Spectral Graph Sparsification

Following Spielman, Chapters 32,33.

Gil Cohen

January 11, 2021

Overview

1 The Loewner order

2 Spectral approximation

3 Resistor networks

4 A probabilistic proof of a near-linear sized sparsifiers

5 Linear Sized Sparsifiers

The Loewner (partial) order

Recall from the problem set.

Definition

Let \mathbf{A}, \mathbf{B} be $n \times n$ symmetric matrices. We write $\mathbf{A} \succcurlyeq \mathbf{B}$ if $\mathbf{A}-\mathbf{B}$ is PSD (which recall we write as $\mathbf{A}-\mathbf{B} \succcurlyeq 0$).

It is best to first consider the definition for diagonal matrices \mathbf{A}, \mathbf{B}.
Note that $\mathbf{A} \succcurlyeq \mathbf{B}$ iff $\mathbf{A}_{i, i} \geq \mathbf{B}_{i, i}$ for all $i \in[n]$.
A useful property that will allow us to prove a more general statement is

$$
\mathbf{A} \succcurlyeq \mathbf{B} \Longrightarrow \mathbf{C}^{T} \mathbf{A C} \succcurlyeq \mathbf{C}^{T} \mathbf{B C} \text { for all } C .
$$

The Loewner order and eigenvalues

Assume \mathbf{A}, \mathbf{B} have a common basis of eigenvectors, with corresponding eigenvalues $\alpha_{1}, \ldots, \alpha_{n}$ and $\beta_{1}, \ldots, \beta_{n}$, respectively. Then,

$$
\mathbf{A} \succcurlyeq \mathbf{B} \Longleftrightarrow \forall i \in[n] \alpha_{i} \geq \beta_{i}
$$

Assume $\alpha_{1} \geq \cdots \geq \alpha_{n}$ are the eigenvalues of \mathbf{A}, and $\beta_{1} \geq \cdots \geq \beta_{n}$ the eigenvalues of \mathbf{B}. Then,

$$
\mathbf{A} \succcurlyeq \mathbf{B} \quad \Longrightarrow \quad \forall i \in[n] \alpha_{i} \geq \beta_{i}
$$

even under no assumption on the eigenvectors. The other direction is (generally) false.

ᄂ The Loewner order

Loewner order and the spectral norm

Claim

For every symmetric matrix A,

$$
\begin{aligned}
\|\mathbf{A}\| \leq c & \Longleftrightarrow-c \leq \alpha_{n} \leq \alpha_{1} \leq c \\
& \Longleftrightarrow-c \boldsymbol{\mathcal { I }} \preccurlyeq \mathbf{A} \preccurlyeq c \boldsymbol{\mathcal { I }} .
\end{aligned}
$$

Recall that if \mathbf{W} is the random walk matrix of G, then G is a $(1-\omega)$-spectral expander iff $\|\mathbf{W}-\mathbf{J}\| \leq \omega$. This is equivalent to

$$
-\omega \mathcal{I} \preccurlyeq \mathbf{W}-\mathbf{J} \preccurlyeq \omega \mathcal{I} .
$$

An equivalent formulation, focusing on the normalized Laplacian is the following multiplicative-type statement.

$$
(1-\omega)(\boldsymbol{I}-\boldsymbol{J}) \preccurlyeq \mathcal{I}-\mathbf{W} \preccurlyeq(1+\omega)(\boldsymbol{I}-\mathbf{J}) .
$$

Overview

1 The Loewner order

2 Spectral approximation

3 Resistor networks

4 A probabilistic proof of a near-linear sized sparsifiers

5 Linear Sized Sparsifiers

Spectral approximation

Definition

Let G, H be graphs on n vertices.

- We write $G \succcurlyeq H$ if $\mathbf{L}_{G} \succcurlyeq \mathbf{L}_{H}$.

■ We say that H an ε-spectral approximation of G if

$$
(1-\varepsilon) \mathbf{L}_{G} \preccurlyeq \mathbf{L}_{H} \preccurlyeq(1+\varepsilon) \mathbf{L}_{G} .
$$

Spectral approximation is a strong notion. It implies closeness of

- conductances,
- eigenvalues,
- effective resistances.

- Spectral approximation

Expanders as spectral approximators of the complete graph

For every $\varepsilon>0$ there exists $c=c(\varepsilon)$ such that for every n there exists a graph G with at most $c n$ edges that ε-approximates the complete graph with self loops. In particular, Ramanujan graphs achieve $c=O\left(1 / \varepsilon^{2}\right)$.

Can we spectral-approximate every graph with a sparse graph?

Theorem

For every $\varepsilon>0$ and every (undirected) graph G on n vertices there exists a weighted graph H with $O\left(n / \varepsilon^{2}\right)$ edges that ε-spectral approximates G.

Overview

1 The Loewner order

2 Spectral approximation

3 Resistor networks

4 A probabilistic proof of a near-linear sized sparsifiers

5 Linear Sized Sparsifiers

Resistor networks and leverage scores

In the recitations we viewed graphs as resistor networks. In particular, the effective resistance between two vertices a, b was defined to be the voltage difference $\mathbf{v}(a)-\mathbf{v}(b)$ when flowing one unit of current to a and out of $b(\mathbf{i}=\mathbf{e}(a)-\mathbf{e}(b))$.

$$
\mathrm{R}_{\mathrm{eff}}(a, b)=(\mathbf{e}(a)-\mathbf{e}(b))^{T} \mathbf{L}^{+}(\mathbf{e}(a)-\mathbf{e}(b))
$$

Definition

The leverage score of an edge e is defined by $\ell_{e}=w_{e} \mathrm{R}_{\text {eff }}(e)$.
We proved that ℓ_{e} is the probability edge e will be included in a random spanning tree (suitably sampled according to the weights).

Overview

1 The Loewner order

2 Spectral approximation

3 Resistor networks

4 A probabilistic proof of a near-linear sized sparsifiers

5 Linear Sized Sparsifiers

A probabilistic proof of a weaker statement

Theorem

For every $\varepsilon>0$ and every weighted graph G on n vertices there exists a weighted graph H with $O\left(n \log (n) / \varepsilon^{2}\right)$ edges that ε-spectral approximates G.

Algorithm. For a parameter c to be set later on, include each edge e of G to H independently with probability $p_{e}=c \ell_{e}$ and set its weight to be $w_{H}(e)=w_{G}(e) / p_{e}$.

There is a technical issue - an edge e might have $p_{e}>1$ (as c will be chosen larger than 1). To solve this we split every edge e to several edges (which does not affect the Laplacian).

Note, the above algorithm can be thought of as taking the union of c uniformly sampled MST (though not quite).

A probabilistic proof of a weaker statement - analysis

We first show that the graph is sparse in expectation.

$$
\mathbb{E}\left[\left|E_{H}\right|\right]=\sum_{e} p_{e}=c \sum_{e} \ell_{e}
$$

Recall that

$$
\ell_{e}=\operatorname{Pr}_{T}[e \in T]=\mathbb{E}_{T}\left[\mathbf{1}_{e \in T}\right]
$$

Thus,

$$
\sum_{e} \ell_{e}=\sum_{e} \mathbb{E}_{T}\left[\mathbf{1}_{e \in T}\right]=\mathbb{E}_{T}\left[\sum_{e} \mathbf{1}_{e \in T}\right]=n-1
$$

Thus, $\mathbb{E}\left[\left|E_{H}\right|\right]=c(n-1)$. By the Chernoff bound, except with probability, $\exp (-c n)$, we have $\left|E_{H}\right| \leq 2 c n$.

$\left\llcorner_{\text {A probabilistic proof of a near-linear sized sparsifiers }}\right.$

A probabilistic proof of a weaker statement - analysis

As for the Laplacian,

$$
\mathbb{E}\left[\mathbf{L}_{H}\right]=\mathbb{E}\left[\sum_{e} w_{H}(e) \mathbf{L}_{e}\right]=\sum_{e} \mathbb{E}\left[w_{H}(e)\right] \mathbf{L}_{e}
$$

Now,

$$
\mathbb{E}\left[w_{H}(e)\right]=p_{e} \cdot \frac{w_{G}(e)}{p_{e}}=w_{G}(e),
$$

and so

$$
\mathbb{E}\left[\mathbf{L}_{H}\right]=\sum_{e} w_{G}(e) \mathbf{L}_{e}=\mathbf{L}_{G}
$$

A probabilistic proof of a weaker statement - analysis

For a symmetric matrix \mathbf{A} let $\alpha_{\min }(\mathbf{A}), \alpha_{\max }(\mathbf{A})$ denote the smallest and largest eigenvalues of \mathbf{A}, respectively.

Theorem (Matrix Chernoff Bound)

Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{m}$ be independent random PSD matrices of bounded norm $\left\|\mathbf{X}_{i}\right\| \leq r$ for all $i \in[m]$. Let $\mathbf{X}=\sum_{i=1}^{m} \mathbf{X}_{i}$ and denote $\bar{\alpha}_{\text {min }}=\alpha_{\text {min }}(\mathbb{E}[\mathbf{X}]), \bar{\alpha}_{\text {max }}=\alpha_{\text {max }}(\mathbb{E}[\mathbf{X}])$. Then, for every $\varepsilon>0$,

$$
\begin{aligned}
& \operatorname{Pr}\left[\alpha_{\min }(\mathbf{X}) \leq(1-\varepsilon) \bar{\alpha}_{\min }\right] \leq n \cdot \exp \left(-\varepsilon^{2} \bar{\alpha}_{\min } / 3 r\right) \\
& \operatorname{Pr}\left[\alpha_{\max }(\mathbf{X}) \geq(1+\varepsilon) \bar{\alpha}_{\max }\right] \leq n \cdot \exp \left(-\varepsilon^{2} \bar{\alpha}_{\max } / 3 r\right)
\end{aligned}
$$

A probabilistic proof of a weaker statement - analysis

Consider the matrix

$$
\mathbf{X}=\mathbf{L}_{G}^{+/ 2} \mathbf{L}_{H} \mathbf{L}_{G}^{+/ 2}
$$

We have that

$$
\mathbb{E}[\mathbf{X}]=\mathbb{E}\left[\mathbf{L}_{G}^{+/ 2} \mathbf{L}_{H} \mathbf{L}_{G}^{+/ 2}\right]=\mathbf{L}_{G}^{+/ 2} \mathbb{E}\left[\mathbf{L}_{H}\right] \mathbf{L}_{G}^{+/ 2}=\mathbf{L}_{G}^{+/ 2} \mathbf{L}_{G} \mathbf{L}_{G}^{+/ 2}=\boldsymbol{\Pi},
$$

where, note, $\boldsymbol{\Pi}$ is the projection to the image of \mathbf{L}_{G}.
We wish to apply the Chernoff bound but Π has 0 as an eigenvalue, rendering the (lower) Chernoff bound ineffective. To get around this technicality, we work in the image of Π.

A probabilistic proof of a weaker statement - analysis

Let $\psi_{1}, \ldots, \psi_{n}$ be an orthonormal basis of \mathbb{R}^{n} composed of eigenvectors of \mathbf{L}_{G} with corresponding eigenvalues
$0=\mu_{1}<\mu_{2} \leq \cdots \leq \mu_{n}$. So,

$$
\mathbf{L}_{G}=\sum_{i=2}^{n} \mu_{i} \psi_{i} \psi_{i}^{T}
$$

Let \mathbf{B} be the $n \times(n-1)$ matrix with column $i \in[n-1]$ equal $\boldsymbol{\psi}_{i+1}$. Note that

$$
\boldsymbol{\Pi}=\mathbf{L}_{G}^{+/ 2} \mathbf{L}_{G} \mathbf{L}_{G}^{+/ 2}=\sum_{i=2}^{n} \boldsymbol{\psi}_{i} \boldsymbol{\psi}_{i}^{T}
$$

and that

$$
\boldsymbol{I}_{n-1}=\mathbf{B}^{T} \Pi \mathbf{B}
$$

A probabilistic proof of a weaker statement - analysis

For applying Chernoff, it will be convenient to write

$$
\mathbf{B}^{T} \mathbf{X} \mathbf{B}=\sum_{e} \mathbf{B}^{T} \mathbf{X}_{e} \mathbf{B}
$$

where

$$
\mathbf{X}_{e}= \begin{cases}\frac{w_{e}}{p_{e}} \mathbf{L}_{G}^{+/ 2} \mathbf{L}_{e} \mathbf{L}_{G}^{+/ 2} & \text { with probability } p_{e} \\ 0 & \text { with probability } 1-p_{e}\end{cases}
$$

and we recall

$$
\mathbb{E}\left[\mathbf{B}^{T} \mathbf{X B}\right]=\mathbf{B}^{T} \mathbb{E}[\mathbf{X}] \mathbf{B}=\mathbf{B}^{T} \boldsymbol{\Pi} \mathbf{B}=\mathcal{I}_{n-1} .
$$

A probabilistic proof of a weaker statement - analysis

We turn to bound the norm of $\mathbf{B}^{T} \mathbf{X}_{a, b} \mathbf{B}$. For that it suffices to bound the norm of $\mathbf{X}_{a, b}$.

$$
\begin{aligned}
\left\|\mathbf{L}_{G}^{+/ 2} \mathbf{L}_{a, b} \mathbf{L}_{G}^{+/ 2}\right\| & =\left\|\mathbf{L}_{G}^{+/ 2}(\mathbf{e}(a)-\mathbf{e}(b))(\mathbf{e}(a)-\mathbf{e}(b))^{T} \mathbf{L}_{G}^{+/ 2}\right\| \\
& =\left((\mathbf{e}(a)-\mathbf{e}(b))^{T} \mathbf{L}_{G}^{+/ 2}\right)\left(\mathbf{L}_{G}^{+/ 2}(\mathbf{e}(a)-\mathbf{e}(b))\right) \\
& =(\mathbf{e}(a)-\mathbf{e}(b))^{T} \mathbf{L}_{G}^{+}(\mathbf{e}(a)-\mathbf{e}(b)) \\
& =\mathrm{R}_{\operatorname{eff}}(a, b) .
\end{aligned}
$$

Recall that

$$
p_{a, b}=c \ell_{a, b}=c w_{a, b} R_{\operatorname{eff}}(a, b),
$$

and so $\left\|\mathbf{B}^{T} \mathbf{X}_{a, b} \mathbf{B}\right\| \leq\left\|\mathbf{X}_{a, b}\right\| \leq \frac{1}{c}$.

A probabilistic proof of a weaker statement - analysis

By the matrix Chernoff bound, except with probability $2 n \cdot \exp \left(-c \varepsilon^{2} / 3\right)$, we have that

$$
1-\varepsilon \leq \alpha_{\min }\left(\mathbf{B}^{T} \mathbf{X} \mathbf{B}\right) \leq \alpha_{\max }\left(\mathbf{B}^{T} \mathbf{X} \mathbf{B}\right) \leq 1+\varepsilon
$$

Hence,

$$
(1-\varepsilon) \mathcal{I}_{n-1} \preccurlyeq \mathbf{B}^{T} \mathbf{X} \mathbf{B} \preccurlyeq(1+\varepsilon) \mathcal{I}_{n-1} .
$$

Note $\mathbf{B B}^{T}=\boldsymbol{\Pi}$. Hitting with \mathbf{B} and \mathbf{B}^{T} from the left and right, respectively, we conclude

$$
(1-\varepsilon) \boldsymbol{\Pi} \preccurlyeq \boldsymbol{\Pi} \mathbf{X} \boldsymbol{\Pi} \preccurlyeq(1+\varepsilon) \boldsymbol{\Pi} .
$$

A probabilistic proof of a weaker statement - analysis

As $\mathbf{X}=\mathbf{L}_{G}^{+/ 2} \mathbf{L}_{H} \mathbf{L}_{G}^{+/ 2}$ and since $\boldsymbol{\Pi} \mathbf{L}_{G}^{+/ 2}=\mathbf{L}_{G}^{+/ 2}=\mathbf{L}_{G}^{+/ 2} \boldsymbol{\Pi}$,

$$
\boldsymbol{\Pi} \mathbf{X} \boldsymbol{\Pi}=\boldsymbol{\Pi} \mathbf{L}_{G}^{+/ 2} \mathbf{L}_{H} \mathbf{L}_{G}^{+/ 2} \boldsymbol{\Pi}=\mathbf{L}_{G}^{+/ 2} \mathbf{L}_{H} \mathbf{L}_{G}^{+/ 2}
$$

Thus,

$$
(1-\varepsilon) \boldsymbol{\Pi} \preccurlyeq \mathbf{L}_{G}^{+/ 2} \mathbf{L}_{H} \mathbf{L}_{G}^{+/ 2} \preccurlyeq(1+\varepsilon) \boldsymbol{\Pi} .
$$

Hitting by $\mathbf{L}_{G}^{1 / 2}$ on the left and right,

$$
(1-\varepsilon) \mathbf{L}_{G} \preccurlyeq \boldsymbol{\Pi} \mathbf{L}_{H} \boldsymbol{\Pi} \preccurlyeq(1+\varepsilon) \mathbf{L}_{G},
$$

from which it follows that

$$
(1-\varepsilon) \mathbf{L}_{G} \preccurlyeq \mathbf{L}_{H} \preccurlyeq(1+\varepsilon) \mathbf{L}_{G} .
$$

A probabilistic proof of a weaker statement - analysis

To conclude the proof, we need to choose c such that, say, $2 n \cdot \exp \left(-c \varepsilon^{2} / 3\right)<1 / 2$. We thus take $c=O\left(\log (n) / \varepsilon^{2}\right)$. Hence,

$$
\left|E_{H}\right| \leq O\left(n \log (n) / \varepsilon^{2}\right)
$$

Overview

1 The Loewner order

2 Spectral approximation

3 Resistor networks

4 A probabilistic proof of a near-linear sized sparsifiers

5 Linear Sized Sparsifiers

Linear Sized Sparsifiers

As in the previous section, we consider

$$
\begin{aligned}
\boldsymbol{\Pi} & =\mathbf{L}_{G}^{+/ 2} \mathbf{L}_{G} \mathbf{L}_{G}^{+/ 2} \\
& =\mathbf{L}_{G}^{+/ 2}\left(\sum_{a b \in E} w_{a b} \mathbf{L}_{a b}\right) \mathbf{L}_{G}^{+/ 2} \\
& =\sum_{a b \in E} w_{a b} \mathbf{L}_{G}^{+/ 2}(\mathbf{e}(a)-\mathbf{e}(b))(\mathbf{e}(a)-\mathbf{e}(b))^{T} \mathbf{L}_{G}^{+/ 2} \\
& =\sum_{a b \in E} \psi_{a b}^{T} \psi_{a b},
\end{aligned}
$$

where

$$
\psi_{a b}=\sqrt{w_{a b}} \mathbf{L}_{G}^{+/ 2}(\mathbf{e}(a)-\mathbf{e}(b))
$$

Linear Sized Sparsifiers

Thus, it suffices to solve the following problem. Given $\varepsilon>0$ and vectors $\boldsymbol{\psi}_{1}, \ldots, \boldsymbol{\psi}_{m} \in \mathbb{R}^{n}$ in isotropic position

$$
\sum_{i=1}^{m} \boldsymbol{\psi}_{i} \boldsymbol{\psi}_{i}^{T}=\boldsymbol{I}
$$

find a subset $S \subseteq[m]$, of size $|S|=s=O\left(n / \varepsilon^{2}\right)$, and weights $\left(c_{i}\right)_{i \in S}$ such that

$$
(1-\varepsilon) \mathcal{I} \preccurlyeq \sum_{i \in S} c_{i} \psi_{i} \psi_{i}^{T} \preccurlyeq(1+\varepsilon) \mathcal{I} .
$$

Proof strategy

The algorithm for computing S and the weights is iterative. At iteration $j=1, \ldots, s$, an element $\psi_{i_{j}}$ will be added to $S\left(i_{j} \in[m]\right)$ with a suitable weight c_{j}. An element may be chosen more than once.

We will maintain the invariant that for every j, the matrix

$$
\mathbf{A}_{j}=\sum_{k=1}^{j} c_{k} \boldsymbol{\psi}_{i_{k}} \boldsymbol{\psi}_{i_{k}}^{T}
$$

satisfies

$$
-n+\lambda j \leq \alpha_{\min }\left(\mathbf{A}_{j}\right) \leq \alpha_{\max }\left(\mathbf{A}_{j}\right) \leq n+v j
$$

for some parameters $\lambda, v>0$.

The barrier functions

Tracking only the smallest and largest eigenvalues does not seem to carry sufficient amount of information. Instead, the key idea is to record a suitably chosen potential function of all eigenvalues.

Let \mathbf{A} be an $n \times n$ symmetric matrix with eigenvalues $\alpha_{1} \leq \cdots \leq \alpha_{n}$. We define the upper and lower barrier functions

$$
\begin{aligned}
& \Phi^{u}(\mathbf{A})=\sum_{i=1}^{n} \frac{1}{u-\alpha_{i}}=\operatorname{Tr}\left((u \mathcal{I}-\mathbf{A})^{-1}\right) \\
& \Phi_{\ell}(\mathbf{A})=\sum_{i=1}^{n} \frac{1}{\alpha_{i}-\ell}=\operatorname{Tr}\left((\mathbf{A}-\ell \mathcal{I})^{-1}\right)
\end{aligned}
$$

The barrier functions

Figure: The upper barrier function with $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(1,2,6)$.

The barrier functions

Figure: The lower barrier function with $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(1,2,6)$.

The barrier functions

Note that for every $u>\alpha_{n}$ and $\ell<\alpha_{1}$,

$$
\alpha_{n} \leq u-\frac{1}{\Phi^{u}(\mathbf{A})} \quad \alpha_{1} \geq \ell+\frac{1}{\Phi_{\ell}(\mathbf{A})}
$$

Instead of only considering $\alpha_{\text {min }}, \alpha_{\text {max }}$, we maintain an invariant on the barrier functions. For $j=0,1, \ldots, s$, we define

$$
\begin{aligned}
u_{j} & =n+v j \\
\ell_{j} & =-n+\lambda j,
\end{aligned}
$$

and maintain the invariant

$$
\begin{aligned}
\Phi^{u_{j}}\left(\mathbf{A}_{j}\right) & \leq 1 \\
\Phi_{\ell_{j}}\left(\mathbf{A}_{j}\right) & \leq 1
\end{aligned}
$$

Initialization

Initially, we set $S=\emptyset$, and so $\mathbf{A}_{0}=0$. Hence,

$$
\begin{aligned}
& \Phi^{u_{0}}\left(\mathbf{A}_{0}\right)=\sum_{i=1}^{n} \frac{1}{u_{0}}=\frac{n}{u_{0}}=1 \\
& \Phi_{\ell_{0}}\left(\mathbf{A}_{0}\right)=\sum_{i=1}^{n} \frac{1}{-\ell_{0}}=-\frac{n}{\ell_{0}}=1
\end{aligned}
$$

The upper barrier functions

How does the upper barrier function changes under a rank one update? This you resolved in the problem set. In particular, you proved

Lemma (Sherman-Morrison)

Let \mathbf{B} be a nonsingular symmetric matrix. Let $\psi \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$. Then,

$$
\left(\mathbf{B}-c \psi \boldsymbol{\psi}^{T}\right)^{-1}=\mathbf{B}^{-1}+\frac{c}{1-c \boldsymbol{\psi}^{T} \mathbf{B}^{-1} \boldsymbol{\psi}} \cdot \mathbf{B}^{-1} \boldsymbol{\psi} \boldsymbol{\psi}^{T} \mathbf{B}^{-1}
$$

The upper barrier functions

Substituting $\mathbf{B}=u \mathcal{I}-\mathbf{A}$, we get

$$
\begin{aligned}
\Phi^{u}\left(\mathbf{A}+c \psi \boldsymbol{\psi}^{T}\right) & =\operatorname{Tr}\left(\left(u \mathcal{I}-\mathbf{A}-c \boldsymbol{\psi} \boldsymbol{\psi}^{T}\right)^{-1}\right) \\
& =\operatorname{Tr}\left((u \mathcal{I}-\mathbf{A})^{-1}\right)+\Delta(u) \\
& =\Phi^{u}(\mathbf{A})+\Delta(u)
\end{aligned}
$$

where

$$
\begin{aligned}
\Delta(u) & =\frac{c}{1-c \boldsymbol{\psi}^{T}(u \mathcal{I}-\mathbf{A})^{-1} \boldsymbol{\psi}} \cdot \operatorname{Tr}\left((u \mathcal{I}-\mathbf{A})^{-1} \psi \boldsymbol{\psi}^{T}(u \mathcal{I}-\mathbf{A})^{-1}\right) \\
& =\frac{c \boldsymbol{\psi}^{T}(u \mathcal{I}-\mathbf{A})^{-2} \psi}{1-c \boldsymbol{\psi}^{T}(u \mathcal{I}-\mathbf{A})^{-1} \boldsymbol{\psi}}=\frac{\boldsymbol{\psi}^{T}(u \mathcal{I}-\mathbf{A})^{-2} \boldsymbol{\psi}}{1 / c-\boldsymbol{\psi}^{T}(u \mathcal{I}-\mathbf{A})^{-1} \boldsymbol{\psi}}
\end{aligned}
$$

The upper barrier functions

The upper potential function thus increases under a rank one update by $\Delta(u)$. We want to counteract this increase by increasing u. Namely, we want to be able to choose $\psi_{i j}, c_{j}$ such that

$$
\Phi^{u_{j}}\left(\mathbf{A}_{j}\right) \geq \Phi^{u_{j}+v}\left(\mathbf{A}_{j}+c_{j} \boldsymbol{\psi}_{i_{j}} \boldsymbol{\psi}_{i_{j}}^{T}\right)
$$

We compute

$$
\begin{aligned}
\Phi^{u+v}\left(\mathbf{A}+c \psi \boldsymbol{\psi}^{T}\right)-\Phi^{u}(\mathbf{A})= & \Phi^{u+v}\left(\mathbf{A}+c \boldsymbol{\psi} \boldsymbol{\psi}^{T}\right)-\Phi^{u+v}(\mathbf{A}) \\
& +\Phi^{u+v}(\mathbf{A})-\Phi^{u}(\mathbf{A}) \\
= & \Delta(u+v)+\Phi^{u+\delta}(\mathbf{A})-\Phi^{u}(\mathbf{A}) .
\end{aligned}
$$

The barrier functions

The barrier functions

The upper barrier functions

Recall that

$$
\Delta(u+v)=\frac{\boldsymbol{\psi}^{T}((u+v) \mathcal{I}-\mathbf{A})^{-2} \boldsymbol{\psi}}{1 / c-\boldsymbol{\psi}^{T}((u+v) \mathcal{I}-\mathbf{A})^{-1} \boldsymbol{\psi}}
$$

Thus, it suffices to have

$$
\begin{aligned}
\frac{1}{c} & \geq \boldsymbol{\psi}^{T}((u+v) \mathcal{I}-\mathbf{A})^{-1} \psi+\frac{\boldsymbol{\psi}^{T}((u+v) \mathcal{I}-\mathbf{A})^{-2} \psi}{\Phi^{u}(\mathbf{A})-\Phi^{u+v}(\mathbf{A})} \\
& =\boldsymbol{\psi}^{T} \mathbf{U}_{\mathbf{A}} \psi
\end{aligned}
$$

where

$$
\mathbf{U}_{\mathbf{A}}=((u+v) \mathcal{I}-\mathbf{A})^{-1}+\frac{((u+v) \boldsymbol{I}-\mathbf{A})^{-2}}{\Phi^{u}(\mathbf{A})-\Phi^{u+v}(\mathbf{A})}
$$

The upper barrier functions

Thus, we have found a clean condition that imply we can add ψ to S with weight c by increasing u by v and without increasing the upper barrier function. We summarize this in the following claim.

Claim

$$
\frac{1}{c} \geq \boldsymbol{\psi}^{T} \mathbf{U}_{\mathbf{A}} \psi \quad \Longrightarrow \quad \Phi^{u+v}\left(\mathbf{A}+c \psi \boldsymbol{\psi}^{T}\right) \leq \Phi^{u}(\mathbf{A})
$$

L Linear Sized Sparsifiers

The lower barrier functions

Define

$$
\mathbf{L}_{A}=\frac{(\mathbf{A}-(\ell+\lambda) \mathcal{I})^{-2}}{\Phi_{\ell+\lambda}(\mathbf{A})-\Phi_{\ell}(\mathbf{A})}-(\mathbf{A}-(\ell+\lambda) \mathcal{I})^{-1}
$$

Similar to the previous claim, one can show

Claim

$$
\frac{1}{c} \leq \psi^{T} \mathbf{L}_{\mathbf{A}} \psi \quad \Longrightarrow \quad \Phi_{\ell+\lambda}\left(\mathbf{A}+c \boldsymbol{\psi} \boldsymbol{\psi}^{T}\right) \leq \Phi_{\ell}(\mathbf{A})
$$

The inductive argument

It remains to show that there exist ψ_{i} and a weight c such that

$$
\begin{aligned}
\Phi^{u+v}\left(\mathbf{A}+c \psi_{i} \psi_{i}^{T}\right) & \leq \Phi^{u}(\mathbf{A}) \\
\Phi_{\ell+\lambda}\left(\mathbf{A}+c \psi_{i} \psi_{i}^{T}\right) & \leq \Phi_{\ell}(\mathbf{A})
\end{aligned}
$$

By the two claims, it suffices to prove that there exists $i \in[m]$ such that

$$
\psi_{i}^{T} \mathbf{U}_{\mathbf{A}} \psi_{i} \leq \psi_{i}^{T} \mathbf{L}_{\mathbf{A}} \psi_{i}
$$

We can then take any weight c in between. By an averaging argument, it suffices to prove that

$$
\sum_{i=1}^{m} \psi_{i}^{T} \mathbf{U}_{\mathbf{A}} \psi_{i} \leq \sum_{i=1}^{m} \psi_{i}^{T} \mathbf{L}_{\mathbf{A}} \psi_{i}
$$

L Linear Sized Sparsifiers

The inductive argument

We first prove the following claim.

Claim

For every matrix B,

$$
\sum_{i=1}^{m} \psi_{i}^{T} \mathbf{B} \psi_{i}=\operatorname{Tr}(\mathbf{B})
$$

As $\psi^{T} \mathbf{B} \psi=\operatorname{Tr}\left(\psi^{T} \mathbf{B} \psi\right)=\operatorname{Tr}\left(\psi \boldsymbol{\psi}^{T} \mathbf{B}\right)$, we have

$$
\sum_{i=1}^{m} \boldsymbol{\psi}_{i}^{T} \mathbf{B} \boldsymbol{\psi}_{i}=\sum_{i=1}^{m} \operatorname{Tr}\left(\psi_{i} \boldsymbol{\psi}_{i}^{T} \mathbf{B}\right)=\operatorname{Tr}\left(\left(\sum_{i=1}^{m} \boldsymbol{\psi}_{i} \boldsymbol{\psi}_{i}^{T}\right) \mathbf{B}\right)=\operatorname{Tr}(\mathbf{B}) .
$$

Linear Sized Sparsifiers $^{\text {Lin }}$

The inductive argument

Recall,

$$
\mathbf{U}_{\mathbf{A}}=((u+v) \mathcal{I}-\mathbf{A})^{-1}+\frac{((u+v) \mathcal{I}-\mathbf{A})^{-2}}{\Phi^{u}(\mathbf{A})-\Phi^{u+v}(\mathbf{A})}
$$

Claim

$$
\sum_{i=1}^{m} \psi_{i}^{T} \mathbf{U}_{\mathbf{A}} \psi_{i} \leq \frac{1}{v}+\Phi^{u}(\mathbf{A})
$$

By the previous claim,

$$
\sum_{i=1}^{m} \boldsymbol{\psi}_{i}^{T} \mathbf{U}_{\mathbf{A}} \psi_{i}=\operatorname{Tr}\left(\mathbf{U}_{\mathbf{A}}\right)=\Phi^{u+v}(\mathbf{A})+\frac{\operatorname{Tr}\left(((u+v) \mathcal{I}-\mathbf{A})^{-2}\right)}{\Phi^{u}(\mathbf{A})-\Phi^{u+v}(\mathbf{A})}
$$

The inductive argument

Now, as we consider $u \geq \alpha_{\max }(\mathbf{A})$, we have $\Phi^{u+v}(\mathbf{A}) \leq \Phi^{u}(\mathbf{A})$. As for the second term,

$$
\frac{\partial}{\partial u} \Phi^{u}(\mathbf{A})=-\sum_{i=1}^{m} \frac{1}{\left(u-\alpha_{i}\right)^{2}}=-\operatorname{Tr}\left((u \mathcal{I}-\mathbf{A})^{-2}\right) .
$$

By convexity,

$$
\frac{\Phi^{u+v}(\mathbf{A})-\Phi^{u}(\mathbf{A})}{v} \leq \frac{\partial}{\partial u} \Phi^{u+v}(\mathbf{A})
$$

Hence,

$$
\frac{\operatorname{Tr}\left(((u+v) \mathcal{I}-\mathbf{A})^{-2}\right)}{\Phi^{u}(\mathbf{A})-\Phi^{u+v}(\mathbf{A})} \leq \frac{1}{v}
$$

The inductive argument

Similarly, one can prove that

$$
\sum_{i=1}^{m} \psi_{i}^{T} \mathbf{L}_{\mathbf{A}} \psi_{i} \geq \frac{1}{\lambda}-\frac{1}{\frac{1}{\Phi_{\ell}(\mathbf{A})}-\lambda}
$$

Try to prove that by yourself. This time, the analog of the statement $\Phi^{u+v}(\mathbf{A})>\Phi^{u}(\mathbf{A})$ for all $u>\alpha_{\max }(\mathbf{A})$ is a bit trickier, and is given by the following claim.

Claim

For every $\ell<\alpha_{\min }(\mathbf{A})$ and $\lambda<1 / \Phi_{\ell}(\mathbf{A})$, it holds that

$$
\Phi_{\ell+\lambda}(\mathbf{A}) \leq \frac{1}{\frac{1}{\Phi_{\ell}(\mathbf{A})}-\lambda}
$$

L Linear Sized Sparsifiers

Setting the parameters

By the above, we can take any v, λ such that

$$
\frac{1}{v}+\Phi^{u_{j}}\left(\mathbf{A}_{j}\right) \leq \frac{1}{\lambda}-\frac{1}{\frac{1}{\Phi_{\ell_{j}}\left(\mathbf{A}_{j}\right)}-\lambda}
$$

for all $j=0,1, \ldots, s=c n$. Recall,

$$
\begin{aligned}
& \alpha_{\max }\left(\mathbf{A}_{s}\right) \leq u_{s}-\frac{1}{\Phi^{u_{s}}\left(\mathbf{A}_{s}\right)}=n+v c n-\frac{1}{\Phi^{u_{s}}\left(\mathbf{A}_{s}\right)} \leq(v c+1) n-1 \\
& \alpha_{\min }\left(\mathbf{A}_{s}\right) \geq \ell_{s}+\frac{1}{\Phi_{\ell_{s}}\left(\mathbf{A}_{s}\right)}=-n+\lambda c n+\frac{1}{\Phi_{\ell_{s}}\left(\mathbf{A}_{s}\right)} \geq(\lambda c-1) n+1 .
\end{aligned}
$$

Linear Sized Sparsifiers $^{\text {Lin }}$

Setting the parameters

By our invariant, we can take any v, λ for which

$$
\frac{1}{v}+1 \leq \frac{1}{\lambda}-\frac{1}{1-\lambda}
$$

For every such choice, we have

$$
\frac{\alpha_{\max }\left(\mathbf{A}_{s}\right)}{\alpha_{\min }\left(\mathbf{A}_{s}\right)} \leq \frac{n+\nu c n-1}{-n+\lambda c n+1} \leq \frac{v c+1}{\lambda c-1} .
$$

Setting the parameters

The example presented in Spielman considers $\lambda=\frac{1}{3}$ which leads us to take $\nu=2$. Setting, say, $c=13$ yields a ratio of 13 . By dividing all weights by $\sqrt{13}$ we get

$$
\frac{1}{\sqrt{13}} \mathbf{L}_{G} \preccurlyeq \mathbf{L}_{H} \preccurlyeq \sqrt{13} \mathbf{L}_{G}
$$

You are encouraged to play with the numbers to improve the ratio.

