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Valuation of the field of rational functions

Last week we categorized (up to equivalence) all the valuations of the field of
rational functions F (x). We proved that

V = {vp | 0 6= p ∈ F [x ] irreducible} ∪ {v∞}.

We now want to study the valuations over F of an algebraic extension E/F (x).
This is the main goal of the course, we will start with the following theorem.

Theorem 1
Let E/F (x) be an algebraic extension, and let ϕ : F (x)→ L ∪ {∞} be a place,
where L is algebraically closed. Then there is a place ϕ̃ : E → L ∪ {∞} such
that ϕ̃ |F (x)= ϕ.

Note that the case that ϕ = 0 is trivial, so from now we assume ϕ 6= 0.
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Step one – Finding the Ring

As ϕ : F (x)→ L ∪ {∞} is a place, it induces an homomorphism ϕ0 : R0 → L
for a valuation ring R0.

Consider all the tuples

{(R ′, ϕ′) | R0 ⊆ R ′ a subring of E , ϕ′ : R ′ → L, ϕ′ |R0= ϕ0}.

This set is not empty as it contains (R0, ϕ0). We can define an order on the
tuples (R ′′, ϕ′′) ≤ (R ′, ϕ′) if R ′′ ⊆ R ′ and ϕ′|R ′′ = ϕ′′.
If {(Rα, ϕα)}α∈I is a chain, then (∪α∈IRα,∪α∈Iϕα) is an upper bound on the
chain. Thus, by Zorn’s lemma there is a maximal element in the set, denote it by
(R , ϕ′).
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Step two – define the place

We want to prove that R is a valuation ring, and therefore we can extend
ϕ̃ : E → L ∪ {∞} by

ϕ̃(x) =

{
ϕ′(x) x ∈ R

∞ otherwise
.

One can easily verify that if R is a valuation ring then ϕ̃ is a place, and
ϕ̃ |F (x)= ϕ.
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Step three – R is a valuation ring.

We will prove the following lemma.

Lemma 2
R has a unique maximal ideal P = ker(ϕ′).

Proof.
As Im(ϕ′) is contained in a field it follows that P is prime. As for the uniqueness
and maximality, denote R ′ = { rs | s /∈ P}.
It holds that (a) R ⊆ R ′. ϕ′ can be extended to a morphism ϕ′′ : R ′ → L, and
thus, as (R , ϕ′) is maximal, it holds that R = R ′. Therefore, if s ∈ R \ P then
s−1 ∈ R , thus R \ P ⊆ R× ans the uniqueness follows.

Denote that K := ϕ′(R) ∼= R/P . K ⊆ L is a subfield.
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Step three – R is a valuation ring.

Lemma 3 (Chevalley’s lemma)

ϕ′ can be extended to a least one of the rings R[z ] or R[z−1].

Proof.

Extend ϕ′ to a morphism ψ : R[x ]→ K [x ] as follows: ψ(
∑

aix
i) =

∑
ϕ′(ai)x

i .
We want to use ψ, together with the substitution λ : x → z to extend ϕ′ to
K [α] for some α ∈ L. Consider I = {f ∈ R[x ] | f (z) = 0} an ideal in R[x ]. It
holds that λ(I ) = 0, thus we need to find α such that g(α) = 0 for g ∈ ψ(I ). If
we can find such α we are done. Note that as ϕ′ is onto K , then psi is onto
K [x ] and thus ψ(I ) is an ideal of K [x ]. What are the possible cases:
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Step three – R is a valuation ring.

Proof cont.
ψ(I ) = 0, then we can choose any α ∈ L and set z → α, to extend ϕ′.
ψ(I ) = 〈1f 〉 ( K [x ]. Then as L is algebraically closed we can choose α to
be a root of f .
Define I ′ = {f ∈ R[x ] | f (z−1) = 0}, then if one of the previous items holds
for ψ(I ′) we can extend ϕ′ : R[z−1]→ L.
ψ(I ) = ψ(I ′) = K [x ]. Then we can not find such α. In this case there are
f , g such that f (z) = 0, ψ(f ) = 1 and g(z−1) = 0, ψ(g) = 1. Assume
both f , g have minimal degree. It holds that deg(f ), deg(g) ≥ 1. Assume
w.l.o.g n := deg(f ) ≥ deg(g) =: m ≥ 1. Consider the polynomial g0(z) =
xmg(x−1), g0(z) = zmg(z−1) = 0, ψ(g0) = xm. Divide f in g0 to obtain
f = g0q + r with deg(r) < m ≤ n.
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Step three – R is a valuation ring.

Proof cont.
0 = f (z) = g0(z)q(z) + r(z) = 0+ r(z)⇒ r(z) = 0.
1 = ψ(f ) = ψ(g0)ψ(q) + ψ(r) which implies ψ(q) = 0 and therefore ψ(r) = 1,
and this is a contradiction to the minimally of f .

Thus, as (R , ϕ′) are maximal, it follows that for every z ∈ E× either R[z ] = R
or R[z−1] = R and thus R is a valuation ring and the theorem holds.
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Valuations

Corollary 4
Let E/F (x) be an algebraic extension, and let v : F (x)→ Z ∪ {∞} be a
valuation. Then there is a place ṽ : E → Z ∪ {∞} such that ṽ |F (x) is
equivalent to v .

Proof.

Let L be a field and let ϕ : F (x)→ L ∪ {∞} ⊆ L ∪ {∞} be the place
corresponding to v . Let R = Qv be v ’s valuation ring. Thus we can use
Theorem 1 to construct ϕ̃ : E → L ∪ {∞}. ϕ̃ is a place and so there is a
corresponding valuation ṽ . It is easy to verify that ṽ |F (x) is a valuation and is
indeed equivalent to v .
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Valuations

Corollary 5
Let E/F be a field extension and let x ∈ E of transcendental degree 1. Let
x ∈ E be a transcendental element. Then there is valuations v , v ′ of E over F
with v(x) > 0, v ′(x) < 0.

Proof.
Follows by applying Corollary 4 with vx , v∞ of F (x).
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