfrak{P}}(\beta_{\mathfrak{P}}) = v_{\mathfrak{P}}(x_{\mathfrak{p}}) \ge 0$ almost always. Moreover, $\beta \in \mathbb{A}(\mathsf{F}/\mathsf{E})$ since we take $\beta_{\mathfrak{P}} = x_{\mathfrak{p}} = \beta_{\mathfrak{P}'}$ for all places $\mathfrak{P}, \mathfrak{P}'$ lying over \mathfrak{p} .

Lastly, note that $\alpha - \beta \in \Lambda_{\mathsf{F}}(\mathfrak{a})$. Indeed, $\forall \mathfrak{P} \in \mathbb{P}(\mathsf{F})$,

$$v_{\mathfrak{P}}(\alpha-eta)=v_{\mathfrak{P}}(lpha_{\mathfrak{P}}-eta_{\mathfrak{P}})=v_{\mathfrak{P}}(lpha_{\mathfrak{P}}-\mathsf{x}_{\mathfrak{p}})\geq -v_{\mathfrak{P}}(\mathfrak{a}).$$

Thus,

$$\alpha = \beta + (\alpha - \beta) \in \mathbb{A}_{\mathsf{F}/\mathsf{E}} + \Lambda_{\mathsf{F}}(\mathfrak{a}),$$

concluding the proof.

イロト イポト イヨト イヨト

э

Gil Cohen Hurwitz Genus Formula

æ

Recall that a differential of F/L is an L-linear map $\omega : \mathbb{A}_F \to L$ that is nullified on a subspace of the form $\Lambda(\mathfrak{a}) + F$ for some divisor \mathfrak{a} .

For a differential $\omega \neq 0$ we defined the canonical divisor

$$(\omega) = \max \left\{ \mathfrak{a} \in \mathcal{D}(\mathsf{F}) \, : \, \omega|_{\Lambda(\mathfrak{a}) + \mathsf{F}} = 0
ight\}.$$

In particular, $\omega|_{\Lambda((\omega))} = 0$.

イロト イポト イヨト イヨト

Lemma 5

Let $\omega : \mathbb{A}_{\mathsf{E}} \to \mathsf{K}$ be a differential of E/K . We define a map

 $\omega_1: \mathbb{A}_{\mathsf{F}/\mathsf{E}} \to \mathsf{K}$

by $\omega_1 = \omega \circ \operatorname{Tr}_{\mathsf{F}/\mathsf{E}}$. Then, • ω_1 is K-linear; and • ω_1 is nullified on $\Lambda_{\mathsf{F}/\mathsf{E}}(\mathfrak{a}) + \mathsf{F}$, where

 $\mathfrak{a} = \operatorname{Con}_{\mathsf{F}/\mathsf{E}}((\omega)) + \operatorname{Diff}(\mathsf{F}/\mathsf{E}).$

The first item follows since both $\mathrm{Tr}_{\mathrm{F/E}}$ and ω are K-linear maps.

For the second item, first note that $\omega_1|_F = 0$. Indeed, $Tr_{F/E}(F) = E$, and $\omega|_E = 0$.

We turn to prove that $(\omega_1)|_{\Lambda_{\mathsf{F}/\mathsf{E}}(\mathfrak{a})} = 0.$

Take $\alpha \in \Lambda_{F/E}(\mathfrak{a})$. We need to show that $\omega_1(\alpha) = \omega(\operatorname{Tr}_{F/E}(\alpha)) = 0$. To this end we show that

 $\operatorname{Tr}_{\mathsf{F}/\mathsf{E}}(\alpha) \in \Lambda_{\mathsf{E}}((\omega)).$

Equivalently,

$$\forall \mathfrak{p} \in \mathbb{P}(\mathsf{E}) \quad v_{\mathfrak{p}}(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(\alpha)) + v_{\mathfrak{p}}((\omega)) \geq 0.$$

Thus, we need to show that for all \mathfrak{p} and $\mathfrak{P}/\mathfrak{p}$,

 $\upsilon_{\mathfrak{p}}(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(\alpha_{\mathfrak{P}})) + \upsilon_{\mathfrak{p}}((\omega)) \geq 0.$

We want to show that

$$\begin{split} \forall \mathfrak{p}, \mathfrak{P}/\mathfrak{p} \quad \upsilon_{\mathfrak{p}}(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(\alpha_{\mathfrak{P}})) + \upsilon_{\mathfrak{p}}((\omega)) \geq 0. \\ \mathsf{Fix} \ \mathfrak{p} \ \mathsf{and} \ \mathsf{let} \ x \in \mathsf{E} \ \mathsf{be} \ \mathsf{s.t.} \ \upsilon_{\mathfrak{p}}(x) = \upsilon_{\mathfrak{p}}((\omega)). \ \mathsf{Then, for all} \ \mathfrak{P}/\mathfrak{p}, \\ \upsilon_{\mathfrak{P}}(x\alpha_{\mathfrak{P}}) = \upsilon_{\mathfrak{P}}(x) + \upsilon_{\mathfrak{P}}(\alpha_{\mathfrak{P}}) \\ &= e(\mathfrak{P}/\mathfrak{p})\upsilon_{\mathfrak{p}}(x) + \upsilon_{\mathfrak{P}}(\alpha_{\mathfrak{P}}) \\ &= e(\mathfrak{P}/\mathfrak{p})\upsilon_{\mathfrak{p}}((\omega)) + \upsilon_{\mathfrak{P}}(\alpha_{\mathfrak{P}}) \\ &\geq e(\mathfrak{P}/\mathfrak{p})\upsilon_{\mathfrak{p}}((\omega)) - \upsilon_{\mathfrak{P}}(\mathfrak{a}) \\ &= \upsilon_{\mathfrak{P}}(\mathsf{Con}_{\mathsf{F}/\mathsf{E}}((\omega)) - \mathfrak{a}) \\ &= \upsilon_{\mathfrak{P}}(-\mathsf{Diff}(\mathsf{F}/\mathsf{E})) \\ &= -d(\mathfrak{P}/\mathfrak{p}). \end{split}$$

Thus, $x\alpha_{\mathfrak{P}} \in C_{\mathfrak{p}}$.

Fix \mathfrak{p} and let $x \in \mathsf{E}$ be s.t. $v_{\mathfrak{p}}(x) = v_{\mathfrak{p}}((\omega))$. Then, $x \alpha_{\mathfrak{P}} \in \mathsf{C}_{\mathfrak{p}}$. Thus,

 $v_{\mathfrak{p}}(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(x\alpha_{\mathfrak{P}})) \geq 0.$

Since $\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}$ is E-linear, we get that

$$v_{\mathfrak{p}}(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(x\alpha_{\mathfrak{P}})) = v_{\mathfrak{p}}(x\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(\alpha_{\mathfrak{P}}))$$
$$= v_{\mathfrak{p}}(x) + v_{\mathfrak{p}}(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(\alpha_{\mathfrak{P}}))$$
$$= v_{\mathfrak{p}}((\omega)) + v_{\mathfrak{p}}(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(\alpha_{\mathfrak{P}}))$$

Thus,

$$\upsilon_{\mathfrak{p}}((\omega)) + \upsilon_{\mathfrak{p}}(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(\alpha_{\mathfrak{P}})) \geq 0$$

which, recall, concludes the proof.

・ロ・・(型・・モー・・モー・

Let $\omega:\mathbb{A}_{\mathsf{E}}\to\mathsf{K}$ be a differential of $\mathsf{E}/\mathsf{K}.$ Recall that we have defined the map

$$\omega_1 : \mathbb{A}_{\mathsf{F}/\mathsf{E}} \to \mathsf{K}$$

by $\omega_1 = \omega \circ \mathrm{Tr}_{\mathsf{F}/\mathsf{E}}$. We further denoted

$$\mathfrak{a} = \operatorname{Con}_{\mathsf{F}/\mathsf{E}}(\omega) + \operatorname{Diff}(\mathsf{F}/\mathsf{E}).$$

and proved that ω_1 is nullified on $F + \Lambda_{F/E}(\mathfrak{a})$.

Lemma 6 $\forall \mathfrak{a}' \in \mathcal{D}(\mathsf{F})$ $\mathfrak{a}' \not\leq \mathfrak{a} \implies (\omega_1)|_{\Lambda_{\mathsf{F}/\mathsf{F}}}(\mathfrak{a}') \neq 0.$

◆□▶ ◆□▶ ◆ ミ ▶ ◆ ミ ▶ ● ○ ○ ○ ○

Proof. (Proof of Lemma 6)

We wish to prove that

 $\forall \mathfrak{a}' \in \mathcal{D}(\mathsf{F}) \hspace{0.2cm} \text{s.t.} \hspace{0.2cm} \mathfrak{a}' \not \leq \mathfrak{a} \hspace{0.2cm} \exists \beta \in \Lambda_{\mathsf{F}/\mathsf{E}}(\mathfrak{a}') \hspace{0.2cm} \text{s.t.} \hspace{0.2cm} \omega_1(\beta) \neq 0.$

Fix $\mathfrak{a}' \not\leq \mathfrak{a}$ and let $\mathfrak{P}' \in \mathbb{P}(\mathsf{F})$ s.t.

$$v_{\mathfrak{P}'}(\mathfrak{a}') > v_{\mathfrak{P}'}(\mathfrak{a}) = v_{\mathfrak{P}'}(\mathsf{Con}_{\mathsf{F}/\mathsf{E}}(\omega)) + d(\mathfrak{P}'/\mathfrak{p}),$$

where $\mathfrak p$ is the prime divisor lying under $\mathfrak P'.$ That is,

$$v_{\mathfrak{P}'}(\mathsf{Con}_{\mathsf{F}/\mathsf{E}}(\omega) - \mathfrak{a}') < -d(\mathfrak{P}'/\mathfrak{p}).$$

Define

$$J = \{z \in \mathsf{F} \mid \forall \mathfrak{P}/\mathfrak{p} \quad \upsilon_{\mathfrak{P}}(z) \geq \upsilon_{\mathfrak{P}}(\mathsf{Con}_{\mathsf{F}/\mathsf{E}}(\omega) - \mathfrak{a}')\}.$$

J is closed under addition and under multiplication by $\mathcal{O}'_{\mathfrak{p}}$ and so J is an $\mathcal{O}'_{\mathfrak{p}}$ -module. Furthermore, $\mathrm{Tr}_{\mathsf{F}/\mathsf{E}}(J)$ is an $\mathcal{O}_{\mathfrak{p}}$ -module.

$$J = \{ z \in \mathsf{F} \ | \ \forall \mathfrak{P}/\mathfrak{p} \ \upsilon_{\mathfrak{P}}(z) \geq \upsilon_{\mathfrak{P}}(\mathsf{Con}_{\mathsf{F}/\mathsf{E}}(\omega) - \mathfrak{a}') \}.$$
By WAT $\exists z' \in \mathsf{F} \text{ s.t.}$

$$d\mathfrak{P}/\mathfrak{p} \quad v_{\mathfrak{P}}(z) = v_{\mathfrak{P}}(\mathsf{Con}_{\mathsf{F}/\mathsf{E}}(\omega) - \mathfrak{a}').$$

In particular, $z' \in J$ and

$$v_{\mathfrak{P}'}(z') < -d(\mathfrak{P}'/\mathfrak{p}),$$

and so $z' \notin C_{\mathfrak{p}}$. Thus, $\exists v \in \mathcal{O}'_{\mathfrak{p}}$ s.t.

 $\operatorname{Tr}_{\mathsf{F}/\mathsf{E}}(vz') \notin \mathcal{O}_{\mathfrak{p}}.$

As J is an $\mathcal{O}'_{\mathfrak{p}}$ -module, $vz' \in J$ and so $\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(J) \not\subseteq \mathcal{O}_{\mathfrak{p}}$.

・ロン ・四 と ・ ヨ と ・ 日

Proof.

$$J = \{z \in \mathsf{F} \mid \forall \mathfrak{P}/\mathfrak{p} \ v_{\mathfrak{P}}(z) \geq v_{\mathfrak{P}}(\mathsf{Con}_{\mathsf{F}/\mathsf{E}}(\omega) - \mathfrak{a}')\}.$$

Let $t \in \mathsf{E}$ be with $v_{\mathfrak{p}}(t) = 1$. Thus, for a sufficiently large r,

$$t^rJ\subseteq igcap_{\mathfrak{P}}\mathcal{O}_\mathfrak{P}=\mathcal{O}'_\mathfrak{p}.$$

Hence,

$$t^{r}\operatorname{Tr}_{\mathsf{F}/\mathsf{E}}(J) = \operatorname{Tr}_{\mathsf{F}/\mathsf{E}}(t^{r}J) \subseteq \mathcal{O}_{\mathfrak{p}} \implies \upsilon_{\mathfrak{p}}(\operatorname{Tr}_{\mathsf{F}/\mathsf{E}}(J)) \geq -r.$$

In this case, we proved in a previous unit that

$$\operatorname{Tr}_{\mathsf{F}/\mathsf{E}}(J) = t^m \mathcal{O}_{\mathfrak{p}}$$

for some $m \in \mathbb{Z}$. In our case $m \leq -1$ as otherwise $\operatorname{Tr}_{\mathsf{F}/\mathsf{E}}(J) \subseteq \mathcal{O}_{\mathfrak{p}}$.

・ロン ・四 と ・ ヨン ・ ヨ

Proof.

Recall that (ω) is the largest divisor in $\mathcal{D}(\mathsf{E})$ on which ω vanishes. Thus, ω does not vanish on $\Lambda_{\mathsf{E}}((\omega) + \mathfrak{p})$. Namely,

$$\exists \alpha \in \Lambda_{\mathsf{E}}((\omega) + \mathfrak{p}) \quad \text{ s.t. } \quad \omega(\alpha) \neq 0.$$

Note that $\alpha \notin \Lambda_{\mathsf{E}}((\omega))$.

Since for all other prime divisors $\mathfrak{q} \neq \mathfrak{p}$ we have

$$v_{\mathfrak{q}}((\omega)) = v_{\mathfrak{q}}((\omega) + \mathfrak{p})$$

we conclude that

$$\begin{split} \upsilon_{\mathfrak{p}}(\alpha_{\mathfrak{p}}) &\geq -\upsilon_{\mathfrak{p}}((\omega) + \mathfrak{p}) = -\upsilon_{\mathfrak{p}}((\omega)) - 1, \\ \upsilon_{\mathfrak{p}}(\alpha_{\mathfrak{p}}) \not\geq -\upsilon_{\mathfrak{p}}((\omega)), \end{split}$$

and so

$$v_{\mathfrak{p}}(\alpha_{\mathfrak{p}}) = -v_{\mathfrak{p}}((\omega)) - 1.$$

Proof.

Define $\gamma, \gamma' \in \mathbb{A}_{\mathsf{E}}$ as follows

$$\gamma_{\mathfrak{q}} = \begin{cases} \alpha_{\mathfrak{p}}, & \mathfrak{q} = \mathfrak{p} \\ 0, & \mathfrak{q} \neq \mathfrak{p}. \end{cases} \qquad \gamma'_{\mathfrak{q}} = \begin{cases} 0, & \mathfrak{q} = \mathfrak{p} \\ \alpha_{\mathfrak{q}}, & \mathfrak{q} \neq \mathfrak{p}. \end{cases}$$

Note that

• γ, γ' are adeles; • $\gamma + \gamma' = \alpha$; • $\gamma' \in \Lambda_{\mathsf{E}}((\omega))$; and so $\omega(\gamma') = 0$; • $\omega(\gamma) = \omega(\alpha) - \omega(\gamma') = \omega(\alpha) \neq 0$. Write $x = \gamma_{\mathfrak{p}} = \alpha_{\mathfrak{p}}$. Take $y \in \mathsf{E}$ s.t. $v_{\mathfrak{p}}(y) = v_{\mathfrak{p}}((\omega))$. Then, $v_{\mathfrak{p}}(xy) = v_{\mathfrak{p}}(x) + v_{\mathfrak{p}}(y) = (-v_{\mathfrak{p}}((\omega)) - 1) + v_{\mathfrak{p}}((\omega)) = -1 \geq m$. Hence, $xy \in t^m \mathcal{O}_{\mathfrak{p}}$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

э

Proof.

Recall that $\operatorname{Tr}_{\mathsf{F}/\mathsf{E}}(J) = t^m \mathcal{O}_\mathfrak{p}$ and $xy \in t^m \mathcal{O}_\mathfrak{p}$, and so

$$\exists z \in J \text{ s.t. } \mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(z) = xy.$$

Define an adele $\beta \in \mathbbm{A}_{\mathsf{F}/\mathsf{E}}$ by

$$\beta_{\mathfrak{P}} = \begin{cases} zy^{-1}, & \mathfrak{P}/\mathfrak{p}; \\ 0, & \text{otherwise.} \end{cases}$$

As $z \in J$ we have that

$$orall \mathfrak{P} - v_{\mathfrak{P}}(z) \geq v_{\mathfrak{P}}(\mathsf{Con}_{\mathsf{F}/\mathsf{E}}(\omega) - \mathfrak{a}').$$

Thus, using that $v_{\mathfrak{p}}(y) = v_{\mathfrak{p}}((\omega))$

$$egin{aligned} &\upsilon_{\mathfrak{P}}(eta) = \upsilon_{\mathfrak{P}}(z) - \upsilon_{\mathfrak{P}}(y) \ &\geq \upsilon_{\mathfrak{P}}(\mathsf{Con}_{\mathsf{F}/\mathsf{E}}(\omega) - \mathfrak{a}') - \upsilon_{\mathfrak{P}}(\mathsf{Con}_{\mathsf{F}/\mathsf{E}}((\omega))) = -\upsilon_{\mathfrak{P}}(\mathfrak{a}'). \end{aligned}$$

For \mathfrak{P} not over \mathfrak{p} ,

$$v_{\mathfrak{P}}(\beta) = v_{\mathfrak{P}}(\mathbf{0}) = \infty > -v_{\mathfrak{P}}(\mathfrak{a}'),$$

and so $\beta \in \Lambda_{F/E}(\mathfrak{a}')$. Next, we show that $Tr_{F/E}(\beta) = \gamma$. Indeed,

$$\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(\beta)_{\mathfrak{p}} = \mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(zy^{-1}) = y^{-1}\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(z) = y^{-1}yx = \gamma_{\mathfrak{p}}.$$

For $\mathfrak{q} \neq \mathfrak{p}$,

$$\operatorname{Tr}_{\mathsf{F}/\mathsf{E}}(\beta)_{\mathfrak{q}} = \operatorname{Tr}_{\mathsf{F}/\mathsf{E}}(0) = 0 = \gamma_{\mathfrak{q}}.$$

Thus,

$$\omega_1(\beta) = \omega(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(\beta)) = \omega(\gamma) \neq 0.$$

・ロト ・回ト ・ヨト ・ヨト … ヨ

Theorem 7

For every differential ω of E/K \exists ! differential ω' of F/L s.t.

$$\forall \beta \in \mathbb{A}_{\mathsf{F}/\mathsf{E}} \qquad \mathsf{Tr}_{\mathsf{L}/\mathsf{K}}(\omega'(\beta)) = \omega(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(\beta)).$$

Furthermore, if $\omega \neq 0$ then $\omega' \neq 0$ and

 $(\omega') = \operatorname{Con}_{\mathsf{F}/\mathsf{E}}((\omega)) + \operatorname{Diff}(\mathsf{F}/\mathsf{E}).$

э

< E > < E >

Proof.

Set

$$\mathfrak{a} = \mathsf{Con}_{\mathsf{F}/\mathsf{E}}((\omega)) + \mathsf{Diff}(\mathsf{F}/\mathsf{E}).$$

Define $\omega_1 : \mathbb{A}_{F/E} \to K$ by

$$\omega_1 = \omega \circ \mathsf{Tr}_{\mathsf{F}/\mathsf{E}}.$$

Proof.

Recall Lemma 4 which stated that

$$\forall \mathfrak{b} \in \mathcal{D}(\mathsf{F}/\mathsf{L}) \qquad \mathbb{A}_{\mathsf{F}} = \mathbb{A}_{\mathsf{F}/\mathsf{E}} + \Lambda_{\mathsf{F}}(\mathfrak{b}).$$

Using this we will extend ω_1 to $\omega_2 : \mathbb{A}_F \to K$ as follows: Every element of \mathbb{A}_F can be written as $\beta + \gamma$ where $\beta \in \mathbb{A}_{F/E}$ and $\gamma \in \Lambda_F(\mathfrak{a})$. We define

$$\omega_2(\beta + \gamma) = \omega_1(\beta).$$

Differential

Proof.

Every element of \mathbb{A}_{F} can be written as $\beta + \gamma$ where $\beta \in \mathbb{A}_{\mathsf{F}/\mathsf{E}}$ and $\gamma \in \Lambda_{\mathsf{F}}(\mathfrak{a})$. We define

$$\omega_2(\beta + \gamma) = \omega_1(\beta).$$

Note that taking $\gamma = 0 \in \Lambda_{\mathsf{F}}(\mathfrak{a})$ we get

$$\omega_2(\beta) = \omega_2(\beta + 0) = \omega_1(\beta),$$

and so ω_2 does indeed extend ω_1 .

We turn to show that ω_2 is well defined.

If $\beta_1 + \gamma_1 = \beta_2 + \gamma_2$ then $\beta_1 - \beta_2 = \gamma_2 - \gamma_1 \in \mathbb{A}_{F/E} \cap \Lambda_F(\mathfrak{a}) = \Lambda_{F/E}(\mathfrak{a}).$ By Lemma 5, ω_1 is nullified on $\Lambda_{F/E}(\mathfrak{a}) + F$ and so

$$\omega_1(\beta_1) - \omega_1(\beta_2) = \omega_1(\beta_1 - \beta_2) = 0.$$

Therefore,

$$\omega_2(\beta_1+\gamma_1)=\omega_1(\beta_1)=\omega_1(\beta_2)=\omega_2(\beta_2+\gamma_2).$$

Hence, ω_2 is well-defined.

Proof.

Since ω_1 is K-linear so is ω_2 . Lemma 1 then implies that

$$\exists ! \omega' : \mathbb{A}_{\mathsf{F}} \to \mathsf{L} \quad \text{ s.t. } \quad \mathsf{Tr}_{\mathsf{L}/\mathsf{K}} \circ \omega' = \omega_2.$$

We want to show that

 $\forall \beta \in \mathbb{A}_{\mathsf{F}/\mathsf{E}} \qquad \mathsf{Tr}_{\mathsf{L}/\mathsf{K}}(\omega'(\beta)) = \omega(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(\beta)).$

э

Proof.

We want to show that

$$\forall \beta \in \mathbb{A}_{\mathsf{F}/\mathsf{E}} \qquad \mathsf{Tr}_{\mathsf{L}/\mathsf{K}}(\omega'(\beta)) = \omega(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(\beta)).$$

For every $\beta \in \mathbb{A}_{F/E}$ we have

 $\mathsf{Tr}_{\mathsf{L}/\mathsf{K}}(\omega'(\beta)) = \omega_2(\beta) = \omega_1(\beta) = \omega(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(\beta)).$

Proof.

We turn to prove that ω' is a differential. To this end, we will show that ω' vanishes on $\Lambda_F(\mathfrak{a}) + F$.

Otherwise, since $\omega':\mathbb{A}_{\mathsf{F}}\to\mathsf{L}$ is L-linear we will have that

$$\omega'(\Lambda_{\mathsf{F}}(\mathfrak{a}) + \mathsf{F}) = \mathsf{L}.$$

As $\mathsf{Tr}_{\mathsf{L}/\mathsf{K}}$ is onto K, we have that

 $\mathsf{Tr}_{\mathsf{L}/\mathsf{K}}(\omega'(\Lambda_\mathsf{F}(\mathfrak{a})+\mathsf{F}))=\mathsf{K} \quad \Longrightarrow \quad \omega_2(\Lambda_\mathsf{F}(\mathfrak{a})+\mathsf{F})=\mathsf{K}.$

Proof.

$$\omega_2(\Lambda_{\mathsf{F}}(\mathfrak{a}) + \mathsf{F}) = \mathsf{K}. \tag{1}$$

Recall that every element of A_F can be written as $\beta + \gamma$ where $\beta \in A_{F/E}$ and $\gamma \in \Lambda_F(\mathfrak{a})$, and that we defined

$$\omega_2(\beta + \gamma) = \omega_1(\beta).$$

Thus,

$$\omega_2(\Lambda_{\mathsf{F}}(\mathfrak{a})) = \omega_1(0) = 0. \tag{2}$$

Further, by Lemma 5, $\omega_1(F) = 0$. Since $F \hookrightarrow \mathbb{A}_{F/E}$ and ω_2 extend ω_1 on $\mathbb{A}_{F/E}$ we have that

$$\omega_2(\mathsf{F}) = \mathsf{0}. \tag{3}$$

Equations (2),(3) imply

$$\omega_2(\Lambda_{\mathsf{F}}(\mathfrak{a})+\mathsf{F})=0,$$

in contradiction to Equation (1).

We turn to establish uniqueness. Take a differential $\omega'': \mathbb{A}_{\mathsf{F}} \to \mathsf{L}$ s.t.

$$\forall \beta \in \mathbb{A}_{\mathsf{F}/\mathsf{E}} \qquad \mathsf{Tr}_{\mathsf{L}/\mathsf{K}}(\omega''(\beta)) = \mathsf{Tr}_{\mathsf{L}/\mathsf{K}}(\omega'(\beta)) = \omega(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(\beta)).$$

Then, $\eta = \omega'' - \omega'$ is a differential of F/L and, in particular is L-linear, so

 $\forall \beta \in \mathbb{A}_{\mathsf{F}/\mathsf{E}} \qquad \mathsf{Tr}_{\mathsf{L}/\mathsf{K}}(\eta(\beta)) = \mathsf{Tr}_{\mathsf{L}/\mathsf{K}}(\omega''(\beta)) - \mathsf{Tr}_{\mathsf{L}/\mathsf{K}}(\omega'(\beta)) = 0.$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

э

Proof.

$$\operatorname{Tr}_{L/K}(\eta(\mathbb{A}_{F/E})) = 0.$$

As $Tr_{\mathsf{L}/\mathsf{K}}$ is onto, we have that

$$\eta(\mathbb{A}_{\mathsf{F}/\mathsf{E}}) \subsetneq \mathsf{L}.$$

By the L-linearity of η , we get that $\eta(A_{F/E}) = 0$.

Since η is a differential it also vanishes on some $\Lambda_{\mathsf{F}}(\mathfrak{b})$ for some divisor \mathfrak{b} and so, by Lemma 4, η vanishes on \mathbb{A}_{F} , namely, $\omega' = \omega''$.

Proof.

To conclude the proof, we show that

$$(\omega') = \mathfrak{a} = \operatorname{Con}_{\mathsf{F}/\mathsf{E}}((\omega)) + \operatorname{Diff}(\mathsf{F}/\mathsf{E}).$$

We already proved that ω' vanishes on $\mathfrak{a},$ and so we need to prove that \mathfrak{a} is the largest such divisor.

 $\exists \beta \in \Lambda_{\mathsf{F}}(\mathfrak{a}')$ s.t. $\omega'(\beta) \neq 0$.

To this end, take $\mathfrak{a}' \in \mathcal{D}(\mathsf{F})$ s.t. $\mathfrak{a}' \not\leq \mathfrak{a}$. We will show that

Gil Cohen Hurwitz Genus Formula

3. 3

Proof.

We wish to show that

$$\mathfrak{a}' \leq \mathfrak{a} \implies \exists \beta \in \Lambda_{\mathsf{F}}(\mathfrak{a}') \quad \text{s.t.} \quad \omega'(\beta) \neq 0.$$

By Lemma 6,

$$\exists \beta \in \Lambda_{\mathsf{F}/\mathsf{E}}(\mathfrak{a}') \subseteq \Lambda_{\mathsf{F}}(\mathfrak{a}') \quad \text{s.t.} \quad \omega_1(\beta) \neq 0.$$

However, $\beta \in \Lambda_{\mathsf{F}/\mathsf{E}}(\mathfrak{a}')$ and so $\omega_2(\beta) = \omega_1(\beta) \neq 0$.

As $\omega_2(\beta) = \text{Tr}_{L/K}(\omega'(\beta))$ we conclude that $\omega'(\beta) \neq 0$.

Adeles in extensions

2 Differentials in extensions

Gil Cohen Hurwitz Genus Formula

- 4 回 ト 4 三 ト 4 三 ト

æ

The co-trace

Definition 8

The map

$$\mathsf{cotr}_{\mathsf{F}/\mathsf{E}}: \Omega_{\mathsf{E}/\mathsf{K}} o \Omega_{\mathsf{F}/\mathsf{L}}$$
 $\omega \mapsto \omega'$

that is defined implicitly by the property

$$\operatorname{Tr}_{\mathsf{L}/\mathsf{K}} \circ \operatorname{cotr}_{\mathsf{F}/\mathsf{E}}(\omega) = \omega \circ \operatorname{Tr}_{\mathsf{F}/\mathsf{E}}$$

on $\mathbb{A}_{\mathsf{F}/\mathsf{E}}$ is called the co-trace.

The co-trace

Claim 9

Let $\omega_1, \omega_2 \in \Omega_{\mathsf{E}/\mathsf{K}}$. Then,

$$\operatorname{cotr}_{\mathsf{F}/\mathsf{E}}(\omega_1 + \omega_2) = \operatorname{cotr}_{\mathsf{F}/\mathsf{E}}(\omega_1) + \operatorname{cotr}_{\mathsf{F}/\mathsf{E}}(\omega_2).$$

Proof.

We have that

$$\begin{split} &\mathsf{Tr}_{\mathsf{L}/\mathsf{K}}\circ\mathsf{cotr}_{\mathsf{F}/\mathsf{E}}(\omega_1)=\omega_1\circ\mathsf{Tr}_{\mathsf{F}/\mathsf{E}},\\ &\mathsf{Tr}_{\mathsf{L}/\mathsf{K}}\circ\mathsf{cotr}_{\mathsf{F}/\mathsf{E}}(\omega_2)=\omega_2\circ\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}. \end{split}$$

Thus,

$$\begin{split} & \operatorname{Tr}_{\mathsf{L}/\mathsf{K}} \circ (\operatorname{cotr}_{\mathsf{F}/\mathsf{E}}(\omega_1) + \operatorname{cotr}_{\mathsf{F}/\mathsf{E}}(\omega_2)) = \\ & \operatorname{Tr}_{\mathsf{L}/\mathsf{K}} \circ \operatorname{cotr}_{\mathsf{F}/\mathsf{E}}(\omega_1) + \operatorname{Tr}_{\mathsf{L}/\mathsf{K}} \circ \operatorname{cotr}_{\mathsf{F}/\mathsf{E}}(\omega_2) = \\ & \omega_1 \circ \operatorname{Tr}_{\mathsf{F}/\mathsf{E}} + \omega_2 \circ \operatorname{Tr}_{\mathsf{F}/\mathsf{E}} = (\omega_1 + \omega_2) \circ \operatorname{Tr}_{\mathsf{F}/\mathsf{E}}, \end{split}$$

and the proof follows by the (implicit) definition of $\operatorname{cotr}_{\mathsf{F}/\mathsf{E}}(\omega_1 + \omega_2)$.

The co-trace

Recall that for $\omega\in\Omega_{\mathsf{E}/\mathsf{K}}$ and $x\in\mathsf{E},$ we defined $x\omega\in\Omega_{\mathsf{E}/\mathsf{K}}$ by

$$\forall \alpha \in \mathbb{A}_{\mathsf{E}} \qquad (x\omega)(\alpha) = \omega(x\alpha).$$

Claim 10

Let $\omega \in \Omega_{\mathsf{E}/\mathsf{K}}$, and $x \in \mathsf{E}$. Then,

$$\operatorname{cotr}_{\mathsf{F}/\mathsf{E}}(x\omega) = x \cdot \operatorname{cotr}_{\mathsf{F}/\mathsf{E}}(\omega).$$

Proof.

Let

$$\varphi_{\mathsf{x}} : \mathbb{A}_{\mathsf{F}/\mathsf{E}} \to \mathbb{A}_{\mathsf{F}/\mathsf{E}}$$
$$\alpha \mapsto \mathbf{x}\alpha.$$

Recall that by the implicit definition of $\mathsf{cotr}_{\mathsf{F}/\mathsf{E}}$ we have that on $\mathbb{A}_{\mathsf{F}/\mathsf{E}},$

$$\mathsf{Tr}_{\mathsf{L}/\mathsf{K}} \circ \mathsf{cotr}_{\mathsf{F}/\mathsf{E}}(\omega) = \omega \circ \mathsf{Tr}_{\mathsf{F}/\mathsf{E}}$$

Thus,

$$\mathsf{Tr}_{\mathsf{L}/\mathsf{K}} \circ \mathsf{cotr}_{\mathsf{F}/\mathsf{E}}(\omega) \circ \varphi_x = \omega \circ \mathsf{Tr}_{\mathsf{F}/\mathsf{E}} \circ \varphi_x.$$

Now, for every $\alpha \in \mathbb{A}_{\mathsf{F}/\mathsf{E}}$,

$$(\mathsf{Tr}_{\mathsf{F}/\mathsf{E}} \circ \varphi_x)(\alpha) = \mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(x\alpha) = x\mathsf{Tr}_{\mathsf{F}/\mathsf{E}}(\alpha) = (\varphi_x \circ \mathsf{Tr}_{\mathsf{F}/\mathsf{E}})(\alpha).$$

Therefore, on $\mathbb{A}_{\mathsf{F}/\mathsf{E}}\text{,}$

$$\mathsf{Tr}_{\mathsf{F}/\mathsf{E}} \circ \varphi_x = \varphi_x \circ \mathsf{Tr}_{\mathsf{F}/\mathsf{E}}.$$

Thus, on $\mathbb{A}_{\mathsf{F}/\mathsf{E}}$,

$$\operatorname{Tr}_{\mathsf{L}/\mathsf{K}} \circ \operatorname{cotr}_{\mathsf{F}/\mathsf{E}}(\omega) \circ \varphi_x = \omega \circ \varphi_x \circ \operatorname{Tr}_{\mathsf{F}/\mathsf{E}}.$$

イロト イヨト イヨト イヨト

$$\mathsf{Tr}_{\mathsf{L}/\mathsf{K}} \circ \mathsf{cotr}_{\mathsf{F}/\mathsf{E}}(\omega) \circ \varphi_x = \omega \circ \varphi_x \circ \mathsf{Tr}_{\mathsf{F}/\mathsf{E}}.$$

But

$$x\omega = \omega \circ \varphi_x,$$

$$x \cdot \operatorname{cotr}_{\mathsf{F}/\mathsf{E}}(\omega) = \operatorname{cotr}_{\mathsf{F}/\mathsf{E}}(\omega) \circ \varphi_x,$$

and so on $\mathbb{A}_{\mathsf{F}/\mathsf{E}}\text{,}$

$$\operatorname{Tr}_{\mathsf{L}/\mathsf{K}} \circ (x \cdot \operatorname{cotr}_{\mathsf{F}/\mathsf{E}}(\omega)) = (x\omega) \circ \operatorname{Tr}_{\mathsf{F}/\mathsf{E}}.$$

The proof follows by the (implicit) definition of $cotr_{F/E}$.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Claim 11

Let F/E and F'/F be finite separable extensions of function fields. Then,

 $\mathsf{cotr}_{\mathsf{F}'/\mathsf{E}} = \mathsf{cotr}_{\mathsf{F}'/\mathsf{F}} \circ \mathsf{cotr}_{\mathsf{F}/\mathsf{E}}.$

As with all tower type statement, we omit the proof.

Adeles in extensions

2 Differentials in extensions

æ

Theorem 12

Let F/L be a finite separable extension of $\mathsf{E}/\mathsf{K}.$ Let $g_\mathsf{E},g_\mathsf{F}$ be the corresponding genera. Then,

$$2g_{\mathsf{F}} - 2 = \frac{[\mathsf{F}:\mathsf{E}]}{[\mathsf{L}:\mathsf{K}]} \cdot (2g_{\mathsf{E}} - 2) + \mathsf{deg}\,\mathsf{Diff}(\mathsf{F}/\mathsf{E}).$$

◆□▶ ◆□▶ ◆ ミ ▶ ◆ ミ ▶ ● ○ ○ ○ ○

Hurwitz Genus Formula

$$2g_{\mathsf{F}} - 2 = \frac{[\mathsf{F}:\mathsf{E}]}{[\mathsf{L}:\mathsf{K}]} \cdot (2g_{\mathsf{E}} - 2) + \mathsf{deg}\,\mathsf{Diff}(\mathsf{F}/\mathsf{E}).$$

Proof.

Take $0 \neq \omega \in \Omega_{\mathsf{E}/\mathsf{K}}$. By Theorem 7,

$$(\operatorname{cotr}_{\mathsf{F}/\mathsf{E}}(\omega)) = \operatorname{Con}_{\mathsf{F}/\mathsf{E}}((\omega)) + \operatorname{Diff}(\mathsf{F}/\mathsf{E}).$$
 (4)

As (ω), (cotr_{F/E}(ω)) are canonical divisors of E/K and F/L, respectively, Riemann-Roch theorem implies that

$$\deg_{\mathsf{E}}((\omega)) = 2g_{\mathsf{E}} - 2 \qquad \qquad \deg_{\mathsf{F}}((\operatorname{cotr}_{\mathsf{F}/\mathsf{E}}(\omega))) = 2g_{\mathsf{F}} - 2.$$

The proof then follows by taking \deg_F on Equation (4) and using that

$$\deg_{\mathsf{F}}(\mathsf{Con}_{\mathsf{F}/\mathsf{E}}((\omega))) = \frac{[\mathsf{F}:\mathsf{E}]}{[\mathsf{L}:\mathsf{K}]} \cdot \deg_{\mathsf{E}}((\omega)).$$