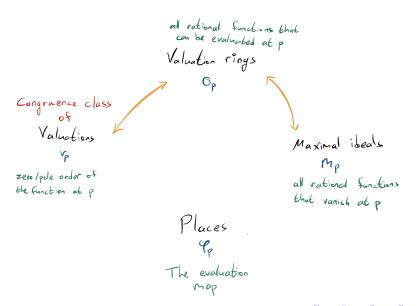
Places Unit 6

Gil Cohen

March 6, 2022

So far



Overview

- Places
- 2 Examples
- Trivial and equivalent places
- Basic properties
- The residue field
- 6 Places and valuation rings
- Example

Adjoining ∞ to a field

Let K be a field. We adjoin to K an element ∞ and extend the operations so that

$$\forall a \in \mathsf{K} \qquad a \pm \infty = \pm \infty + a = \infty$$

$$\forall a \in \mathsf{K}^{\times} \qquad a \cdot \infty = \infty \cdot a = \infty \cdot \infty = \infty$$

$$\forall a \in \mathsf{K} \qquad \frac{a}{\infty} = 0$$

$$\forall a \in \mathsf{K}^{\times} \qquad \frac{a}{0} = \infty.$$

Moreover, the expressions

$$\infty \pm \infty$$
 $0 \cdot \infty$ $\infty \cdot 0$ $\frac{0}{0}$ $\frac{\infty}{\infty}$

are undefined.

You should think of a as the result of an evaluation and interpret ∞ as evaluation was impossible due to a pole.

Places

In the definition, think of F as a field of functions whereas K is the field of possible evaluation outcomes at some fixed point.

Definition 1 (Place)

Let F, K be fields. A map

$$\varphi: \mathsf{F} \to \mathsf{K} \cup \{\infty\}$$

is called a place if

- ② $\varphi(a+b) = \varphi(a) + \varphi(b)$ whenever at least one of $\varphi(a), \varphi(b)$ is not ∞ (or, if you prefer, $\{\varphi(a), \varphi(b)\} \neq \{\infty\}$.)

Overview

- Places
- 2 Examples
- 3 Trivial and equivalent places
- Basic properties
- The residue field
- 6 Places and valuation rings
- Example

Example

For a prime p let \mathbb{F}_p be the field of size p. Recall that $\mathbb{F}_p \cong \mathbb{Z}/p\mathbb{Z}$. Denote by $\psi : \mathbb{Z} \to \mathbb{F}_p$ the projection map $\psi(z) = z + p\mathbb{Z}$.

We extend the ring homomorphism ψ to a place

$$\varphi: \mathbb{Q} \to \mathbb{F}_p \cup \{\infty\}$$

as follows:

Given $q \in \mathbb{Q}$ write $q = \frac{a}{b}$ with $a, b \in \mathbb{Z}$ coprime.

Define,

$$\varphi(q) = \begin{cases} \frac{\psi(a)}{\psi(b)}, & p \text{ does not divide } b; \\ \infty, & \text{otherwise.} \end{cases}$$

I leave it for you as an exercise to show that φ is indeed a place.

Example

Let E be a field and $p(x) \in E[x]$ irreducible. Let

$$\psi: \mathsf{E}[x] \to \mathsf{L} = \mathsf{E}[x] / \langle p(x) \rangle$$

be the projection map $\psi(f(x)) = f(x) + \langle p(x) \rangle$.

We extend the ring homomorphism ψ to a place

$$\varphi: \mathsf{E}(x) \to \mathsf{L} \cup \{\infty\}$$

as follows: Given $f(x) \in E(x)$ write $f(x) = \frac{a(x)}{b(x)}$ with $a(x), b(x) \in E[x]$ coprime, and define

$$\varphi(f(x)) = \begin{cases} \frac{\psi(a(x))}{\psi(b(x))}, & p(x) \text{ does not divide } b(x); \\ \infty, & \text{otherwise.} \end{cases}$$

Example

Recall that

$$\psi: \mathsf{E}[x] \to \mathsf{L} = \mathsf{E}[x] / \langle p(x) \rangle$$

is the projection map $\psi(f(x)) = f(x) + \langle p(x) \rangle$.

In the special case $p(x) = x - \alpha$ we can think of ψ as "evaluating at α " since then

$$\psi: \mathsf{E}[x] \to \mathsf{L} = \mathsf{E}[x] / \langle x - \alpha \rangle \cong \mathsf{E},$$

and for every $f(x) \in E[x]$,

$$\psi(f(x)) = f(x) + \langle x - \alpha \rangle = f(\alpha) + \langle x - \alpha \rangle.$$

Moreover, note that $f(\alpha)$ is the only representative in the coset $\psi(f(x))$ that is an element of E.

Example

$$\psi: \mathsf{E}[x] \to \mathsf{L} = \mathsf{E}[x] / \langle x - \alpha \rangle \cong \mathsf{E}.$$

Now, $\varphi : \mathsf{E}(x) \to \mathsf{L} \cup \{\infty\}$ is given by

$$\varphi(f(x)) = \begin{cases} \frac{\psi(a(x))}{\psi(b(x))}, & x - \alpha \text{ does not divide } b(x); \\ \infty, & \text{otherwise.} \end{cases}$$

$$= \begin{cases} \frac{a(\alpha) + \langle x - \alpha \rangle}{b(\alpha) + \langle x - \alpha \rangle}, & b(\alpha) \neq 0; \\ \infty, & \text{otherwise.} \end{cases}$$

Under the identification of L with E as given by

$$g(x) + \langle x - \alpha \rangle \longleftrightarrow g(\alpha),$$

we can write

$$\varphi(f(x)) = \begin{cases} \frac{a(\alpha)}{b(\alpha)}, & b(\alpha) \neq 0; \\ \infty, & \text{otherwise.} \end{cases}$$

Overview

- Places
- 2 Examples
- 3 Trivial and equivalent places
- Basic properties
- The residue field
- 6 Places and valuation rings
- Example

Trivial places

A quick reminder re field homomorphisms.

A field homomorphism $\psi: \mathsf{F} \to \mathsf{K}$ is always a monomorphism. Indeed, as ψ is a ring homomorphism, $\ker \psi$ is an ideal of F . The only ideals of F are 0 and F . But $\varphi(1)=1$ and so $1 \not\in \ker \psi$. Thus, $\ker \psi=0$, implying ψ is a monomorphism.

By the above remark, ψ is thought of as a field embedding $F \hookrightarrow K$. Namely, we can identify F with $\varphi(F) \subseteq K$.

Definition 2

A place $\varphi : \mathsf{F} \to \mathsf{K} \cup \{\infty\}$ is called trivial if $\varphi(a) \neq \infty$ for all $a \in \mathsf{F}$.

By the above reminder, a trivial place is a field embedding, and vice versa.

Equivalent places

Definition 3

Two places $\varphi : \mathsf{F} \to \mathsf{K} \cup \{\infty\}$, $\varphi' : \mathsf{F} \to \mathsf{K}' \cup \{\infty\}$ are equivalent if $\forall a \in \mathsf{F}$,

$$\varphi(a) \neq \infty \iff \varphi'(a) \neq \infty.$$

We note that a trivial place $\varphi: F \to K \cup \{\infty\}$ is equivalent to the identity field isomorphism $\mathrm{id}_F: F \to F$.

For distinct $\alpha, \beta \in K$, the places $\varphi_{\alpha}, \varphi_{\beta}$ of K(x) that correspond to $x - \alpha$ and $x - \beta$ are not equivalent. Indeed,

$$\varphi_{\alpha}\left(\frac{1}{x-\alpha}\right) = \infty \qquad \varphi_{\beta}\left(\frac{1}{x-\alpha}\right) = \frac{1}{\beta-\alpha}.$$

So, distinct points in the field K give rise to distinct places of K(x).

Same holds for any two distinct irreducible polynomials.

Overview

- Places
- 2 Examples
- 3 Trivial and equivalent places
- Basic properties
- The residue field
- 6 Places and valuation rings
- Example

Claim 4

Let $\varphi : \mathsf{F} \to \mathsf{K} \cup \{\infty\}$ be a place. Then,

- **1** $\varphi(0) = 0$.

Proof.

As for Item (1),

$$\varphi(1) = \varphi(1+0) = \varphi(1) + \varphi(0) \quad \Rightarrow \quad \varphi(0) = 0.$$

Proof.

$$\varphi(1) = \varphi(1+0) = \varphi(1) + \varphi(0) \quad \Rightarrow \quad \varphi(0) = 0.$$

In the above derivation there are two subtleties:

- ② The implication follows by "canceling $\varphi(1)$ ". However, we should be careful. $\varphi(1)=1$ and so we need to show that

$$1 = 1 + \varphi(0) \Rightarrow \varphi(0) = 0.$$

If $\varphi(0)=\infty$ then $1=1+\infty$ - a contradiction. Thus, $\varphi(0)\neq\infty$ and so the entire expression is in the field K which allows us to substract 1 and deduce $\varphi(0)=0$.

Proof.

As for the second item, if $\varphi(a) \neq \infty$ then

$$0 = \varphi(0) = \varphi(a + (-a)) = \varphi(a) + \varphi(-a).$$

Now, if $\varphi(-a) = \infty$ then we would get

$$0=\varphi(a)+\infty$$

a contradiction. Thus, $\varphi(-a) \in K$, implying $\varphi(-a) = -\varphi(a)$.

If on the other hand $\varphi(a) = \infty$ and $\varphi(-a) \neq \infty$ then the RHS is $\infty \neq 0$.

Proof.

To prove the third item, we recall that

$$\varphi(a) \neq \infty \iff a \in K.$$

Thus, our assumption implies that $a,b\in K$, and so $a+b\in K$. This then implies $\varphi(a+b)\neq \infty$.

Proof.

As for the fourth item,

$$1 = \varphi(1) = \varphi(aa^{-1}).$$

If $\varphi(a)=\infty$ and $\varphi(a^{-1})\neq 0$ then

$$1 = \varphi(aa^{-1}) = \varphi(a)\varphi(a^{-1}) = \infty.$$

Hence, $\varphi(a) = \infty \implies \varphi(a^{-1}) = 0$.

On the other hand, if $\varphi(a^{-1})=0$ and $\varphi(a)=c\neq\infty$ then

$$1 = \varphi(a)\varphi(a^{-1}) = c \cdot 0 = 0$$

which again is a contradiction.

Overview

- Places
- 2 Examples
- 3 Trivial and equivalent places
- Basic properties
- 5 The residue field
- 6 Places and valuation rings
- Example

The residue field

Claim 5

Let $\varphi: F \to K \cup \{\infty\}$ be a place. Then, $\overline{F} = \varphi(F) \setminus \{\infty\}$ is a subfield of K.

Proof.

It easy to see that $\bar{\mathsf{F}}$ is closed under addition and multiplication. E.g., if $\alpha, \beta \in \bar{\mathsf{F}}$ then $\exists a, b \in \mathsf{F}$ s.t. $\alpha = \varphi(a), \beta = \varphi(b)$. Thus,

$$\alpha + \beta = \varphi(a) + \varphi(b) = \varphi(a+b),$$

and so $\alpha + \beta \in \bar{\mathsf{F}}$.

Similarly, F is closed under negation.

The residue field

Proof.

It is left to show $\bar{F} \setminus \{0\}$ is closed under multiplicative inverse.

Let $\alpha \in \overline{\mathsf{F}} \setminus \{0\}$ and let $a \in \mathsf{F}$ s.t. $\varphi(a) = \alpha$. Note that $\varphi(a^{-1}) \neq \infty$ as otherwise, Claim 4 would imply $\varphi(a) = 0$.

Thus,

$$\alpha^{-1} = \varphi(a)^{-1} = \varphi(a^{-1}) \in \overline{\mathsf{F}},$$

where the last equality follows since

$$1 = \varphi(1) = \varphi(a \cdot a^{-1}) = \varphi(a)\varphi(a^{-1}),$$

where for the last equality we used the fact that $\varphi(a) \neq 0$.

Lastly, we recall that $\varphi(1)=1$ and so $1\in \bar{\mathsf{F}}.$

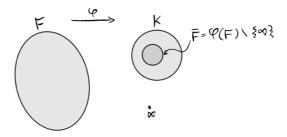
The residue field

Definition 6 (The residue field)

Let $\varphi : \mathsf{F} \to \mathsf{K} \cup \{\infty\}$ be a place. The field,

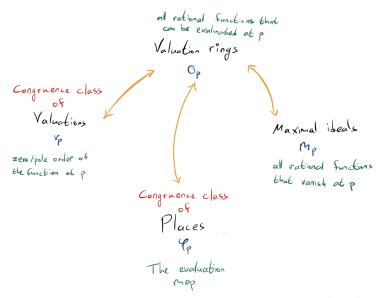
$$\bar{\mathsf{F}} = \varphi(\mathsf{F}) \setminus \{\infty\}$$

is called the residue field of φ .



Overview

- Places
- 2 Examples
- Trivial and equivalent places
- Basic properties
- The residue field
- 6 Places and valuation rings
- Example

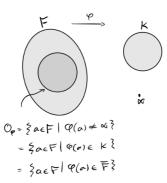


Claim 7

Let $\varphi: \mathsf{F} \to \mathsf{K} \cup \{\infty\}$ be a place. Then,

$$\mathcal{O}_{\varphi} = \{ a \in \mathsf{F} \mid \varphi(a) \neq \infty \}$$

is a valuation ring with $\operatorname{Frac} \mathcal{O}_{\varphi} = \mathsf{F}.$



Proof.

First, $\varphi(1)=1$ by the definition of a place and so $1\in\mathcal{O}_{\varphi}.$

To prove that \mathcal{O}_{arphi} is closed under addition, we use Claim 4 to get

$$a, b \in \mathcal{O}_{\varphi} \quad \Longleftrightarrow \quad \varphi(a), \varphi(b) \neq \infty$$
 $\Rightarrow \quad \varphi(a+b) \neq \infty$
 $\Leftrightarrow \quad a+b \in \mathcal{O}_{\varphi}.$

That \mathcal{O}_{φ} is closed under multiplication is proven by a similar argument. Thus, \mathcal{O}_{φ} is a subring of F.

We turn to prove that \mathcal{O}_{φ} is a valuation ring with field of fractions F.

Take $a \in F^{\times}$ with $a \notin \mathcal{O}_{\varphi}$. Then, $\varphi(a) = \infty$ and so, by Claim 4, $\varphi(a^{-1}) = 0 \neq \infty$. Thus, $a^{-1} \in \mathcal{O}_{\varphi}$. We further conclude that $\operatorname{Frac} \mathcal{O}_{\varphi} = F$.

Claim 8

Let $\varphi : \mathsf{F} \to \mathsf{K} \cup \{\infty\}$ be a place. Then,

$$\begin{split} \mathcal{O}_{\varphi}^{\times} &= \{ a \in \mathsf{F} \ | \ \varphi(a) \not \in \{0, \infty\} \} \\ &= \{ a \in \mathcal{O}_{\varphi} \ | \ \varphi(a) \not = 0 \} \\ &= \mathcal{O}_{\varphi} \setminus \ker \varphi. \end{split}$$

Proof.

By Claim 4,

$$\begin{aligned} \mathbf{a} &\in \mathcal{O}_{\varphi}^{\times} &\iff & \mathbf{a}, \mathbf{a}^{-1} &\in \mathcal{O}_{\varphi} \\ &\iff & \varphi(\mathbf{a}), \varphi(\mathbf{a}^{-1}) \neq \infty \\ &\iff & \varphi(\mathbf{a}) \not\in \{0, \infty\}. \end{aligned}$$

Claim 9

Let $\varphi, \varphi' : \mathsf{F} \to \mathsf{K} \cup \{\infty\}$ be equivalent places. Then,

$$\mathcal{O}_{\varphi} = \mathcal{O}_{\varphi'}.$$

Proof.

This is straightforward by definition. Indeed,

$$\mathcal{O}_{\varphi} = \{ a \in \mathsf{F} \mid \varphi(a) \neq \infty \}$$
$$= \{ a \in \mathsf{F} \mid \varphi'(a) \neq \infty \}$$
$$= \mathcal{O}_{\varphi'}.$$

Let K, F be fields and let $\varphi : F \to K \cup \{\infty\}$ be a place. We denote by $[\varphi]$ the equivalent class of φ .

Theorem 10

The map

$$[\varphi] \mapsto \mathcal{O}_{\varphi}$$

is a bijection between the congruence classes of places of F and valuation rings with fraction field F.

Proof.

First, by Claim 9, the map is well-defined.

The one to one property is obvious. We prove that the mapping is onto.

Let R be a valuation ring with Frac R = F. Let $\mathfrak m$ be R's maximal ideal and let K = R/ $\mathfrak m$.

We extend the projection map $\psi: R \to K$ to F by setting $\psi(a) = \infty$ for all $a \in F \setminus R$. We turn to show that ψ is a place.

Proof.

Let $a, b \in F$. We wish to show that

$$\psi(\mathsf{a}+\mathsf{b})=\psi(\mathsf{a})+\psi(\mathsf{b})$$

whenever (at least) one of $\varphi(a), \varphi(b)$ is not ∞ .

Case 1. $\psi(a), \psi(b) \neq \infty$ immediately follows.

Case 2. $\psi(a) \neq \infty$ and $\psi(b) = \infty$. Then,

$$\psi(a) + \psi(b) = \psi(a) + \infty = \infty.$$

On the other hand, $a+b \notin R$ as otherwise $b=(a+b)-a \in R$, and so $\psi(a+b)=\infty$.

Proof.

We turn to show that $\psi(ab) = \psi(a)\psi(b)$ when $\{\psi(a), \psi(b)\} \neq \{0, \infty\}$.

Case 1. $\psi(a), \psi(b) \neq \infty$ immediately follows.

Case 2. $\psi(a) = \infty$ and $\psi(b) \neq 0$. Then, $a \notin R$. Further,

$$\psi(b^{-1})\neq\infty$$

as otherwise $\psi(b)=0$. Thus, $b^{-1}\in \mathbb{R}$. Now, if $\psi(ab)\neq \infty$ then $ab\in \mathbb{R}$ and so

$$a=(ab)b^{-1}\in\mathsf{R},$$

in contradiction to $a \notin R$. Thus,

$$\psi(ab) = \infty = \psi(a)\psi(b).$$

Overview

- Places
- 2 Examples
- 3 Trivial and equivalent places
- Basic properties
- The residue field
- 6 Places and valuation rings
- Example

Example

Recall the example from the previous unit. Let $K = \mathbb{F}_q$, let

$$f(x,y) = y^2 - x^3 + x \in K[x,y],$$

and consider the domain

$$C_f = K[x,y]/\langle f(x,y)\rangle$$

whose field of fractions is denoted by $K_f = \operatorname{Frac} C_f$. We proved that

$$\mathcal{O}_{o} = \left\{ \frac{a(x)}{b(x)} + y \frac{c(x)}{d(x)} \mid b(0), d(0) \neq 0 \right\},\,$$

with the understanding that $a(T), b(T) \in K[T]$ are coprime and so are $c(T), d(T) \in K[T]$. Moreover,

$$\mathfrak{m}_{o}=\left\{\frac{a(x)}{b(x)}+y\frac{c(x)}{d(x)}\ \middle|\ b(0),d(0)\neq0 \text{ and } a(0)=0\right\}.$$

Example

$$\begin{split} \mathcal{O}_{o} &= \left\{ \frac{a(x)}{b(x)} + y \frac{c(x)}{d(x)} \; \middle| \; b(0), d(0) \neq 0 \right\}, \\ \mathfrak{m}_{o} &= \left\{ \frac{a(x)}{b(x)} + y \frac{c(x)}{d(x)} \; \middle| \; b(0), d(0) \neq 0 \text{ and } a(0) = 0 \right\}. \end{split}$$

We claim that $\mathcal{O}_{\mathfrak{o}} / \mathfrak{m}_{\mathfrak{o}} \cong \mathsf{K}$. Indeed, consider the ring homomorphism

$$\psi: \mathcal{O}_{o} \to \mathsf{K}$$

$$\frac{a(x)}{b(x)} + y \frac{c(x)}{d(x)} \mapsto \frac{a(0)}{b(0)}.$$

 ψ is well-defined as $b(0) \neq 0$ for every element of \mathcal{O}_o . Clearly, $\ker \psi = \mathfrak{m}_o$, and so $\mathcal{O}_o / \mathfrak{m}_o \cong \mathsf{K}$ by the first isomorphism theorem.

Example

Following the proof of Theorem 10, we extend the projection map

$$\psi: \mathcal{O}_{o} \to \mathsf{K}$$

to

$$\varphi_{o}:\mathsf{K}_{f}\to\mathsf{K}$$

by setting $\varphi_{\mathfrak{o}}(a) = \infty$ for all $a \in \mathsf{K}_f \setminus \mathcal{O}_{\mathfrak{o}}$.

Thus,

$$\varphi_{o}\left(\frac{a(x)}{b(x)} + y\frac{c(x)}{d(x)}\right) = \begin{cases} \frac{a(0)}{b(0)}, & b(0) \neq 0 \text{ and } d(0) \neq 0; \\ \infty, & \text{otherwise.} \end{cases}$$