Expander Graphs
 Following Vadhan, Chapter 4

Gil Cohen

November 30, 2020

Outline

1 Three forms of expansion
2 Another view on spectral expanders

3 The expander mixing lemma

4 Hitting property of expander walks

5 Error reduction via expander random walks

6 The best spectral expanders - Ramanujan graphs

Vertex expansion

Definition

Let $G=(V, E)$ be an undirected graph. For $S \subseteq V$ we define the neighborhood of S by

$$
\Gamma(S)=\{u \in V \mid \exists v \in S u v \in E\} .
$$

Definition

An undirected graph $G=(V, E)$ is a (k, a)-vertex expander if for every $S \subset V$ of size at most k it holds that $|\Gamma(S)| \geq a|S|$.

Vertex expansion

Theorem

For every $d \geq 3$ there is $\alpha>0$ such that the following holds. For every integer $n \geq 1$ there exists a d-regular undirected graph on n vertices that is an ($\alpha n, d-1.01$)-vertex expander.

$$
\alpha=\alpha(d, 0.01)
$$

Spectral expander

$$
(1-\gamma)^{t}=\omega^{t}
$$

Definition

Let $G=(V, E)$ be an undirected graph. The spectral gap of G is defined by

$$
\gamma(G)=\omega_{1}(G)-\omega(G)=1-\omega(G)
$$

where, recall, $\omega(G)=\max \left(\omega_{2}(G),-\omega_{n}(G)\right)$.
We say that G is a γ-spectral expander if $\gamma(G) \geq \gamma$.
Recall that the spectral gap is related to the rate of convergence of a random walk as

$$
\omega(G)=\max _{\mathbf{p}} \frac{\|\mathbf{W} \mathbf{p}-\mathbf{u}\|}{\|\mathbf{p}-\mathbf{u}\|} \quad \ddot{U} \mu \underset{\operatorname{c}}{\mathrm{~L}}
$$

Spectral expanders

$$
\sigma=1-\omega
$$

Theorem

If G is a γ-spectral expander then it is an $\left(\frac{n}{2}, 1+\gamma\right)$-vertex expander.

To prove the theorem, we define

Definition

Let \mathbf{p} be a distribution. The collision probability of \mathbf{p} is the probability two independent samples from pare equal. Namely,

$$
\mathrm{CP}(\mathbf{p})=\sum_{x} \mathbf{p}(x)^{2} .
$$

Spectral expanders

Lemma

For every probability distribution $\mathbf{p} \in[0,1]^{n}$,
$1 \mathrm{CP}(\mathbf{p})=\|\mathbf{p}\|^{2}=\|\mathbf{p}-\mathbf{u}\|^{2}+\frac{1}{n}$.
$2 \mathrm{CP}(\mathbf{p}) \geq \frac{1}{|\sup (\mathbf{p})|}$.
$\prod_{|s u p p(p)|}$

Spectral expanders

We now prove the theorem, restated below.
Theorem
If G is a γ-spectral expander then it is an $\left(\frac{n}{2}, 1+\gamma\right)$-vertex expander.

$$
\begin{aligned}
1-\gamma=\omega= & \max _{p} \frac{\left\|w_{p}-\pi\right\|}{\|p-\pi\|} \\
p= & \text { uniform dist on } S \\
& \left\|w_{p}-\pi\right\|^{2}+\frac{1}{n}=c p\left(w_{p}\right) \geqslant \frac{1}{\left|s_{\text {ip }}\left(w_{p}\right)\right|} \\
& \|p-\pi\|^{2}+\frac{1}{n}=c p(p)=\frac{1}{|s|}
\end{aligned}
$$

Extra space for the proof

$$
\begin{aligned}
& \left\|w_{p}-\pi\right\|^{2} \geq \frac{1}{\left|s_{u_{p} p} w_{p}\right|}-\left.\frac{1}{n}\right|_{\frac{1}{n} n_{n}^{n}}=\left[f_{0}>\right. \\
& \|p-\pi\|^{2}=\frac{1}{|s|}-\frac{1}{n} \quad|\Gamma(s)| \geqslant \frac{|s|}{w^{2}}=\frac{|s|}{(1-r)^{2}} \\
& \frac{\left\|\omega_{p}-\pi\right\|}{\|p-\pi\|} \leq \omega \\
& \left.\frac{1}{|\sigma(s)|}-\frac{1}{n} \leq\left\|\omega_{p-\pi}\right\|^{2} \leq \omega^{2}\left(\frac{1}{|s|}-\frac{1}{n}\right)\right) \\
& \frac{1}{\Gamma(s) \mid} \leqslant \frac{1}{n}+\frac{v^{2}}{|s|} \\
& \begin{array}{l}
\quad \leq \omega^{2}(\\
\leq \omega^{2} \frac{1}{|s|}
\end{array}
\end{aligned}
$$

Edge expansion

Definition

An undirected graph $G=(V, E)$ is a (k, ε)-edge expander if for every $S \subseteq V$ of size $|S| \leq k$,

$$
|\partial(S)| \geq \varepsilon d(S)
$$

Recall that the conductance of S for a d-regular graphs is

$$
\phi(S)=\frac{|\partial(S)|}{\min (d(S), d(V \backslash S))}=\frac{|\partial(S)|}{d \min (|S|,|V \backslash S|)}
$$

Hence, for simplicity, focusing on $k=\frac{n}{2}$, in an $\left(\frac{n}{2}, \varepsilon\right)$-edge expander every set of size at most $\frac{n}{2}$ has conductance at least ε.

Edge expansion vs spectral expansion

By Cheeger's inequality

Now,

$$
1-\gamma=\omega=\max \left(\omega_{2},-\omega_{n}\right) \geq \omega_{2}=1-\nu_{2}
$$

and so $\phi(G) \geq \frac{\nu_{2}}{2} \geq \frac{\gamma}{2}$.
For the other direction, we need to make sure $-\omega_{n} \leq \omega_{2}$. One way is to add sufficiently many self loops so to guarantee $\omega_{n} \geq 0$.

Spectral norm

Definition

Let \mathbf{A} be a real matrix. The spectral norm of \mathbf{A}, denoted by $\|\mathbf{A}\|$, is given by

$$
\|\mathbf{A}\|=\max _{0 \neq \mathbf{x} \in \mathbb{R}^{n}} \frac{\|\mathbf{A} \mathbf{x}\|}{\|\mathbf{x}\|}
$$

Geometrically, $\|\mathbf{A}\|$ measures the largest "stretch" A can have.

Spectral norm

Lemma

The spectral norm of \mathbf{A}, equals to the square root of the largest eigenvalue of $\mathbf{A}^{T} \mathbf{A}$. In particular, when \mathbf{A} is symmetric,

$$
\|\mathbf{A}\|=\max \{|\alpha|: \alpha \in \operatorname{Spec}(\mathbf{A})\}
$$

$$
\frac{\|A x\|^{2}}{\|x\|^{2}}=
$$

Spectral norm

Lemma

We have the following properties of the spectral norm.

- Subadditivity: $\|\mathbf{A}+\mathbf{B}\| \leq\|\mathbf{A}\|+\|\mathbf{B}\|$.
- Submultiplactivity: $\|\mathbf{A B}\| \leq\|\mathbf{A}\|\|\mathbf{B}\|$.
- $\|a \mathbf{A}\| \leq|a|\|\mathbf{A}\|$.

Another view on spectral expander

Lemma
Let $G=(V, E)$ be an undirected regular graph．Then，G is a γ－spectral expander if and only if

$$
\frac{1}{d} M_{G}=A_{G}=\mathbf{W}_{G}=\gamma \mathbf{J}+\underbrace{(1-\gamma)} \mathbf{E}_{,}
$$

where \mathbf{J} stands for the $n \times n$ all $\frac{1}{n}$ matrix，and $\|\mathbf{E}\| \leq 1$ ．

$$
E=\frac{W-\gamma J}{1-\gamma}
$$

Extra space for the proof

Another view on spectral expanders
It is sometimes more convenient to decompose \mathbf{W}_{G} as

$$
\begin{aligned}
& \mathbf{W}_{G}=\mathbf{J}+\mathbf{E} \text {, where }\|\mathbf{E}\| \leq \omega \text {. } \\
& \mathbf{W}_{G}=\mathbf{J}+\mathbf{E} \text {, where }\|\mathbf{E}\| \leq \omega \text {. } \\
& \sigma J+\underbrace{\left.(1-\gamma) E_{-()^{n} \pi}\right)}_{E_{\text {roo }}} \\
& \omega=\sum_{i=1}^{n} \omega_{i} \psi_{i} \psi_{i}^{\top}=J+\underbrace{\sum_{i=2}^{n} \omega_{i} \psi_{i} \Psi_{i}^{\top}} \\
& \omega_{1}=1 \\
& \Psi_{1}=\left(\begin{array}{c}
\frac{1}{\sqrt{n}} \\
\vdots \\
\frac{1}{\sqrt{n}}
\end{array}\right)=\sqrt{n} \\
& \psi_{1} \psi_{1}{ }^{\top}=J
\end{aligned}
$$

Outline

1 Three forms of expansion
2 Another view on spectral expander

3 The expander mixing lemma

4 Hitting property of expander walks

5 Error reduction via expander random walks

6 The best spectral expander - Ramanujan graphs

The expander mixing lemma

Given two sets S, T of vertices, we denote

$$
e(S, T)=\{u v \in E \mid u \in S, v \in T\}
$$

Lemma (The expander mixing lemma)

Let G be a d-regular $\gamma=1-\omega$ spectral expander on n vertices.
Let $S, T \subseteq V$ be sets of density α, β respectively. Then,

$$
\left|\frac{|e(S, T)|}{n d}-\alpha \beta\right| \leq \omega \sqrt{\alpha(1-\alpha) \beta(1-\beta)} .
$$

$$
\frac{e(S, T)}{n d}=\frac{|S|(T \mid}{n \cdot n}=\alpha \beta
$$

Extra space for the proof

$$
\begin{aligned}
& \Lambda_{S}^{\top} M \Lambda_{T}=|e(S, T)| \\
& \sum_{n v c E} \mu_{n v} \Lambda_{S}(u) \Lambda_{T}(v) \\
& \Lambda_{S}^{\top} W \Lambda_{T} \left.=\frac{1}{d}|e(S, T)| . \quad \right\rvert\, S \\
& \Lambda_{S}^{\top} J \Lambda_{T}=n \alpha \beta=\frac{|S||T|}{n} \sqrt{n} \\
& \Lambda_{S}^{\top} m r^{\top} \Lambda_{T}=\frac{|s|}{\sqrt{n}} \frac{|T|}{\sqrt{n}} \quad \sqrt{n}
\end{aligned}
$$

$$
1 s=\sqrt{I_{2}}
$$

$$
\sqrt{n}=\psi_{1}
$$

Extra space for the proof

$$
\begin{aligned}
& W=J+E,\|E\| \leq \omega \\
& \frac{1}{n} \Lambda_{S}^{\top} W \Lambda_{T}=\alpha \beta+\frac{\Lambda_{S}^{\top} E \Lambda_{T}}{n} \\
& C \leq \sqrt{|\pi|-\frac{\pi I^{2}}{n}} \\
& \frac{e(s, T)}{n d} \\
& \left|\frac{e(S, T)}{n d}-\alpha \beta\right| \leq \frac{1}{n} \mu_{s}^{\top} E \mu_{J} \\
& \underset{-\rightarrow}{E}=\sum_{i=2}^{n} \omega_{i} \psi_{i} \psi_{i}^{\top}
\end{aligned}
$$

Hitting property of expander walks

Theorem

Let $G=(V, E)$ be a d-regular $\gamma=1-\omega$ spectral expander. Let v_{1}, \ldots, v_{t} be a random walk in which v_{1} is sampled uniformly at random from V. Then, for every $B \subseteq V$ having density μ,

$$
\operatorname{Pr}\left[\left\{v_{1}, \ldots, v_{t}\right\} \subseteq B\right] \leq(\mu+\omega)^{t}
$$

$$
(\mu+\sqrt{\omega})^{t}
$$

$$
\mu=\frac{|B|}{u}
$$

Hitting property of expander walks
Claim
Let \mathbf{P} be the diagonal matrix indicating B. Then,

$$
\operatorname{Pr}\left[\left\{v_{1}, \ldots, v_{t}\right\} \subseteq B\right] \xlongequal{=}\left\|(\mathbf{P W})^{t-1} \mathbf{P u}\right\|_{1}
$$

$$
u=\left(\begin{array}{c}
\frac{1}{n} \\
\vdots \\
\vdots
\end{array}\right)
$$

$$
=\left\|(\mathbf{P W P})^{t-1} \mathbf{P u}\right\|_{1} .
$$

PWPPWPPWPPu

Extra space for the proof

Hitting property of expander walks

Extra space for the proof

$$
\begin{aligned}
& \begin{array}{l}
\|P J P\| \\
\left\|P J P_{x}\right\|
\end{array} \left\lvert\, \begin{array}{l}
\mu \cdot(\mu+\omega)^{t-1} \\
\leqslant(\mu+\omega)^{t}
\end{array} \quad \alpha=\frac{1}{n} \sum_{v \in B} x_{v}\right. \\
& B \rightarrow x_{x_{0}}^{B} \xrightarrow{T} \rightarrow \\
& \left\|P J P_{x}\right\|=\sqrt{|B| \cdot \alpha^{2}}=\frac{\sqrt{|B|}}{n} \sqrt{\left(\sum_{v \in B} x_{v}\right)^{2}} \\
& \leqslant \frac{\sqrt{|B|}}{n} \cdot \sqrt{\sum_{v \in B} x_{v}^{2}} \cdot \sqrt{|B|} \leqslant \mu\|x\|
\end{aligned}
$$

Outline

1 Three forms of expansion

2 Another view on spectral expanders

3 The expander mixing lemma

4 Hitting property of expander walks

5 Error reduction via expander random walks

6 The best spectral expanders - Ramanujan graphs

Error reduction via expander random walks

Suppose we have a one-sided error randomized algorithm that uses r random bits and has constant error probability, say, $\frac{1}{2}$. Our goal is to reduce the error to ε with low cost in randomness.

Naively, we can run the algorithm $\log (1 / \varepsilon)$ times, using fresh randomness each time, and return the AND (or OR) of the results.
The randomness complexity is $r \cdot \log (1 / \varepsilon)$.
Using expanders, we only need $r+O(\log (1 / \varepsilon))$ random bits!
We remark that this savings can be obtained using pairwise independent distributions as well. Then, however, there is a $(1 / \varepsilon)^{O(1)}$ blowup in time complexity.

A similar method works also for two-sided error, where the analysis is based on the expander Chernoff bound.

Expander Graphs
$\left\llcorner_{\text {Error reduction via expander random walks }}\right.$
Extra space for the proof

$$
\lambda^{r}+t \cdot \log d=r+0\left(\log \frac{1}{2}\right)
$$

$$
\begin{aligned}
& \operatorname{Pr}\left\{\left\lvert\,\left\{\left.\frac{\left\{v_{1}, \ldots, v_{t}\right\} \cap B \mid}{t}-\mu \right\rvert\, \geqslant \varepsilon\right]\right.\right. \\
& \times \operatorname{Br} \\
& \leq e^{-c} \prod_{\gamma<\lambda} \varepsilon^{2} t \\
& \omega=\frac{1}{4} \quad E \subset B \text { : } \\
& e^{-c} \gamma^{\varepsilon^{2} t} \\
& 0 \leq \gamma=1-\omega
\end{aligned}
$$

Ramanujan graphs

A natural question is how large can we make γ (equivalently, small ω) as a function of d ? In the problem set, you will prove the Alon-Boppana bound

$$
\omega \geq \frac{2 \sqrt{d-1}}{d}-\varepsilon(n)
$$

F_{p} $3 / 16$
where $\varepsilon(n) \rightarrow 0$. Remarkably, this is tight: there are graphs with

$$
\omega \leq \frac{2 \sqrt{d-1}}{d}
$$

Graphs meeting this bound are called Ramanujan graphs.
Interestingly, random d-regular graphs achieve, w.h.p, "only"
$\omega \leq \frac{2 \sqrt{d-1}}{d}+\varepsilon(n)$, with $\varepsilon(n) \rightarrow 0$.

Ramanujan graphs

A natural question is how large can we make γ (equivalently, small ω) as a function of d ? In the problem set, you will prove the Alon-Boppana bound

$$
\omega \geq \frac{2 \sqrt{d-1}}{d}-\varepsilon(n)
$$

where $\varepsilon(n) \rightarrow 0$. Remarkably, this is tight: there are graphs with

$$
\omega \leq \frac{2 \sqrt{d-1}}{d}
$$

Graphs meeting this bound are called Ramanujan graphs.
Interestingly, random d-regular graphs achieve, w.h.p, "only"
$\omega \leq \frac{2 \sqrt{d-1}}{d}+\varepsilon(n)$, with $\varepsilon(n) \rightarrow 0$.

