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Expander Graphs

Three forms of expansion

Vertex expansion

Definition

Let G = (V ,E ) be an undirected graph. For S ✓ V we define the
neighborhood of S by

�(S) = {u 2 V | 9v 2 S uv 2 E}.

Definition

An undirected graph G = (V ,E ) is a (k , a)-vertex expander if for
every S ⇢ V of size at most k it holds that |�(S)| � a|S |.



Expander Graphs

Three forms of expansion

Vertex expansion

Theorem

For every d � 3 there is ↵ > 0 such that the following holds. For

every integer n � 1 there exists a d-regular undirected graph on n

vertices that is an (↵n, d � 1.01)-vertex expander.
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Expander Graphs

Three forms of expansion

Spectral expanders

Definition

Let G = (V ,E ) be an undirected graph. The spectral gap of G is
defined by

�(G ) = !1(G )� !(G ) = 1� !(G ),

where, recall, !(G ) = max(!2(G ),�!n(G )).

We say that G is a �-spectral expander if �(G ) � �.

Recall that the spectral gap is related to the rate of convergence of
a random walk as

!(G ) = max
p
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Expander Graphs

Three forms of expansion

Spectral expanders

Theorem

If G is a �-spectral expander then it is an (n
2
, 1 + �)-vertex

expander.

To prove the theorem, we define

Definition

Let p be a distribution. The collision probability of p is the
probability two independent samples from p are equal. Namely,

CP(p) =
X

x

p(x)2.
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Expander Graphs

Three forms of expansion

Spectral expanders

Lemma

For every probability distribution p 2 [0, 1]n,

1 CP(p) = kpk2 = kp� uk2 + 1

n
.

2 CP(p) � 1

| sup(p)| .
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Expander Graphs

Three forms of expansion

Spectral expanders

We now prove the theorem, restated below.

Theorem

If G is a �-spectral expander then it is an (n
2
, 1 + �)-vertex

expander.
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Expander Graphs

Three forms of expansion

Extra space for the proof
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Expander Graphs

Three forms of expansion

Edge expansion

Definition

An undirected graph G = (V ,E ) is a (k , ")-edge expander if for
every S ✓ V of size |S |  k ,

|@(S)| � "d |S |.

Recall that the conductance of S for a d-regular graphs is

�(S) =
|@(S)|

min(d(S), d(V \ S)) =
|@(S)|

d min(|S |, |V \ S |).

Hence, for simplicity, focusing on k = n

2
, in an (n

2
, ")-edge

expander every set of size at most n

2
has conductance at least ".
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Expander Graphs

Three forms of expansion

Edge expansion vs spectral expansion

By Cheeger’s inequality

⌫2
2

 �(G ) 
p
2⌫2.

Now,
1� � = ! = max(!2,�!n) � !2 = 1� ⌫2,

and so �(G ) � ⌫2
2
� �

2
.

For the other direction, we need to make sure �!n  !2. One way
is to add su�ciently many self loops so to guarantee !n � 0.

Ken = Itzw
← ↳ D

T
[o

,

c )



Expander Graphs

Another view on spectral expanders

Spectral norm

Definition

Let A be a real matrix. The spectral norm of A, denoted by kAk,
is given by

kAk = max
0 6=x2Rn

kAxk
kxk .

Geometrically, kAk measures the largest “stretch” A can have.



Expander Graphs

Another view on spectral expanders

Spectral norm

Lemma

The spectral norm of A, equals to the square root of the largest

eigenvalue of ATA. In particular, when A is symmetric,

kAk = max {|↵| : ↵ 2 Spec(A)} .
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Expander Graphs

Another view on spectral expanders

Spectral norm

Lemma

We have the following properties of the spectral norm.

Subadditivity: kA+ Bk  kAk+ kBk.
Submultiplactivity: kABk  kAkkBk.
kaAk  |a| kAk.



Expander Graphs

Another view on spectral expanders

Another view on spectral expanders

Lemma

Let G = (V ,E ) be an undirected regular graph. Then, G is a

�-spectral expander if and only if

WG = �J+ (1� �)E,

where J stands for the n ⇥ n all
1

n
matrix, and kEk  1.

→ ←

{Ma- --AE =I

C- = W - rt

Ty
IT



Expander Graphs

Another view on spectral expanders

Extra space for the proof



Expander Graphs

Another view on spectral expanders

Another view on spectral expanders

It is sometimes more convenient to decompose WG as
WG = J+ E, where kEk  !.
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Expander Graphs

Another view on spectral expanders
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Expander Graphs

The expander mixing lemma

The expander mixing lemma

Given two sets S ,T of vertices, we denote

e(S ,T ) = {uv 2 E | u 2 S , v 2 T}.

Lemma (The expander mixing lemma)

Let G be a d-regular � = 1� ! spectral expander on n vertices.

Let S ,T ✓ V be sets of density ↵,� respectively. Then,

���
|e(S ,T )|

nd
� ↵�

���  !
p
↵(1� ↵)�(1� �).
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Expander Graphs

The expander mixing lemma

Extra space for the proof
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Expander Graphs

The expander mixing lemma

Extra space for the proof
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Expander Graphs

Hitting property of expander walks

Hitting property of expander walks

Theorem

Let G = (V ,E ) be a d-regular � = 1� ! spectral expander. Let

v1, . . . , vt be a random walk in which v1 is sampled uniformly at

random from V . Then, for every B ✓ V having density µ,

Pr [{v1, . . . , vt} ✓ B]  (µ+ !)t .
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Expander Graphs

Hitting property of expander walks

Hitting property of expander walks

Claim

Let P be the diagonal matrix indicating B . Then,

Pr [{v1, . . . , vt} ✓ B] = k(PW)t�1Puk1
= k(PWP)t�1Puk1.
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Expander Graphs

Hitting property of expander walks

Extra space for the proof

llpwPull.
= E. I Enfield

⇐ Pr frets) fired)



Expander Graphs

Hitting property of expander walks

Hitting property of expander walks

Claim

kPJPk  µ+ !.-
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Expander Graphs

Hitting property of expander walks

Extra space for the proof
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Expander Graphs

Hitting property of expander walks
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Expander Graphs

Error reduction via expander random walks

Error reduction via expander random walks

Suppose we have a one-sided error randomized algorithm that uses
r random bits and has constant error probability, say, 1

2
. Our goal

is to reduce the error to " with low cost in randomness.

Naively, we can run the algorithm log(1/") times, using fresh
randomness each time, and return the AND (or OR) of the results.
The randomness complexity is r · log(1/").

Using expanders, we only need r + O(log(1/")) random bits!

We remark that this savings can be obtained using pairwise
independent distributions as well. Then, however, there is a
(1/")O(1) blowup in time complexity.

A similar method works also for two-sided error, where the analysis
is based on the expander Cherno↵ bound.



Expander Graphs

Error reduction via expander random walks

Extra space for the proof
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Expander Graphs

The best spectral expanders - Ramanujan graphs

Ramanujan graphs

A natural question is how large can we make � (equivalently, small
!) as a function of d? In the problem set, you will prove the
Alon-Boppana bound

! � 2
p
d � 1

d
� "(n),

where "(n) ! 0. Remarkably, this is tight: there are graphs with

!  2
p
d � 1

d
.

Graphs meeting this bound are called Ramanujan graphs.

Interestingly, random d-regular graphs achieve, w.h.p, “only”

!  2
p
d�1

d
+ "(n), with "(n) ! 0.
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Expander Graphs

The best spectral expanders - Ramanujan graphs

Ramanujan graphs

A natural question is how large can we make � (equivalently, small
!) as a function of d? In the problem set, you will prove the
Alon-Boppana bound

! � 2
p
d � 1

d
� "(n),

where "(n) ! 0. Remarkably, this is tight: there are graphs with

!  2
p
d � 1

d
.

Graphs meeting this bound are called Ramanujan graphs.

Interestingly, random d-regular graphs achieve, w.h.p, “only”

!  2
p
d�1

d
+ "(n), with "(n) ! 0.


